2015 National Conference on Health Statistics

Spatiotemporal Variation in Selected Health Outcomes from the National Vital Statistics System

Lauren M. Rossen, PhD, MS

Office of Analysis and Epidemiology National Center for Health Statistics

Acknowledgements:

Co-authors: Diba Khan Brady Hamilton Margy Warner

Colleagues in the Division of Vital Statistics, Office of Research Methodology, and the Research Data Center

DISCLAIMER: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention

Small Area Estimation Methods for Spatiotemporal Smoothing

Applications:

- 1. Drug Poisoning Death Rates in the U.S., 2002-2013
 - Two-stage hierarchical generalized linear models
- 2. Teen Birth Rates in the U.S., 2003-2012
 - Hierarchical Bayesian space-time interaction models

First Example of Smoothing

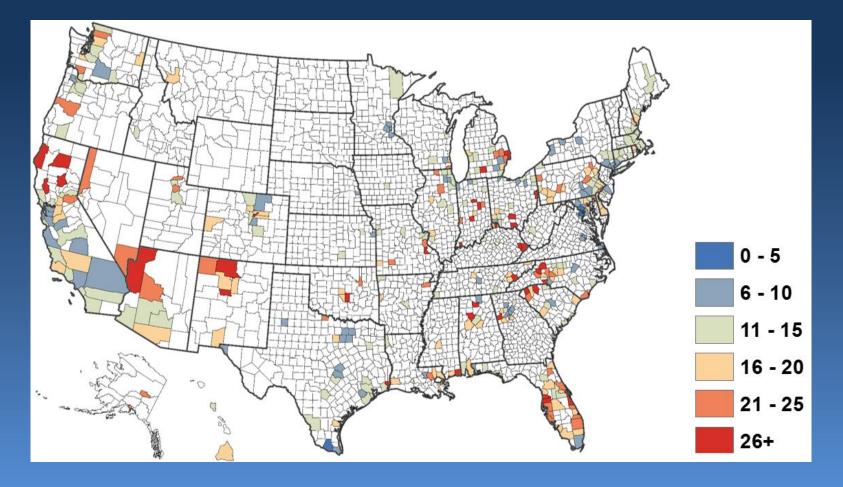
Drug Poisoning Mortality, 2002-2013

Drug Poisoning Mortality, 2002-2013 <u>BACKGROUND</u>

- Death rates associated with drug poisoning have doubled since 2000, to ~ 14 per 100,000 in 2013
 - More deaths due to drug poisoning than motor vehicle crashes
 - Drug overdoses are a major public health concern
- Death rates highest in West Virginia (32), Kentucky (24), New Mexico (23), Rhode Island (22) and Utah (22)
- Interest in county-level variation:
 - Where are death rates due to drug poisoning highest or lowest?
 - Where have we seen larger or smaller increases over time?

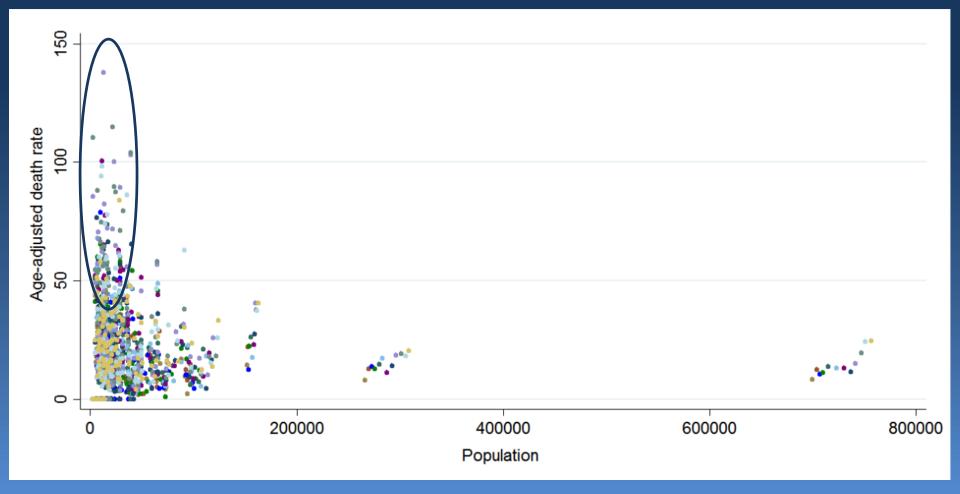
RATIONALE FOR SMOOTHING: Drug Poisoning

- Death rates with data suppressed for counties with < 20 deaths in 2009
 - 87% of counties suppressed!
 - Rare outcomes → cannot look at sub-state variation using direct estimates



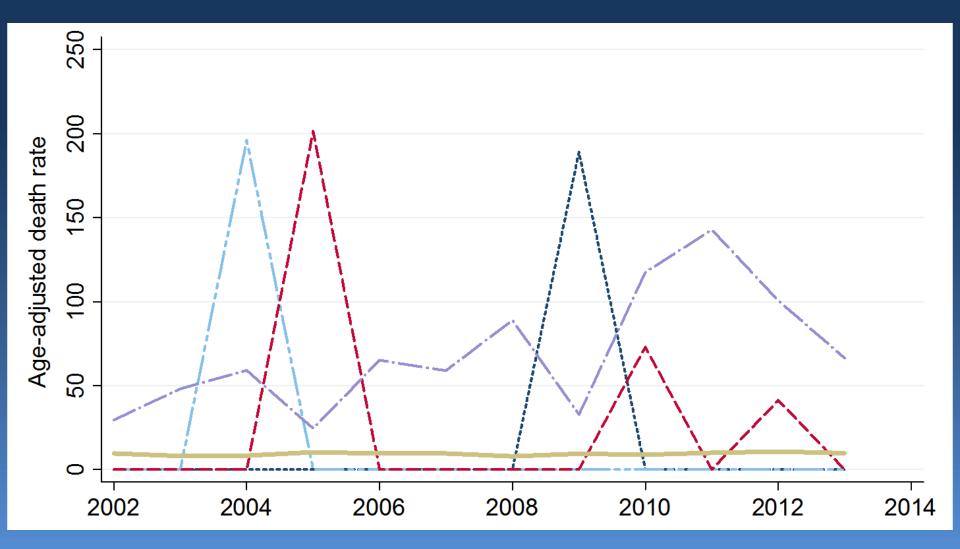
RATIONALE FOR SMOOTHING (continued)

- Rates are unstable for counties with small populations
 - Could combine years, but would mask temporal trends



AN EXAMPLE OF UNSTABLE RATES...

- Solid sand-colored line is a large city, other 4 counties are small
 - Death rates fluctuate from 0 to 200 per 100,000 from year-to-year



DATA AND ANALYSES

- *y_{it}* = Age-adjusted death rate (AADR) from drug poisoning for county *i* at time *t*
 - from National Vital Statistics Multiple Cause of Death Files, 2002-2013
- *y_{it}* ~ highly zero-inflated, right-skewed distribution
 - Use two-stage models
 - Stage 1: model probability of observing a death
 - Stage 2: model death rate, given death was recorded

TWO STAGE MODELS

Stage 1: logit($y_{it}=0$) = $\alpha^{(1)} + A_i^{(1)} + B_t^{(1)} + X_i^{\prime}\gamma^{(1)}$

Stage 2: $\log(y_{it}|y_{it}>0) = \alpha^{(2)} + A_i^{(2)} + B_t^{(2)} + X_i^{\prime}\gamma^{(2)}$

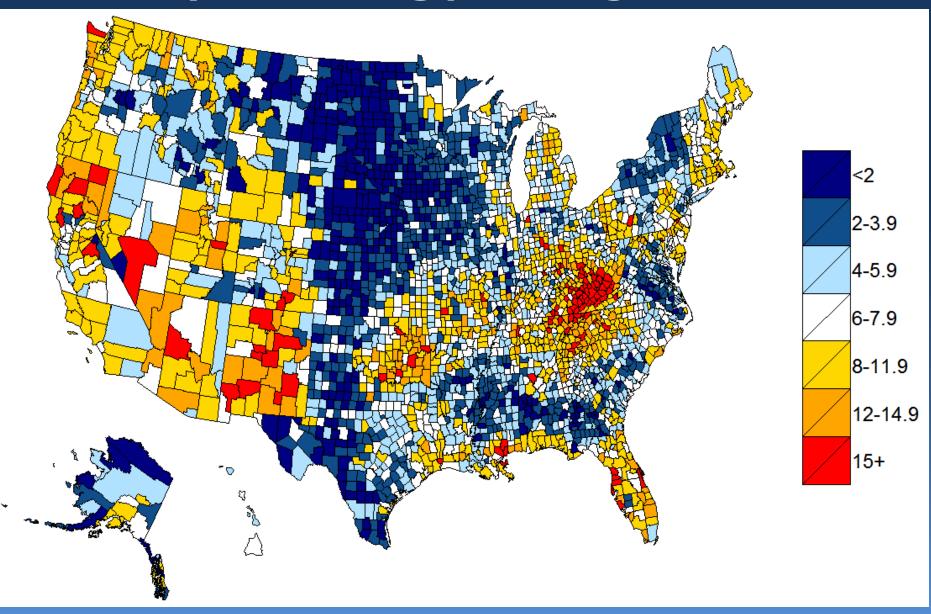
 $\begin{aligned} & \alpha = \text{intercept} \\ & \mathsf{A}_i = \text{county-level random effect} \\ & \mathsf{B}_t = \text{fixed effects for year} \\ & \mathsf{X}_i^* \gamma \text{= vector of covariates and corresponding} \\ & \text{ parameters, } \gamma \end{aligned}$

 urban/rural classification, socio-demographic and economic characteristics at the county-level

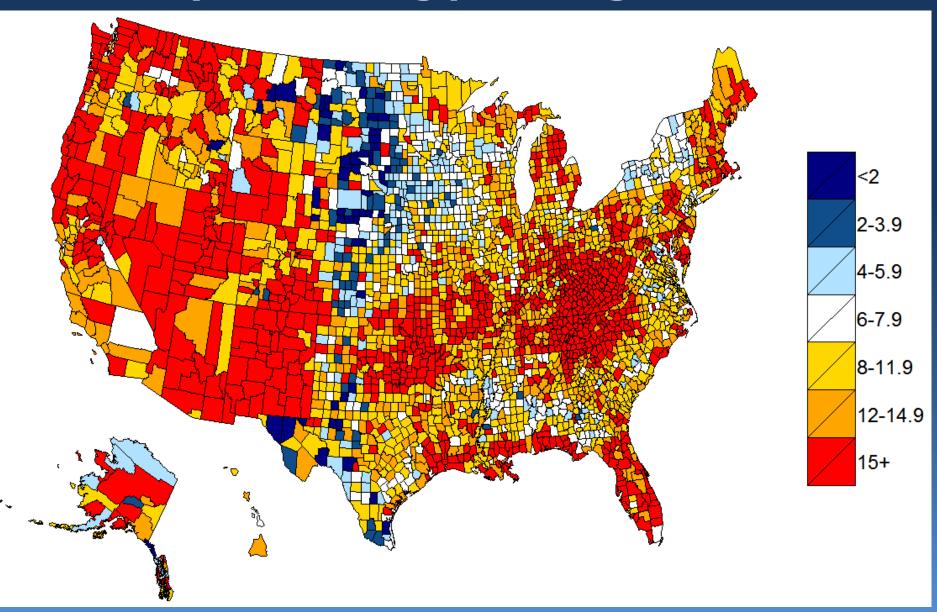
SMOOTHED ESTIMATES

- Models run in Stata using GLAAMM (generalized linear latent and mixed models)
- Empirical Bayes predictions $E(AADR) = [1-Pr(y_{it}=0)]^*e^{\hat{y}_{it}}$
- AADRs were mapped to examine spatiotemporal patterns
 - Hot and cold spots
 - Clusters of counties with high/low AADRs

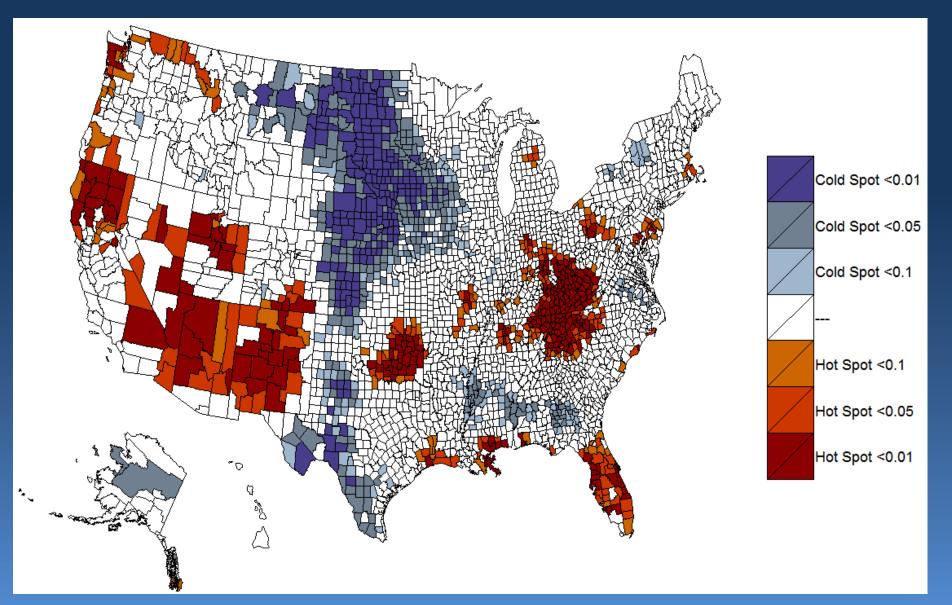
RESULTS: Age-adjusted death rates (per 100,000) due to drug poisoning - 2002



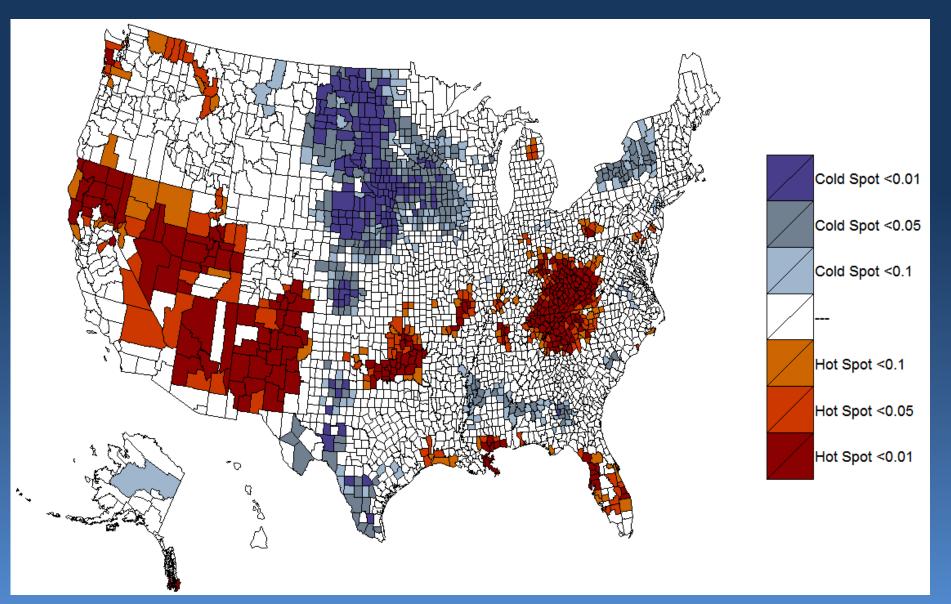
RESULTS: Age-adjusted death rates (per 100,000) due to drug poisoning - 2013



RESULTS: Hot and Cold Spots - 2002



RESULTS: Hot and Cold Spots - 2013



CONCLUSIONS

- Looking at spatiotemporal patterns can inform efforts to address drug poisoning mortality in the U.S.
 - Can help point to what might be driving drug poisoning mortality higher or lower in specific regions
- Patterns emerge that would have been missed using state estimates
 - Hot or cold spots that cross state boundaries
 - Appalachia, South West, Gulf coast
 - Significant sub-state variation
 - Mississippi, Montana, Virginia contain both hot and cold spots

Second Example of Smoothing

Teen Birth Rates in the U.S., 2003-2012

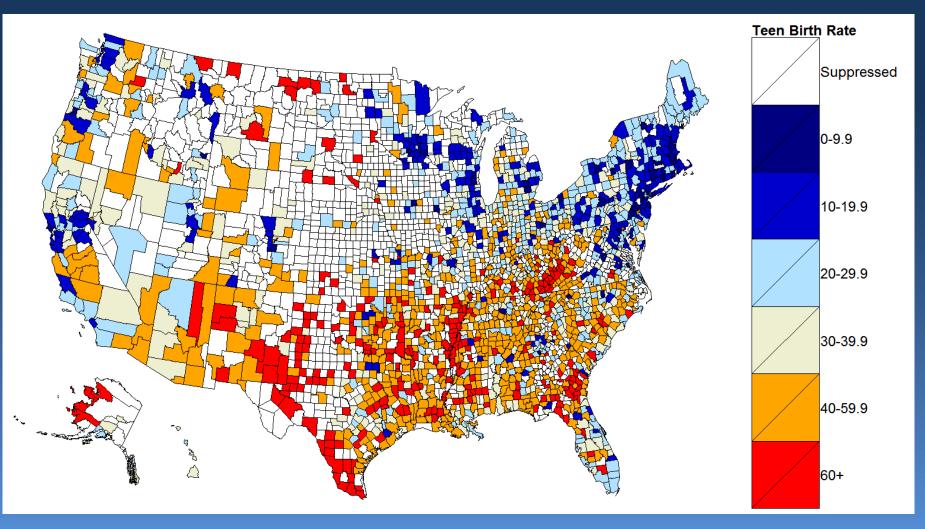
Teen Birth Rates in the U.S., 2003-2012

BACKGROUND

- In 2014, there were 24.2 births for every 1,000 adolescent females (15-19 years)
- Reducing teen pregnancy rates is a CDC Winnable Battle
 - Large-scale impact on health
 - Established preventive measures
- Teen birth rates vary by state, as do trends over time
 - Spatiotemporal variation at the sub-state level has not yet been explored

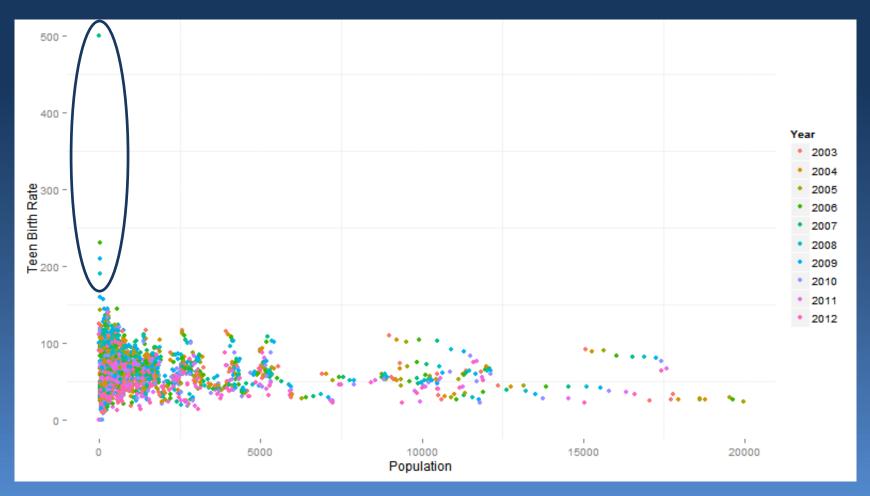
RATIONALE FOR SMOOTHING: Teen Birth Rates

- Observed county-level teen birth rates in 2012
 - Suppressing counties with < 20 births
 - 'Missing' information for ~36% counties with small populations



RATIONALE FOR SMOOTHING (continued)

- Rates are unstable for counties with small populations
 - Teen birth rates range from 0 to **500** per 1,000
 - Could combine years, but that may mask temporal trends



DATA AND ANALYSES

- y_{it} = counts of births to women 15-19 years of age in county *i* at time *t*
 - from National Vital Statistics Birth Data Files from 2003-2012

 n_{it} = counts of women between 15-19 years in county *i* at time *t*

from bridged-race post-censal population estimates

 $y_{it} \sim \text{Binomial}(n_{it}, p_{it})$, where p_{it} = the probabilities of teen birth for county *i* at time *t*

- X_i^{\prime} = set of covariates related to urban/rural designation, sociodemographic and economic characteristics
 - from Area Resource File, NCHS urban/rural classification scheme

HIERARCHICAL BAYESIAN MODELS General space-time structure for modeling p_{it} : logit(p_{it}) = α + A_i + B_t + C_{it} + X_i^{γ}

- α = intercept
- $A_i = spatial effect$
- B_t = temporal effect
- C_{it} = space-time interaction
- $X_i^{\prime}\gamma$ = vector of covariates and corresponding parameters, γ

Models run in WinBUGS

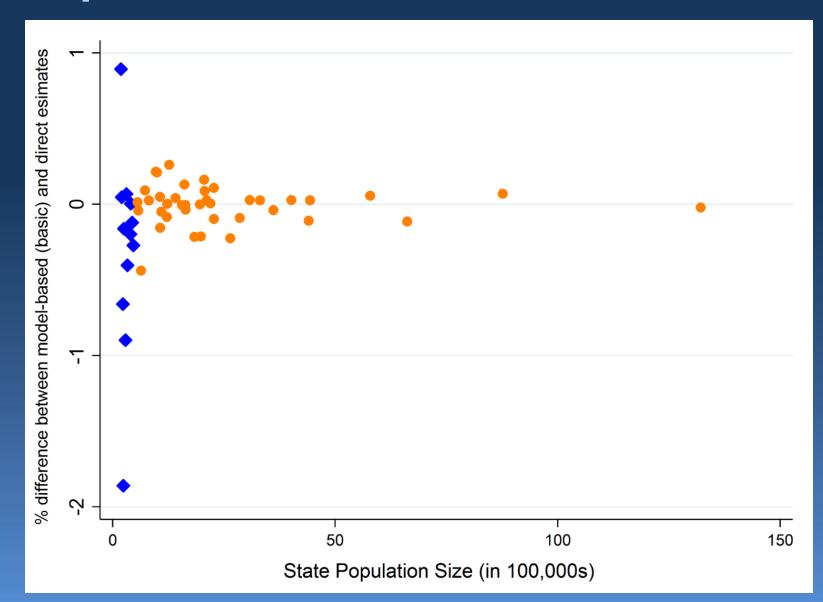
MAPPING SMOOTHED ESTIMATES

- Posterior teen birth rates (1000*p̂_{it}) mapped to examine spatiotemporal patterns:
 - Exceedance probabilities
 - Probability that counties exceed a specified threshold, c
 - We chose c = 36 to reflect the mean county-level TBR in 2012
 - Hot and cold spots
 - Clusters of counties with high or low rates

RESULTS

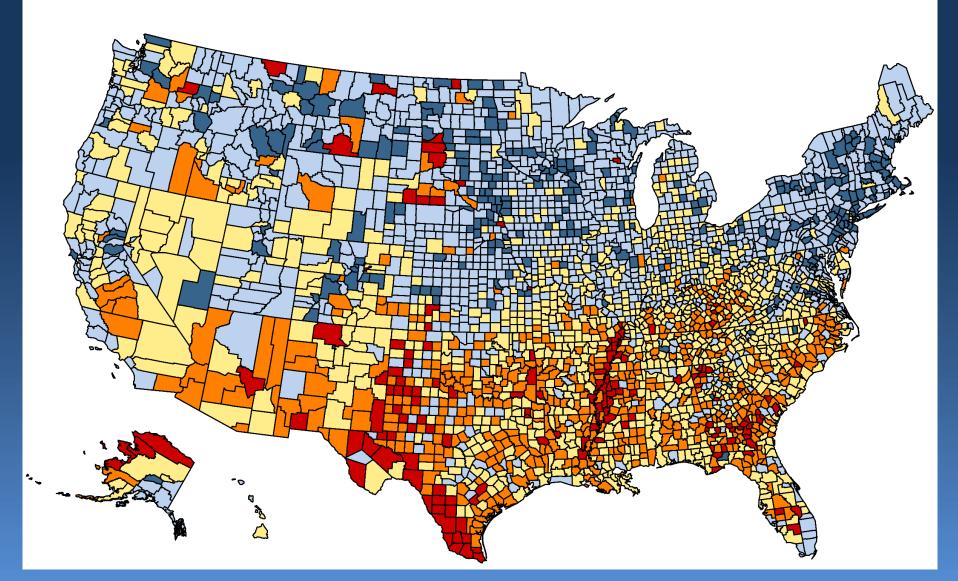
- From 2003-2012, teen birth rates:
 declined for ~80% of counties
 no change for ~19% of counties
 increased for < 1% of counties
- Comparisons to direct estimates at the state level were within 2%
 - Differences between model-based and direct estimates were larger for sparsely populated states

MODEL DIAGNOSTICS (Teen Birth Rates): Comparison to state estimates

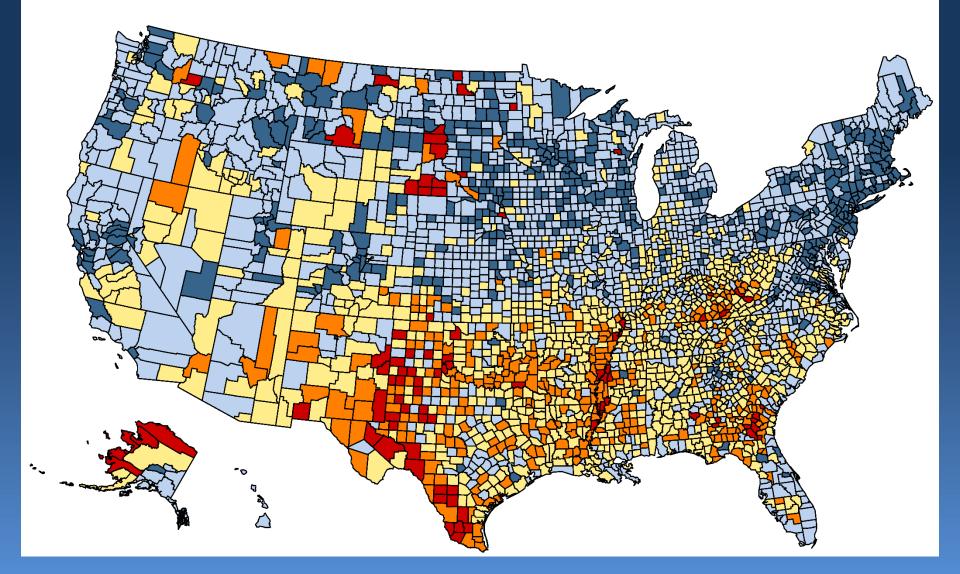


Estimated teen birth rates (per 1,000) - 2003

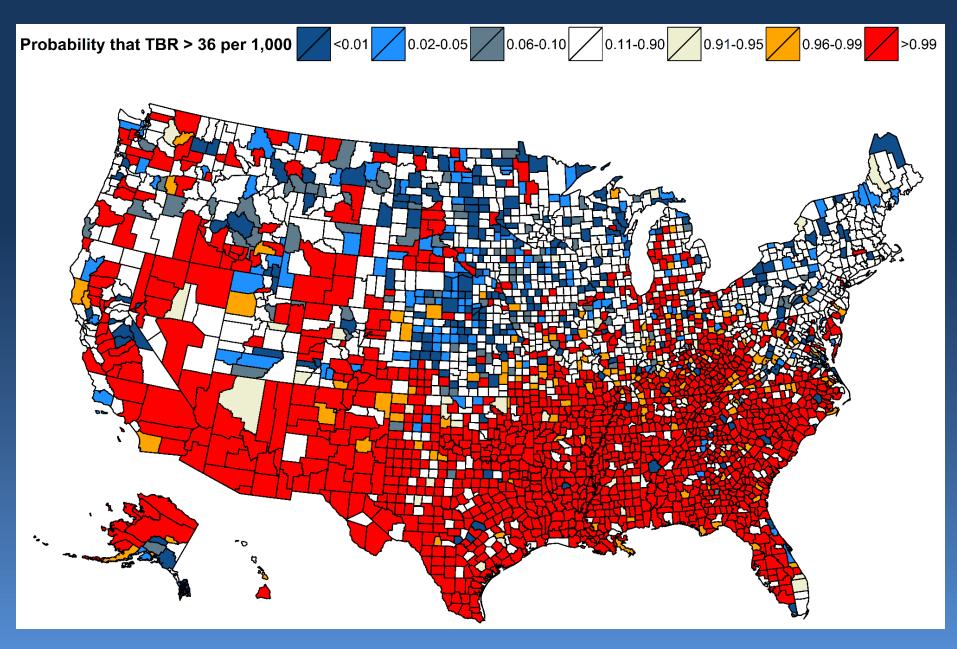
TBR per 1,000 - 2003 <20 20-39 40-59 60-79 80+



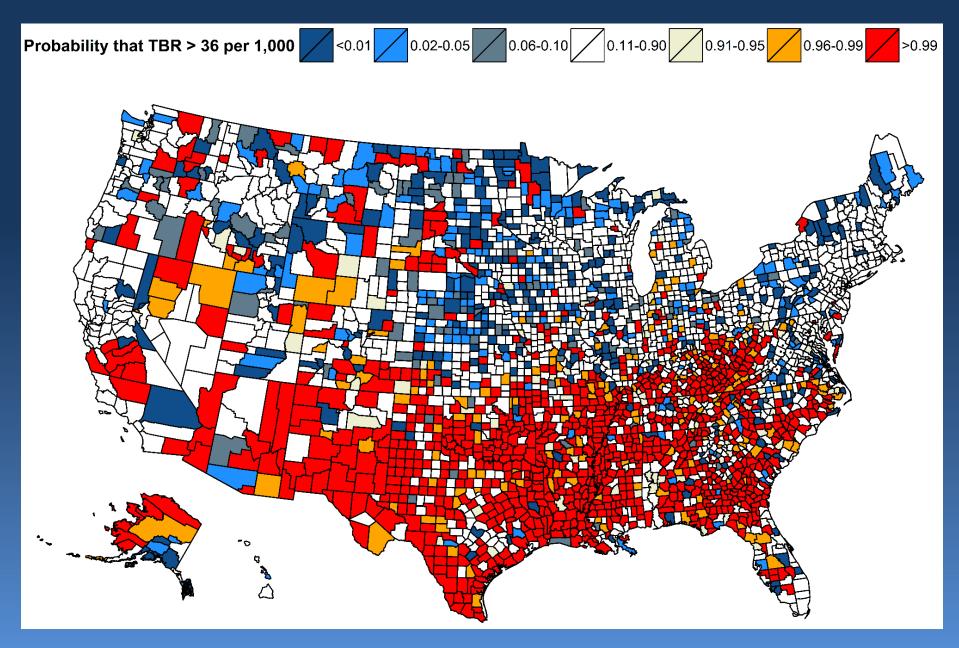
Estimated teen birth rates (per 1,000) - 2012



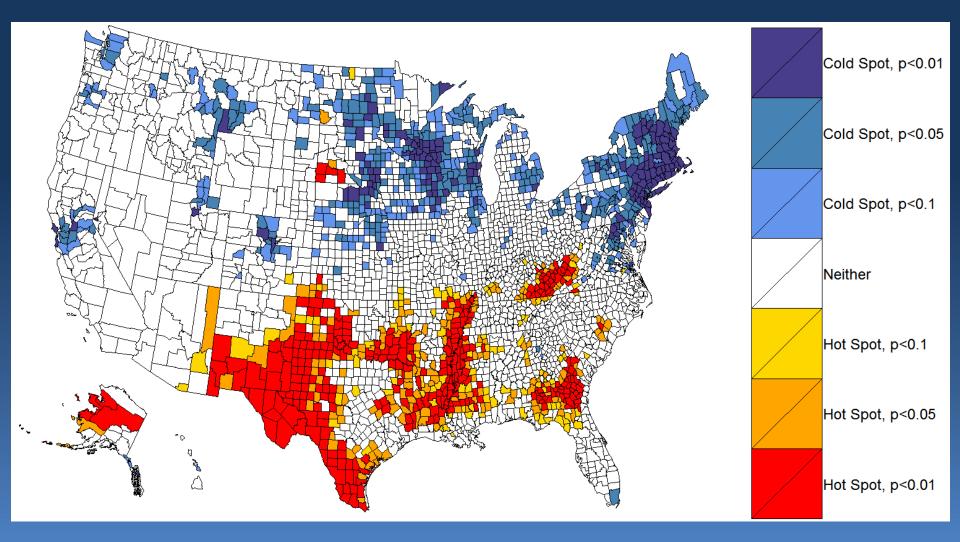
Exceedance Probabilities - 2003



Exceedance Probabilities - 2012



Hot and Cold Spots - 2012



CONCLUSIONS

- Findings highlight counties where teen birth rates are relatively higher or lower
 - How trends over time vary geographically
- Patterns emerge that we would have missed using state estimates
 - For example, the hot spot along the Mississippi River crosses state boundaries
- Examination of spatiotemporal patterns may inform efforts to further reduce birth rates to adolescents in the U.S.
 - Can look at where teen birth rates are higher than a given 'target'

SOME CONSIDERATIONS

• Strengths:

- Can see 'full picture' of what is happening across the U.S.
- Pick up on important patterns that might be masked by state estimates or other groupings (urban/rural)

• Limitations:

- Might smooth away important effects
 - Either in space or in time
- With birth/death data, difficult to check models
 - We already have 100% of the data!

QUESTIONS?

Email: LRossen@cdc.gov

- For more on teen births, sit tight for the next session – "Teen and Young Adult Health Disparities: More Than Just Sex and Pregnancy"
- For more on drug poisoning, head to Salon D for "From Health to Harm: The Burden of Drug Poisoning in the United States"

Helpful References

- NCHS Fact Sheet: Data on Drug Poisoning Deaths. June 2015. http://www.cdc.gov/nchs/data/factsheets/factsheet_drug_poisoning.pdf
- <u>http://nationalrxdrugabusesummit.org/2015/04/reducing-overdose-deaths-a-top-concern-in-drug-effort/</u>
- http://www.cdc.gov/media/releases/2015/p0114-drug-overdose.html
- Chetan Tiwari, Kirsten Beyer, and Gerard Rushton. The Impact of Data Suppression on Local Mortality Rates: The Case of CDC WONDER. American Journal of Public Health: August 2014, Vol. 104, No. 8, pp. 1386-1388. doi: 10.2105/AJPH.2014.301900
- Rossen LM, Khan D, Warner M. Trends and geographic patterns in drug-poisoning death rates in the U.S., 1999-2009. Am J Prev Med. 2013 Dec;45(6):e19-25. doi: 10.1016/j.amepre.2013.07.012.
- Rossen LM, Khan D, Warner M. Hot spots in mortality from drug poisoning in the United States, 2007-2009. Health Place. 2014 Mar;26:14-20. doi: 10.1016/j.healthplace.2013.11.005
- Skrondal, A. and Rabe-Hesketh, S. (2009), Prediction in multilevel generalized linear models. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172: 659–687. doi: 10.1111/j.1467-985X.2009.00587.x
- Hamilton BE, Martin JA, Osterman MJK, Curtin SC. Births: Preliminary Data for 2014. National Vital Statistics Reports. Volume 64, Number 6. http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_06.pdf
- CDC Winnable Battles: Teen Pregnancy.
 <u>http://www.cdc.gov/winnablebattles/teenpregnancy/index.html</u>
- Carlin BP, Louis TA. 2009. Bayesian Methods for Data Analysis. New York: Chapman and Hall.
- Lawson A. 2013. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. New York: Chapman and Hall.