Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Mining Publication: Torso Flexion Loads and Fatigue Failure Mode of Human Lumbosacral Motion Segments

January 2005

Image of publication Torso Flexion Loads and Fatigue Failure Mode of Human Lumbosacral Motion Segments

Spine loads associated with lifting a 9-kg weight were estimated at three torso flexion angles (0, 22.5, and 45 deg), and lumbosacral motion segments were cyclically loaded using these loads until failure or to a maximum of 10,020 cycles. The objective was to simulate the postures and loads experienced by the lumbar spine during repetitive lifting of moderate weights in different torso flexion postures and to analyze the fatigue failure response of lumbosacral motion segments. Previous fatigue failure studies of lumbar motion segments have not reproduced the combination of spinal postures, loads, and load rates anticipated in different torso flexion postures during lifting tasks characteristic of those in occupational settings. Twelve fresh human lumbosacral spines were dissected into three motion segments each (L1-L2, L3-L4, and L5-S1). Motion segments within each spine were randomly assigned to a simulated torso flexion angle (0, 22.5, or 45 deg) using a partially balanced incomplete block experimental design. Spinal load and load rate were determined for each torso flexion angle using previously collected data from an EMG-assisted biomechanical model. Motion segments were creep loaded for 15 minutes, then cyclically loaded at 0.33 Hz. Fatigue life was taken as the number of cycles to failure (10-mm displacement after creep loading). Specimens were inspected to determine failure mechanisms. The degree of torso flexion had a dramatic impact on cycles to failure. Motion segments experiencing the 0-deg torso flexion condition averaged 8,253 cycles to failure (+/-2,895), while the 22.5-deg torso flexion angle averaged 3,257 (+/-4,443) cycles to failure, and motion segments at the 45-deg torso flexion angle lasted only 263 cycles (+/-646), on average. The difference was significant at P<0.0001, and="" torso="" flexion="" accounted="" for="" 50%="" of="" the="" total="" variance="" in="" cycles="" to="" failure.="" fatigue="" failure="" of="" spinal="" tissues="" can="" occur="" rapidly="" when="" the="" torso="" is="" fully="" flexed="" during="" occupational="" lifting="" tasks;="" however,="" many="" thousands="" of="" cycles="" can="" be="" tolerated="" in="" a="" neutral="" posture.="" future="" lifting="" recommendations="" should="" be="" sensitive="" to="" rapid="" development="" of="" fatigue="" failure="" in="" torso="">

Authors: S Gallagher, WS Marras, AS Litsky, D Burr

Peer Reviewed Journal ArticleJanuary - 2005

  • Adobe Acrobat - Portable Document Format (.PDF)

    0.29 MB

NIOSHTIC2 Number: 20028583

Spine 2005 Oct; 30(20):2265-2273

 
Contact Us:
  • Office of Mine Safety and Health (OMSHR)
  • National Institute for Occupational Safety and Health (NIOSH)
  • Centers for Disease Control and Prevention
  • 800-CDC-INFO
    (800-232-4636)
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • omshr@cdc.gov
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Road Atlanta, GA 30329-4027, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #