Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Mining Publication: Field Evaluation of Mobile Roof Support Technologies

NOTE: This page is archived for historical purposes and is no longer being maintained or updated.
Contact OMSHR if you need an accessible version of this document.

Original creation date: August 2001

Image of publication Field Evaluation of Mobile Roof Support Technologies

This study presents a historic overview of the role of mobile roof support (MRS) technologies in improving stability and worker safety and presents the results of recent field evaluations of the MRS load rate monitoring device and other remote deformation-monitoring techniques. Field studies were implemented at two sites in cooperation among researchers from the National Institute for Occupational Safety and Health (NIOSH), Maleki Technologies, Inc., and J. H. Fletcher & Co. The objectives of the field programs were to (1) study the interaction between MRS's and coal mine strata and (2) develop and test suitable monitoring systems for assessing roof and pillar stability. An MRS consists of a roof canopy, four hydraulic cylinders, a caving shield canopy, and associated electromechanical systems mounted on crawler tracks. The machines are controlled by radio from a remote location and operate on self-contained power units. Typically, MRS's have capacities of 5,340 and 7,120 kN (600 and 800 tons). In comparison to posts, an MRS is capable of maintaining the yield load after significant amounts of roof-floor deformation. Because the mining cycle is accelerated, MRS's help reduce the potential for time-dependent roof falls. MRS performance has been monitored in the laboratory under controlled static loading conditions and in the field under deep, two seam mining conditions. Laboratory studies have quantified support capacity and system stiffness as a function of machine height. Field investigations have focused on determination of optimum operating conditions and development of warning systems that indicate excessive load on the machine and/or impending roof-pillar stability problems. Analyses of field data show that roof instabilities are influenced by (1) pillar failure, (2) pillar yielding, (3) mine seismicity, (4) geologic structures, and (5) panel layout designs and mining practice. Pillar yielding and failure (unloading) and seismicity can be conveniently monitored by the load rate monitoring device, but for consistent detection of roof falls, additional deformation measurements directly within the cuts are needed.

Authors: H Maleki, JK Owens, M Endicott

Conference PaperAugust - 2001

  • Adobe Acrobat - Portable Document Format (.PDF)

    0.83 MB

Proceedings of the 20th International Conference on Ground Control in Mining, Syd S. Peng, Christopher Mark, and A. Wahab Khair, eds (Morgantown WV, Aug. 7-9, 2001). WV University, Morgantown, WV, 2001; :67-77

Contact Us:
  • Office of Mine Safety and Health (OMSHR)
  • National Institute for Occupational Safety and Health (NIOSH)
  • Centers for Disease Control and Prevention
  • 800-CDC-INFO
    TTY: (888) 232-6348
  • New Hours of Operation
    8am-8pm ET/Monday-Friday
    Closed Holidays
  • The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Road Atlanta, GA 30329-4027, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO
A-Z Index
  1. A
  2. B
  3. C
  4. D
  5. E
  6. F
  7. G
  8. H
  9. I
  10. J
  11. K
  12. L
  13. M
  14. N
  15. O
  16. P
  17. Q
  18. R
  19. S
  20. T
  21. U
  22. V
  23. W
  24. X
  25. Y
  26. Z
  27. #