Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

Possible Role of Endogenous Protein Phosphorylation in Organophosphorus Compound-Induced Delayed Neurotoxicity.

Authors
Abou-Donia-MB; Patton-SE; Lapadula-DM
Source
Cellular and Molecular Neurotoxicity 1984:265-283
Link
NIOSHTIC No.
00232449
Abstract
The effect of organophosphorus compounds on in-vitro phosphorylation of brain and spinal cord synaptosomal cytosol and membranes was studied in the chicken. Proteins isolated from Leghorn-hen and male Sprague-Dawley-rat differed in molecular weight and calcium-2+ (Ca2+) and calmodulin phosphorylation dependency. Roosters given a single oral dose of 750mg/kg tri-o-cresyl-phosphate (78308) (TOCP) displayed ataxia on day seven after treatment, which advanced to complete paralysis by day 14. On autopsy, swelling, vacuolation, and fragmentation of axons and myelin sheaths were observed in the spinal column and sciatic nerves. Phosphorylation of cytosolic proteins of molecular weight 70 and 55 kilodaltons (kD) and membrane protein of 20kD increased by 149%, 196% and 146%, respectively, after treatment. A correlation between severity of ataxia and increased Ca2+ dependency was observed for the 55kD protein. Hens treated with 750mg/kg TOCP displayed ataxia from day seven, paralysis by day 21 and improvement after day 28. Weight loss of 37% was noted at day 35. Phosphorylation of the 55kD and 70kD brain cytosol proteins peaked on day 14 and decreased on day 21. Spinal cord cytosol brain membrane 50kD and 60kD protein phosphorylation peaked on day seven. Hens treated with leptophos (21609905) displayed earlier and more severe neurological effects with brain cytosolic protein phosphorylation significantly increased over TOCP treated animals. No neurological or phosphorylation effects were seen in rats or chicks 21 days after TOCP treatment. Increased phosphorylation of brain, but not spinal cord, axolemmal proteins in the presence of added Ca2+ and calmodulin was observed in TOCP treated hens. The authors conclude that increased phosphorylation of the 55kD band, tentatively identified as tubulin, is associated with the observed neurological effects.
Keywords
NIOSH-Grant; Neurotoxic-effects; Organo-phosphorus-compounds; Organo-phosphorus-pesticides; Central-nervous-system; Laboratory-animals; Anticholinesterase-insecticides; Enzyme-inhibitors;
Contact
Pharmacology Duke University Department of Pharmacology Durham, N C 27710
CAS No.
78-30-8; 21609-90-5;
Publication Date
19840101
Document Type
Book or book chapter;
Editors
Narahashi-T;
Funding Amount
1567389.00
Funding Type
Grant;
Fiscal Year
1984
NTIS Accession No.
NTIS Price
ISBN No.
0881670286
Identifying No.
Grant-Number-R01-OH-00823
Priority Area
Neurotoxic Disorders; Neurotoxic-effects;
Source Name
Cellular and Molecular Neurotoxicity
State
NY; NC;
Performing Organization
Duke University, Durham, North Carolina
TOP