Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Applicability of electrical methods in deep detection and monitoring of conductive lixiviants.

Authors
Hanson-JC
Source
Minneapolis, MN: U.S. Department of the Interior, Bureau of Mines, IC 9308, 1992 Jan; :1-31
Link
NIOSHTIC No.
10011228
Abstract
Various electrical and electromagnetic (EM) geophysical techniques are currently being evaluated by the U.S. Bureau of Mines for their effectiveness in the detection and monitoring of electrically conductive (1 to 5 S/m) lixiviant (leach solution) to depths of 600 m, either above or below the water table. These techniques include magnetotellurics (MT), controlled-source audiofrequency magnetotellurics (CSAMT), resistivity and focused resistivity, ground-penetrating radar (GPR), frequency-domain electromagnetics (FEM), and time-domain electromagnetics (TEM). Of these techniques, TEM may be the most effective, but CSAMT and focused resistivity also hold promise. Geophysical computer modeling of the borehole TEM technique was conducted based on an idealized geoelectric section (layered earth) with characteristics based on the Santa Cruz porphyry copper deposit near Casa Grande, Arizona. Layer resistivities and thicknesses were obtained from geophysical data and geologic logs available from the site. Modeling of borehole TEM both in preleach and during leach situations was conducted. Simulating the TEM method using computer modeling proved to be encouraging since there were substantial differences between leached and nonleached responses. The modeling does not prove the effectiveness of TEM in the field, but does indicate that detection of deep lixiviant zones is theoretically possible.
Keywords
Mining-industry; Models; Simulation-methods; Testing-equipment
Publication Date
19920101
Document Type
IH; Information Circular
Fiscal Year
1992
NTIS Accession No.
PB92-193374
NTIS Price
A03
Identifying No.
IC-9308
NIOSH Division
TCRC
Source Name
Minneapolis, MN: U.S. Department of the Interior, Bureau of Mines, IC 9308
State
AZ; MN
TOP