Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Mining Publication: New Simulated Gas Detector Offers Realistic Training for Mine Rescue Teams

NOTE: This page is archived for historical purposes and is no longer being maintained or updated. Contact OMSHR if you need an accessible version of this document.

June 2010

Image of publication New Simulated Gas Detector Offers Realistic Training for Mine Rescue Teams

The United States is trending away from traditional mine rescue contest training toward hands-on skills training that focuses on being better prepared for an actual mine emergency response. New technologies and engaging training exercises are providing more realistic experiences to mine rescue teams. The National Institute for Occupational Safety and Health (NIOSH), in partnership with LightsOn Safety Solutions (LightsOn SS), has just completed the first phase of a research investigation of a multi-gas simulated gas monitor system (GMS). This endeavor is designed to add a higher level of realism during mine rescue contests and training exercises. The GMS is a wireless simulation tool utilizing a personal computer, wireless local area network, and simulated gas detectors. It is designed to assist mine rescue team members to learn about gas detection, understand the significance of gas concentrations, and encourage subsequent decision-making actions by team members. Moreover, it eliminates the static practice of using printed gas readings on a cardboard placard (placed on the ground during training or contests) and replaces it with a more realistic method of receiving gas concentration readings using a simulated hand-held gas detector. In 2009, NIOSH tested the LightsOn SS GMS technology with twenty-three mine rescue teams during two separate field trials. The first was during mine rescue training in the presence of dense theatrical fog that simulated smoke. The second integrated the GMS into a mine rescue contest held in a simulated mine. The research objective was to determine if the GMS technology could be used by mine rescue teams instead of placards, whether the teams would accept the new device, and if its functionality was suitable, reliable, and practical. This paper provides a brief history of the development and testing of the GMS, a description of the GMS functions for this initial phase, and the plans for the next phase of research.

Authors: SB Bealko, DW Alexander, LL Chasko, J Holtan

Conference PaperJune - 2010

  • Adobe Acrobat - Portable Document Format (.PDF)

    0.14 MB

NIOSHTIC2 Number: 20037504

Proceedings of the 13th U.S./North American Mine Ventilation Symposium, Sudbury, Ontario, Canada, June 13-16, 2010. Hardcastle S, McKinnon DL, eds., Sudbury, Ontario, Canada: MIRARCO - Mining Innovation, 2010; :3-8

 
Contact Us:
  • Office of Mine Safety and Health (OMSHR)
  • National Institute for Occupational Safety and Health (NIOSH)
  • Centers for Disease Control and Prevention
  • 800-CDC-INFO
    (800-232-4636)
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • omshr@cdc.gov
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Road Atlanta, GA 30329-4027, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #