High-fat Western diet alters crystalline silica-induced airway epithelium ion transport but not airway smooth muscle reactivity Data Dictionary

Field name	Field contents
ID	Identification number of animals in the study
Diet	Type of food given to the animal
STD	Standard rat chow diet
HFWD	High-fat Western diet
Exposure	Silica (SIL) or air exposure
Time (wk)	Week post-exposure to silica or filtered air
0 wk	0-week post-exposure to silica or air exposure treatment
4 wk	4-week post-exposure to silica or air exposure treatment
8 wk	8-week post-exposure to silica or air exposure treatment
h	Hour
d	Day
mL	Milliliter
mg	Milligram
cm	Centimeter
g	Gram
wk	Week
EL Response	Contractile response in (cm H2O) to MCh following administration to the
	extraluminal (EL) bath of the isolated, perfused trachea preparation
IL Response	Contractile response to MCh in (cm H2O) following administration to the
	intraluminal (IL) bath of the isolated, perfused trachea preparation
MCh (Methacholine)	An agonist drug that stimulates airway smooth muscle to contract and
	cause bronchoconstriction. Causes an increase in airway resistance
Airway smooth muscle	The muscle surrounding airways that is contracted by methacholine
Airway epithelium	A tissue containing several types of cells that lines the airways and has
	a barrier function. It also is responsible for hydration of the airways and
	clearance of agents from the lungs
Reactivity	A term used to describe how sensitive a tissue or organ responds to a
	provocative agent that causes a response
-log[MCh (M)]	Negative log ₁₀ of the molar MCh concentration
M	Molar units defined as grams/ml
Ussing chamber	Apparatus used to measure airway epithelial ion transport
BASAL	Baseline measure prior to addition of agent
Ouabain (OUAB)	Inhibitor of the Na ⁺ ,K ⁺ -pump
Amiloride (AMIL)	Inhibitor of Na ⁺ channels
5-nitro-2-(3-	Chloride channel inhibitor
phenylpropyl-	
amino) benzoic acid	
(NPPB)	

PD	Potential difference across airway epithelium
Agent	Pharmacological inhibitor, either amiloride or ouabain
$I_{\rm sc}$ (µA/cm ²)	Short circuit electrical current across epithelium due to electrogenic ion
/sc (μ / νοπ-)	transport, and its units
Rt (Ohms/cm ²)	Electrical resistance to ion flow across the epithelium through tight
	junctions, and its units
Frequency	Pulses per second or Hz
H20	water