Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

NIOSHTIC-2 Publications Search

Search Results

An empirical model for estimating the collection efficiency of dust-mist respirators.

Authors
Brosseau-LM; Evans-JS; Ellenbecker-MJ
Source
Ann Occup Hyg 1993 Apr; 37(2):135-150
NIOSHTIC No.
00216103
Abstract
An empirical model for estimating the collection efficiency of dust and mist respirators was derived. The model was developed because the commonly used single fiber efficiency model could not reliably predict the penetration characteristics of aerosols in which electrostatic forces were important. The model was derived using data obtained in a study of dust and mist respirator penetration by monodisperse spherical latex particles. The overall fractional penetration of the aerosol was expressed as a differential function of the product of a size specific penetration function and a probability distribution function. The penetration function was approximated by the two parameter Weibull function. The probability distribution function could be formulated as either a count or mass median distribution function. The equation was integrated by numerical methods. The model was applied to predicting the collection efficiency of three commercial dust and mist respirators for silica (14808607) and asbestos (1332214) aerosols. Agreement between the predicted and experimental values for silica was excellent for two respirators. The model overestimated penetration of the third respirator by a factor of about 10. Agreement between the experimental and predicted values in the case of asbestos was poor. The model overestimated penetration of all three respirators by factors of 10 to 100. The authors conclude that the model accurately predicts the penetration characteristics of isometric aerosols such as silica. It fails when attempting to predict the penetration characteristics of fibrous dusts such as asbestos. This reflects differences in the physical characteristics between asbestos fibers and the spherical latex particles on which the model is based.
Keywords
NIOSH-Publication; NIOSH-Grant; Respirators; Training; Mathematical-models; Aerosol-particles; Industrial-hygiene; Asbestos-fibers; Silica-dusts
Contact
Physiology Department, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115
CODEN
AOHYA3
CAS No.
14808-60-7; 1332-21-4
Publication Date
19930401
Document Type
Journal Article
Funding Amount
8171719
Funding Type
Grant
Fiscal Year
1993
NTIS Accession No.
NTIS Price
Identifying No.
Grant-Number-T15-OH-007096; Grant-Number-T42-OH-007096
Issue of Publication
2
ISSN
0003-4878
Priority Area
Training
Source Name
Annals of Occupational Hygiene
State
MA
Performing Organization
Harvard University, Boston, Massachusetts
TOP