Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Experimental investigations into the nature of airflows near bluff bodies with aspiration, with implications to aerosol sampling.

Authors
Sreenath-A; Ramachandran-G; Vincent-JH
Source
Atmos Environ 1997 Aug; 31(15):2349-2359
NIOSHTIC No.
00237546
Abstract
The nature of air flow around widely used aerosol samplers was examined. Tests with cylindrical and spherical samplers were performed in a small, open loop wind tunnel. Smoke was generated for flow visualization using the smoke wire method. Flow visualization was enhanced by slit illumination using an overhead transparency projector. The visualized flow around the cylindrical and spherical samplers was photographed, allowing the locations of the stagnation points to be determined. A capacitive micromanometer was employed for determining the frequency of vortex shedding for the cylindrical body. When the angular position of the sink with respect to the free stream equaled zero and the aspiration flow rate for the cylinder equaled 0.01, the locations of the stagnation points were not significantly altered. When the aspiration flow rate for the cylinder equaled 0.25, the forward facing stagnation point split symmetrically into two stagnation points at an angular position of +/-12 degrees with respect to the free stream. The angular width of the stagnation region increased with increasing angular position of the sink. For a cylinder without aspiration, the vortex shedding frequency decreased with increasing Reynolds number (Re). For a cylinder with aspiration, the vortex shedding frequency depended on both the Re and the aspiration flow rate. For a spherical body, one side of the stagnation region decreased in width as the angular position of the sink increased. The other side of the stagnation region increased in width as the angular position of the sink increased. Overall, agreement between the observed findings and the predicted results was good. The authors conclude that the potential flow theory describing the flow field near the sampler is adequate for slot orientations up to about 140 degrees. The above findings help to elucidate the nature of air flow around aerosol samplers.
Keywords
NIOSH-Publication; NIOSH-Grant; Grants-other; Air-flow; Aerosol-sampling; Air-samplers; Fluid-mechanics; Air-sampling-equipment; Analytical-models
Contact
Environmental Health University of Minnesota 420 Delaware Street SE Minneapolis, MN 55455
CODEN
AENVEQ
Publication Date
19970801
Document Type
Journal Article
Funding Amount
361497
Funding Type
Grant
Fiscal Year
1997
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-R01-OH-02984
Issue of Publication
15
ISSN
1352-2310
Priority Area
Other Occupational Concerns; Grants-other
Source Name
Atmospheric Environment
State
MN
Performing Organization
University of Minnesota Twin Cities, Minneapolis, Minnesota
TOP