

National Antimicrobial Resistance Monitoring System: Enteric Bacteria

2012

Human Isolates Final Report

National Center for Emerging and Zoonotic Infectious Diseases Division of Foodborne, Waterborne, and Environmental Diseases

Table of Contents

List of Tables
List of Figures
List of Abbreviations and Acronyms
NARMS Working Group
Introduction
What is New in the NARMS Report for 2012
Summary of NARMS 2012 Surveillance Data
Highlights
Changes in antimicrobial resistance: 2012 vs. 2003-07
Introducing Epidemiological Cut-Off Values (ECOFFs) for the interpretation of Campylobacter spp.
<u>susceptibility data</u>
Surveillance and Laboratory Testing Methods
1. <u>Non-typholdal Salmonella</u>
A. <u>Salmonella ser. Enteritidis</u>
B. <u>Saimoneila ser. Typhimurium</u>
C. <u>Saimonella ser. Newport</u>
D. <u>Saimonella ser. Heidelberg</u>
E. <u>Saimonella Ser. 1 4,[5],12:1:-</u>
2. <u>Typnoidal Salmonella</u>
A. <u>Saimonella ser. Typni</u>
B. <u>Saimonella ser. Paratypni A, Paratypni B, and Paratypni C</u>
3. <u>Snigella</u>
4. <u>Escherichia coli 0157</u>
5. <u>Campylobacter</u>
6. <u>Vibrio species other than V.cholerae</u>
Antimicrobial Resistance: 1996–2011
Keterences
NARMS Publications in 2012
Appendix A. WHO Categorization of Antimicrobial Agents
Appendix D. Chieffa for Releasing of Isolales

Suggested Citation: CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2012. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2014.

Information Available Online: Previous reports and additional information about NARMS are posted on the CDC NARMS website: http://www.cdc.gov/narms

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement by the Centers for Disease Control and Prevention or the U.S. Department of Health and Human Services.

List of Tables

<u>Table 1.</u>	Population size and number of isolates received and tested, NARMS, 2012
<u>Table 2.</u>	Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia coli O157 isolates, NARMS, 1996-201222
<u>Table 3.</u>	Antimicrobial agents used for susceptibility testing of <i>Campylobacter</i> isolates, NARMS, <u>1997–2012</u>
<u>Table 4.</u>	Antimicrobial agents used for susceptibility testing of Vibrio species other than V. cholerae isolates, NARMS, 2009-2012
<u>Table 5.</u>	Number of non-typhoidal Salmonella isolates among the most common serotypes tested by NARMS with the number of resistant isolates by class and agent, 2012
<u>Table 6.</u>	Percentage and number of non-typhoidal Salmonella isolates in NARMS with selected resistance patterns, by serotype, 2012
<u>Table 7.</u>	Percentage and number of non-typhoidal Salmonella isolates in NARMS with resistance, by number of CLSI* classes and serotype, 2012
<u>Table 8.</u>	Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2012 (N=2236)
<u>Table 9.</u>	Percentage and number of non-typhoidal Salmonella isolates resistant to antimicrobial agents, 2003–2012
<u>Table 10.</u>	Resistance patterns of non-typhoidal Salmonella isolates, 2003–2012
<u>Table 11.</u>	Broad-Spectrum β-lactam resistance among all ceftriaxone/ceftiofur resistant non-typhoidal <u>Salmonella</u> isolates, 2011–2012
<u>Table 12.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2012 (N=365)
<u>Table 13.</u>	Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 2003–2012
<u>Table 14.</u>	Resistance patterns of Salmonella ser. Enteritidis, 2003–2012
<u>Table 15.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2012 (N=295)
Table 16.	Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 2003–2012
<u>Table 17.</u>	Resistance patterns of Salmonella ser. Typhimurium isolates, 2003–2012
<u>Table 18.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2012 (N=259)
<u>Table 19.</u>	Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents, 2003–2012
<u>Table 20.</u>	Resistance patterns of Salmonella ser. Newport isolates, 2003–201245
<u>Table 21.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2012 (N=41)
<u>Table 22.</u>	Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 2003–2012

<u>Table 23.</u>	Resistance patterns of Salmonella ser. Heidelberg isolates, 2003-2012	. <u>48</u>
<u>Table 24.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2012 (N=118)	. <u>49</u>
<u>Table 25.</u>	Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 2003–2012	. <u>50</u>
<u>Table 26.</u>	Resistance patterns of Salmonella ser. I 4,[5],12:i:- isolates, 2003-2012	. <u>51</u>
<u>Table 27.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2012 (N=326)	. <u>52</u>
<u>Table 28.</u>	Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 2003–2012	. <u>53</u>
<u>Table 29.</u>	Resistance patterns of Salmonella ser. Typhi isolates, 2003–2012	.54
<u>Table 30.</u>	Frequency of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C, 2012	. <u>55</u>
<u>Table 31.</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2012 (N=111)	. <u>55</u>
<u>Table 32.</u>	Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial agents, 2003–2012	. <u>56</u>
<u>Table 33.</u>	Resistance patterns of Salmonella ser. Paratyphi A isolates, 2003-2012	. <u>57</u>
<u>Table 34.</u>	Frequency of Shigella species, 2012	. <u>58</u>
<u>Table 35.</u>	Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2012 (N=353)	. <u>58</u>
<u> Table 36.</u>	Percentage and number of Shigella isolates resistant to antimicrobial agents, 2003-2012	. <u>59</u>
<u>Table 37.</u>	Resistance patterns of Shigella isolates, 2003–2012	. <u>60</u>
<u>Table 38.</u>	Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2012 (N=287)	. <u>61</u>
<u>Table 39.</u>	Percentage and number of Shigella sonnei isolates resistant to antimicrobial agents, 2003–2012	. <u>62</u>
<u>Table 40.</u>	Resistance patterns of Shigella sonnei isolates, 2003–2012	. <u>63</u>
<u>Table 41.</u>	Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2012 (N=59)	. <u>64</u>
<u>Table 42.</u>	Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2003–2012	. <u>65</u>
<u>Table 43.</u>	Resistance patterns of Shigella flexneri isolates, 2003–2012	. <u>66</u>
<u>Table 44.</u>	Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2012 (N=166)	. <u>67</u>
<u>Table 45.</u>	Percentage and number of <i>Escherichia coli</i> O157 isolates resistant to antimicrobial agents, 2003–2012	. <u>68</u>
<u>Table 46.</u>	Resistance patterns of Escherichia coli O157 isolates, 2003–2012	. <u>68</u>
<u>Table 47.</u>	Frequency of Campylobacter species, 2012	. <u>69</u>
<u>Table 48.</u>	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2012 (N=1191)	.69

<u>Table 49.</u>	Percentage and number of Campylobacter jejuni isolates resistant to antimicrobial agents,	
	<u>2003–2012</u>	. <u>70</u>
<u>Table 50.</u>	Resistance patterns of Campylobacter jejuni isolates, 2003-2012	. <u>70</u>
<u>Table 51.</u>	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2012 (N=134)	. <u>71</u>
<u>Table 52.</u>	Percentage and number of Campylobacter coli isolates resistant to antimicrobial agents, 2003–2012	. <u>72</u>
<u>Table 53.</u>	Resistance patterns of Campylobacter coli isolates, 2003–2012	. <u>72</u>
<u>Table 54.</u>	Frequency of Vibrio species other than V. cholerae, 2009-2012	. <u>73</u>
<u>Table 55.</u>	Minimum inhibitory concentrations (MICs) and resistance of isolates of Vibrio species other than V. cholerae to antimicrobial agents, 2012 (N=603)	. <u>73</u>
<u>Table 56.</u>	Percentage and number of isolates of Vibrio species other than V. cholerae resistant to ampicillin, 2009-2012	. <u>74</u>
<u>Appendix</u>	A Table A1. WHO categorization of antimicrobials of critical importance to human medicine	. <u>90</u>
<u>Appendix</u>	B Table B1. Retest criteria for unlikely or discordant resistance phenotypes	. <u>91</u>
Appendix	B Table B2. Uncommon resistance phenotypes for which retesting is encouraged	. <u>91</u>

List of Figures

Figure 1.	How to read a squashtogram2
Figure 2.	Proportional chart, a categorical graph of a squashtogram
Figure 3.	Antimicrobial resistance pattern for non-typhoidal Salmonella, 2012
Figure 4.	Antimicrobial resistance pattern for Salmonella ser. Enteriditis, 2012
Figure 5.	Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2012
Figure 6.	Antimicrobial resistance pattern for Salmonella ser. Newport, 2012
Figure 7.	Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2012
Figure 8.	Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 20124
Figure 9.	Antimicrobial resistance pattern for Salmonella ser. Typhi, 2012
Figure 10.	Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, 20125
Figure 11.	Antimicrobial resistance pattern for Shigella, 20125
Figure 12.	Antimicrobial resistance pattern for Shigella sonnei, 2012
Figure 13.	Antimicrobial resistance pattern for Shigella flexneri, 2012
Figure 14.	Antimicrobial resistance pattern for Escherichia coli 0157, 2012
Figure 15.	Antimicrobial resistance pattern for Campylobacter jejuni, 2012
Figure 16.	Antimicrobial resistance pattern for Campylobacter coli, 2012
Figure 17.	Percentage of non-typhoidal Salmonella isolates resistant to nalidixic acid, by year, <u>1996-2012</u>
Figure 18.	Percentage of non-typhoidal Salmonella isolates resistant to ceftriaxone, by year, <u>1996-2012</u>
Figure 19.	Percentage of Salmonella ser. Enteriditis isolates resistant to nalidixic acid, by year, <u>1996-2012</u>
Figure 20.	Percentage of Salmonella ser. Heidelberg isolates resistant to ceftriaxone, by year, <u>1996-2012</u>
Figure 21.	Percentage of Salmonella ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996-2012
Figure 22.	Percentage of Salmonella ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx), by year, 1996-2012
Figure 23.	Percentage of non-typhoidal Salmonella isolates resistant to 1 or more antimicrobial classes, by year, 1996-2012
Figure 24.	Percentage of non-typhoidal Salmonella isolates resistant to 3 or more antimicrobial classes, by year, 1996-2012
Figure 25.	Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999-2012
Figure 26.	Percentage of Campylobacter jejuni isolates resistant to ciprofloxacin, by year, 1997–20128
Figure 27.	Percentage of Campylobacter coli isolates resistant to ciprofloxacin, by year, 1997–20128
Figure 28.	Percentage of Shigella isolates resistant to Nalidixic acid, by year, 1999-20128

List of Abbreviations and Acronyms

AAuCx	Resistance to at least ampicillin, amoxicillin-clavulanic acid, and ceftriaxone
ACSSuT	Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline % $ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{$
ACSSuTAuCx	Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone
ACT/S	Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole
ANT/S	Resistance to at least ampicillin, nalidixic acid and trimethoprim-sulfamethoxazole
ASSuT	Resistance to at least ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline
AT/S	Resistance to at least ampicillin and trimethoprim-sulfamethoxazole
CDC	Centers for Disease Control and Prevention
CI	Confidence interval
CLSI	Clinical and Laboratory Standards Institute
CxNal	Resistance to at least ceftriaxone and nalidixic acid
ECOFF	Epidemiological cut-off
EIP	Emerging Infections Program
ELC	Epidemiology and Laboratory Capacity
ESBL	Extended-spectrum β-lactamase
FDA-CVM	Food and Drug Administration-Center for Veterinary Medicine
FoodNet	Foodborne Diseases Active Surveillance Network
MIC	Minimum inhibitory concentration
NARMS	National Antimicrobial Resistance Monitoring System for Enteric Bacteria
OR	Odds ratio
S-DD	Susceptible-dose dependent
USDA	United States Department of Agriculture
WHO	World Health Organization

NARMS Working Group

Centers for Disease Control and Prevention

National Center for Emerging and Zoonotic Infectious Diseases

Division of Foodborne, Waterborne and Environmental Diseases

Enteric Diseases Epidemiology Branch

Enteric Diseases Laboratory Branch

Christy Bennett Amelia Bicknese Allison Brown **Davina Campbell** Amanda Conrad Jason Folster Peter Gerner-Smidt Julian Grass Patricia Griffin **Robert Michael Hoekstra Rebecca Howie** Martha Iwamoto **Kevin Joyce** Maria Karlsson Beth Karp Barbara Mahon Andre McCullough Felicita Medalla Allison O'Donnell Jared Reynolds Regan Rickert-Hartman **Christina Smith Robert Tauxe** Lexie Vaughn Jean Whichard

U.S. Food and Drug Administration Center for Veterinary Medicine

Heather Tate Claudine Kabera

Patrick McDermott Emily Crarey

Participating State and Local Health Departments

Alabama Department of Public

Health Chris Caldwell Sherri Davidson Yolanda Gordon Catrina Hollins Sharon Massingale Patricia Morrow Tina Pippin Joanna Roberson

Alaska Department of Health and Social Services Jennifer Faulwetter Catherine Xavier

Arizona Department of Health Services

Sherry Gower Ken Komatsu Tori Reaves William Slanta Victor Waddell Stacy White

Arkansas Department of Health Rossina Stefanova

California Department of Public Health Claudia Crandall

Gillian Edwards Will Probert Linda Sae-Jang

Colorado Department of Public Health and Environment Alicia Cronquist Laura Gillim-Ross Joyce Knutsen Hugh Maguire

Connecticut Department of Public Health

Diane Barden George Goad Sharon Hurd Aristea Kinney Mona Mandour Christina Nishimura Kimberly Holmes-Talbot Alla Zeygerman

Delaware Health and Social Services

Brenda Chandler Gaile McLaughlin Bela Patel Linda Popels Debra Rutledge

District of Columbia Department of Health

Reginald Blackwell Alpha A. Diallo Sosina Merid

Florida Department of Health

Ronald Baker Beth Burden Sonia Etheridge

Georgia Division of Public Health

Jim Benson Cherie Drenzek Elizabeth Franko Mahin Park Lynett Poventud Melissa Tobin-D'Angelo

Hawaii Department of Health

Ruchi Pancholy Norman O'Connor Pamela O'Brien

Houston Health and Human Services Department

Raouf Arafat

Pamela Brown-Bywaters Gregory Dufour Vern Juchau Joan Rogers

Idaho Department of Health and Welfare

Amanda Bruesch Joanna Lewis Lisa Smith

Illinois Department of Public Health

Robert Cox Rebecca Hambelton Stephen Hendren Steve Hopkins Mary Konczyk Patrick Miller Mohammad Nasir Kiran Patel Tricia Patterson Guinevere Reserva Andrea Stadsholt

Indiana State Department of Health

Brent Barrett Mark Glazier Jon Radosevic Sarah Slette

Iowa Department of Public Health, University Hygienic Laboratory Mary DeMartino Randy Groepper

Kansas Department of Health

and Environment Sheri Anderson Jamie DeMent Carissa Robertson

Kentucky Department of Public Health

Emily Carmichael Robin Cotten Karim George William Grooms Carrell Rush Darrin Sevier Josh Tobias

Los Angeles County

Department of Health Services

Rita Bagby Sheena Chu Mary Beth Duke J. Michael Janda Laurene Mascola Roshan Reporter Michael Stephens Joan Sturgeon Wilson Wong

Louisiana Department of Health and Hospitals

Gary Balsamo Erin Delaune Lori Kravet Steven Martin Raoult Ratard Theresa Sokol Susanne Straif-Bourgeois

Maine Department of Health

and Human Services Stephen Sears Amy Robbins Jemelie Bessette Jeff Randolph Heather Grieser

Maryland Department of Health and Mental Hygiene

David Blythe Celere Leonard Amanda Palmer Emily Ricotta Jafar Razeq Pat Ryan

Massachusetts Department of Public Health

Catherine Brown Larry Connolly Alfred DeMaria Emily Harvey Patricia Kludt Tracy Stiles

Michigan Department of Community Health

Carrie Anglewicz Jennifer Beggs Jennie Finks James Rudrik Kelly Scott Sandip Shah

Minnesota Department of Health

Billie Juni Fe Leano Stephanie Meyer Kirk Smith Paula Snippes Charlotte Taylor Theresa Weber

Mississippi Department of Health

Jannifer Anderson Jane Campbell Sheryl Hand Cathie Hoover Lucersia Nichols Alice Singley Daphne Ware

Missouri Department of Health

John Bos David Byrd Steve Gladbach Jason Herstein JoAnn Rudroff Melissa Walker

Montana Department of Public

Health and Human Services Dana Fejes Debbie Gibson Karl Milhon Susanne Zanto

Nebraska Health and Human Services and the Nebraska Public Health Laboratory

Amy Armbrust Paul Fey Peter Iwen Manjiri Joshi Tom Safranek Robin Williams

Nevada Department of Health and Human Services

Vince Abitria Patricia Armour Michele Bushnik Jaime Frank Paul Hug Bradford Lee Susanne Quianzon Lisa Southern Christine Staskowski Stephanie Van Hooser

New Hampshire Department of Health and Human Services

Rebecca Adams Christine Bean Steffany Cavallo Elizabeth Daly Nancy Taylor Daniel Tullo

New Jersey Department of Health

Michelle Malavet Sylvia Matiuck Howard Sarubin Paul Seitz

New Mexico Department of

Health Lisa Butler Sarah Khanlian Kodi Lockey **Robert Mansman** Cynthia Nicholson Lisa Onischuk Erica Pierce Paul Torres

New York City Department of

Health Sharon Balter Ludwin Chicaiza Heather Hanson Lillian Lee Jennifer Rakeman Vasudha Reddy

New York State Department of Health

Leanna Armstrong Nellie Dumas Suzanne McGuire Kim Musser Tim Root Shelley Zansky

North Carolina Department of

Health and Human Services Denise Griffin

Debra Springer

North Dakota Department of

Health Julie Wagendorf Eric Hieb Alicia Lepp Laura Mastel Tracy Miller Lisa Well

Ohio Department of Health

Tammy Bannerman Rick Bokanyi Rebekah Carman Jane Carmean Lynn Denny Dayna Eckels Larry King Kimberly Machesky Marika Mohr Scott Nowicki Kim Quinn Ellen Salehi Cathy Zuercher

Oklahoma State Department of Health

Rebekah Berry Sherry Hearon Mike Lvtle Mike McDermot

Oregon Public Health Division

Debbie Berquist Hillary Booth Marianna Cavanaugh Cathy Ciaffoni Paul Cieslak Dawn Dalv Emilio Debess Julie Hatch Barbara Olson **Beletsachew Shiferaw** Janie Tierheimer Robert Vega Veronica Williams

Pennsylvania Department of Human Service

Carina Davis Lisa Dettinger **David Faucette** Yu Lung Li James Lute Nkuchia M'ikanatha **Barry Perry** Carol Sandt James Tait Deepanker Tewari

Rhode Island Department of

Health Tara Cooper Michael Gosciminski Sharon Mallard Deanna Simmons **Cindy Vanner**

South Carolina Department of Health and Environmental Control

Gloria Babb Sandra J. Bandstra Eddrenna Brown Dana Giurgiutiu Jennifer Meredith

South Dakota Department of Health

Christopher Carlson Laurie Gregg Lon Kightlinger

Tennessee Department of Health

Parvin Arimandi John Dunn Samir Hanna Henrietta Hardin **Tim Jones** Sheri Roberts Amy Woron

Texas Department of State Health Services

Tamara Baldwin Julie Borders Elizabeth Delamater Linda Gaul Grace Kubin Tori Ponson Chun Wang

Utah Department of Health

J. Chad Campbell Lori Smith

Vermont Department of Health

Mary Celotti Valerie Devlin Christine LaBarre **Bradley Tompkins**

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health

Ellen Bassinger Stephanie Dela Cruz Angela Fritzinger Sherry Giese Seth Levine Jody Lowman Mary Mismas Denise Toney Allison Wellman

Washington Department of Health

Romesh Gautom Brian Hiatt Yolanda Houze Kathryn MacDonald Sandra Moon Nusrat Syed Mike Tran Maryann Watkins

West Virginia Department of Health and Human Resources

Danae Bixler Christi Clark Maria del Rosario Loretta Haddy Andrea Labik Suzanne Wilson Megan Young

Wisconsin Department of Health

and Family Services Susan Ahrabi-Fard Charles Brokopp Jeffrey Davis Rick Hefferman Rachel Klos Tim Monson Dave Warshauer

Wyoming Department of Health

Richard Harris John Harrison Clay Van Houten Tracy Murphy Jim Walford

Introduction

The primary purpose of the National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention (CDC) is to monitor antimicrobial resistance among enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in enteric bacteria isolated from foods, conducted by the U.S. Food and Drug Administration's Center for Veterinary Medicine (FDA-CVM)

(<u>http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm</u>), and for resistance in enteric bacteria isolated from animals, conducted by the U.S. Department of Agriculture's Agricultural Research Service (USDA-ARS) (<u>http://www.ars.usda.gov/Business/docs.htm?docid=6750&page=1</u>).

Many NARMS activities are conducted within the framework of two CDC programs: the Foodborne Diseases Active Surveillance Network (FoodNet), which is part of CDC's Emerging Infections Program (EIP), and the Epidemiology and Laboratory Capacity (ELC) Program. In addition to population-wide surveillance of resistance in enteric pathogens, the NARMS program at CDC also conducts research into the mechanisms of resistance and performs susceptibility testing of isolates of pathogens that have caused outbreaks.

Before NARMS was established, CDC monitored antimicrobial resistance in *Salmonella, Shigella*, and *Campylobacter* through periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with ongoing monitoring of antimicrobial resistance among clinical isolates of non-Typhi *Salmonella* (refers to all serotypes other than Typhi, (which causes typhoid fever) and *Escherichia coli* O157 in 14 sites. In 1997, testing of clinical isolates of *Campylobacter* was initiated in the five sites then participating in FoodNet. Testing of clinical *Salmonella* ser. Typhi and *Shigella* isolates was added in 1999. Starting in 2003, all 50 states forwarded all *Salmonella* ser. Typhi isolates and a representative sample of non-Typhi *Salmonella, Shigella*, and *E. coli* O157 isolates to NARMS for antimicrobial susceptibility testing, and 10 states now participating in FoodNet have been conducting *Campylobacter* surveillance. Since 2008, all 50 states have also been forwarding every *Salmonella* ser. Paratyphi A and C to NARMS for antimicrobial susceptibility testing. Beginning in 2009, NARMS also performed susceptibility testing on isolates of *Vibrio* species other than *V. cholerae*. NARMS participating public health laboratories were asked to forward every isolate of *Vibrio* species other than *V. cholerae* that they received to CDC for antimicrobial susceptibility testing.

This annual report includes CDC's surveillance data for 2012 for non-typhoidal *Salmonella* (refers to serotypes not causing typhoid fever), typhoidal *Salmonella* (serotypes Typhi, Paratyphi A, Paratyphi B [tartrate negative], and Paratyphi C), *Shigella, Campylobacter, E. coli* O157, and *Vibrio* species other than *V. cholerae*. Surveillance data include the number of isolates of each pathogen tested by NARMS and the number and percentage of isolates that were resistant to each of the antimicrobial agents tested. Data for earlier years are presented in tables and graphs when appropriate. Antimicrobial classes defined by the Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis.

This report uses the World Health Organization's categorization of antimicrobials of critical importance to human medicine (<u>Appendix A</u>) in the tables that present minimum inhibitory concentrations (MIC) and resistant percentages.

Additional NARMS data and more information about NARMS activities are available at http://www.cdc.gov/narms/.

What is New in the NARMS Report for 2012

Epidemiological Cut-Off Values (ECOFFs) for the Interpretation of Campylobacter spp. Susceptibility Data

In this report, NARMS used a different approach for interpreting antimicrobial susceptibility data for *Campylobacter* than it has used previously. In previous reports, NARMS used clinical interpretive criteria from the Clinical and Laboratory Standards Institute (CLSI) to define susceptible (S), intermediate (I) and resistant (R) categories. In this report, NARMS instead used epidemiological cut-off values (ECOFFs) provided by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). A more detailed description of ECOFFs can be found on page 17.

Summary of NARMS 2012 Surveillance Data

Surveillance Population

In 2012, all 50 states and the District of Columbia participated in NARMS, representing the entire U.S. population of approximately 314 million persons (<u>Table 1</u>). Surveillance was conducted in all states for *Salmonella* (typhoidal and non-typhoidal), *Shigella, Escherichia coli* O157, and *Vibrio* species other than *V. cholerae*. For *Campylobacter*, surveillance was conducted in the 10 states that comprise the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 48 million persons (15% of the U.S. population).

Clinically Important Antimicrobial Resistance Patterns

In the United States, fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are commonly used to treat severe *Salmonella* infections, including typhoid and paratyphoid fever as well as severe non-typhoidal infections. In *Enterobacteriaceae*, (e.g., *Salmonella* and *Shigella*) resistance to nalidixic acid, an elementary quinolone, correlates with decreased susceptibility to ciprofloxacin (Table 2) and possible fluoroquinolone treatment failure. Macrolides (e.g., azithromycin), penicillins (e.g., ampicillin), and trimethoprim-sulfamethoxazole are also of clinical importance. A substantial proportion of *Enterobacteriaceae* isolates tested in 2012 demonstrated clinically important resistance.

In *Salmonella*, antimicrobial resistance varies by serotype. Overall changes in resistance among non-typhoidal *Salmonella* may reflect changes in resistance within serotypes, changes in serotype distribution, or both.

- 3% (56/2236) of non-typhoidal *Salmonella* isolates were resistant to nalidixic acid. Enteriditis was the most common serotype among nalidixic acid-resistant non-typhoidal *Salmonella* isolates.
 - 50% (28/56) of nalidixic acid-resistant isolates were ser. Enteriditis
 - o 8% (28/365) of ser. Enteriditis isolates were resistant to nalidixic acid
- 3% (65/2236) of non-typhoidal Salmonella isolates were resistant to ceftriaxone. The most common serotypes
 among the 65 ceftriaxone-resistant isolates were Newport, Typhimurium, Heidelberg and Dublin. Resistance
 occurred in
 - o 7% (17/259) of ser. Newport isolates
 - 5% (16/295) of ser. Typhimurium isolates
 - o 22% (9/41) of ser. Heidelberg isolates
 - 75% (6/8) of ser. Dublin isolates
- 68% (223/326) of Salmonella ser. Typhi isolates were resistant to nalidixic acid, and 6% (21/326) were resistant to ciprofloxacin.
- 95% (105/111) of Salmonella ser. Paratyphi A isolates were resistant to nalidixic acid, and 3% (3/111) were resistant to ciprofloxacin.
- No Salmonella ser. Typhi or Salmonella ser. Paratyphi A isolates were resistant to ceftriaxone.

In *Shigella*, fluoroquinolones and macrolides (e.g., azithromycin) are important agents in the treatment of severe infections.

- 2% (7/353) of Shigella isolates were resistant to ciprofloxacin, including
 - 2% (1/59) of *Shigella flexneri* isolates
 - o 3% (6/287) of Shigella sonnei isolates
- 5% (16/353) of Shigella isolates were resistant to nalidixic acid, including
 - o 5% (3/59) of Shigella flexneri isolates
 - 4% (12/287) of Shigella sonnei
- 4% (15/353) of Shigella isolates were resistant to azithromycin, including
 - 15% (9/59) of *Shigella flexneri* isolates
 - 2% (6/287) of Shigella sonnei isolates

For *Campylobacter*, ECOFF values were used for interpreting antimicrobial susceptibility data. Since ECOFFs differ between *Campylobacter* species, the percent resistant for *Campylobacter* overall is not reported.

- 25% (301/1191) of *Campylobacter jejuni* isolates and 34% (45/134) of *Campylobacter coli* isolates were resistant to ciprofloxacin
- 2% (18/1191) of *Campylobacter jejuni* isolates and 9% (12/134) of *Campylobacter coli* isolates were resistant to erythromycin
- 6% (8/134) of *Campylobacter coli* isolates were resistant to gentamicin

Multidrug Resistance

Multidrug resistance is reported in NARMS in several ways, including resistance to various numbers of classes of antimicrobial agents and also by specific co-resistance phenotypes.

For non-typhoidal *Salmonella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole/sulfisoxazole), and tetracycline (ACSSuT); these agents represent five CLSI classes. Another important phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCX); these agents represent seven CLSI classes.

- 4% (78/2236) of non-typhoidal Salmonella isolates were resistant to at least ACSSuT. The most common serotypes were Typhimurium, Newport, and Dublin. ACSSuT resistance occurred in
 - o 17% (50/295) ser. Typhimurium isolates
 - 4% (11/259) ser. Newport isolates
 - 88% (7/8) ser. Dublin isolates
- 2% (34/2236) of non-typhoidal *Salmonella* isolates were resistant to at least ACSSuTAuCx. The most common serotypes were Typhimurium, Newport, and Dublin. ACSSuTAuCx resistance occurred in
 - 4% (11/295) ser. Typhimurium isolates
 - \circ $\,$ 4% (10/259) ser. Newport isolates $\,$
 - o 75% (6/8) ser. Dublin isolates
- 9% (194/2236) of non-typhoidal *Salmonella* isolates were resistant to three or more CLSI classes. The most common serotypes with this resistance were Typhimurium, I,4,[5],12:i:, Newport, Enteritidis, Heidelberg, and Dublin. Resistance to three or more classes occurred in
 - 24% (72/295) ser. Typhimurium isolates
 - o 28% (33/118) ser. I,4,[5],12:i:- isolates
 - o 7% (17/259) ser. Newport isolates
 - o 3% (11/365) ser. Enteriditis isolates
 - 27% (11/41) ser. Heidelberg isolates
 - 88% (7/8) ser. Dublin isolates

For Salmonella ser. Typhi, an important multidrug-resistance phenotype includes resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (ACT/S).

9% (30/326) of ser. Typhi isolates were resistant to at least ACT/S, and 10% (34/326) were resistant to three
or more classes

For *Shigella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin and trimethoprim-sulfamethoxazole (AT/S).

16% (55/353) of Shigella isolates were resistant to at least AT/S, and 37% (132/353) were resistant to three
or more classes

Changes in Antimicrobial Resistance: 2012 vs. 2003–2007

To understand changes in the prevalence of antimicrobial resistance among *Salmonella, Shigella,* and *Campylobacter* over time, we modelled annual data from 2003–2012 using logistic regression. Since 2003, all 50 states have participated in *Salmonella* and *Shigella* surveillance and all 10 FoodNet sites in *Campylobacter* surveillance. We compared the prevalence of selected resistance patterns among isolates tested in 2012 with the average prevalence of resistance in 2003–2007. The methods are described in more detail in Surveillance and Laboratory Testing Methods. Because we defined the prevalence of resistance described in this report do not necessarily reflect changes in the incidence of resistant infections. The incidence and relative changes in the incidence of *Salmonella, Shigella,* and *Campylobacter* infections are reported annually from surveillance in FoodNet sites (CDC, 2012).

- * The reference is the average prevalence of resistance in 2003–2007. Logistic regression models adjusted for site. The odds ratios (ORs) and 95% confidence intervals (CIs) for 2012 compared with the reference were calculated using unconditional maximum likelihood estimation. ORs that do not include 1.0 in the 95% CIs are reported as statistically significant.
- † Antimicrobial classes of agents are those defined by the Clinical and Laboratory Standards Institute (CLSI)
- ‡ ACSSuT: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline
- § ACSSuTAuCx: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillinclavulanic acid, and ceftriaxone

Changes in Antimicrobial Resistance: 2012 vs. 2003–2007

The differences between the prevalence of resistance in 2012 and the average prevalence of resistance in 2003–2007 (Figure H1) were statistically significant for the following:

- Among non-typhoidal Salmonella
 - Resistance to one or more CLSI classes was lower in 2012 than in 2003–2007 (15% vs. 20%; odds ratio [OR]=0.8, 95% confidence interval [CI] 0.7–0.9)
 - $\circ~$ Resistance to three or more CLSI classes was lower in 2012 than in 2003–2007 (9% vs. 12%; OR=0.7, 95% CI 0.6–0.8)
- Among Salmonella of particular serotypes
 - ACSSuTAuCx resistance in ser. Newport was lower in 2012 than in 2003–2007 (4% vs. 13%; OR=0.3, 95% CI 0.1–0.5)
 - Ceftriaxone resistance in ser. Heidelberg was higher in 2012 than in 2003–2007 (22% vs. 8%; OR=3.6, 95% Cl 1.6–8.1). It is important to note both that the number of isolates tested has been declining since 2008 and that only 9 isolates of 41 were resistant in 2012, so the 95% Cl is wide.
 - Nalidixic acid resistance in ser. Typhi was higher in 2012 than in 2003–2007 (68% vs. 49%; OR=2.3, 95% CI 1.8–2.9)
- Among Shigella spp.
 - Nalidixic acid resistance was higher in 2012 than in 2003–2007 (5% vs. 2%; OR=2.5, 95% CI 1.3–4.6). Only 16 isolates of 353 were resistant in 2012, so the 95% CI is wide.
- Among Campylobacter jejuni
 - Ciprofloxacin resistance was higher in 2012 than in 2003–2007 (25% vs. 21%; OR=1.4, 95% CI 1.1–1.6)

The differences between the prevalence of resistance in 2012 and the average prevalence of resistance in 2003–2007 (Figure H1) were not statistically significant for the following selected pathogen-resistance combinations:

- Among non-typhoidal Salmonella
 - Ceftriaxone resistance (3% vs. 4%; OR=0.9, 95% CI 0.7–1.1)
 - Nalidixic acid resistance (3% vs. 2%; OR=1.2, 95% CI 0.9–1.7)
- Among Salmonella of particular serotypes
 - Nalidixic acid resistance in ser. Enteritidis (8% vs. 6%; OR=1.4, 95% CI 0.9–2.2)
 - ACSSuT resistance in ser. Typhimurium (17% vs. 23%; OR=0.7, 95% CI 0.5–1.0)
- Among Campylobacter coli, ciprofloxacin resistance (34% vs. 26%; OR=1.5, 95% CI 0.9-2.4)

Introducing Epidemiological Cut-Off Values (ECOFFs) for the Interpretation of *Campylobacter* spp. Susceptibility Data

In this report, NARMS used a different approach for interpreting antimicrobial susceptibility data for *Campylobacter* than it has used previously. In previous reports, NARMS used clinical breakpoints from the Clinical and Laboratory Standards Institute (CLSI) to define susceptible (S), intermediate (I) and resistant (R) categories. In this report, NARMS instead used epidemiological cut-off values (ECOFFs) provided by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). This change facilitates detection of emerging resistance and is a step toward globally harmonized methods for *Campylobacter* surveillance. Below is a description of what ECOFFs are and how they differ from clinical breakpoints.

An integral part of antimicrobial susceptibility testing is assigning the results to susceptible and resistant categories using interpretive criteria. The most commonly used criteria, the clinical breakpoints, are essential to guide correct clinical therapy and are also used for comparisons of resistance data between different monitoring programs. When determining clinical breakpoints, several kinds of data are considered, including Minimum Inhibitory Concentration (MIC) distribution data, clinical outcome data, and pharmacological properties of the drug at the site of infection. Since the primary purpose of clinical breakpoints is to guide therapy and predict clinical efficacy, they can have limitations for other purposes, such as detecting emerging resistance or conducting surveillance for emerging resistance. For instance, a breakpoint that appropriately predicts clinical efficacy might not provide the most sensitive detection of isolates that acquired a resistance mechanism.

To facilitate detection of resistance, EUCAST has introduced the concept of ECOFFs to distinguish bacteria without resistance mechanisms ("wild type; (WT)") from those with an acquired resistance mechanism ("non-wild type; NWT"). The ECOFF value for a given organism/drug combination is derived from analyses of MIC distribution data and is expressed as WT \leq X mg/L. Thus, while the clinical breakpoint is set to guide therapy, ECOFFs are instead aimed at optimizing the detection of isolates with acquired resistance. ECOFFS do not take into consideration any data on dosages or clinical efficacy. An isolate which is considered non-wild type using ECOFFs may still be considered susceptible using clinical breakpoints (Figure H2). ECOFFs have been determined for a large number of organisms and drugs. Information on ECOFFs can be found on the EUCAST webpage (http://www.eucast.org/).

In this report NARMS has used the EUCAST ECOFFs to interpret results for *Campylobacter*, including historical data as well as data collected in 2012. To highlight the fact that wild type isolates are "microbiologically susceptible" and non-wild type isolates "microbiologically resistant", isolates are being reported as "susceptible" or "resistant" (rather than "wild type" or "non-wild type") in the present report. Thus, tables in this report that describe number and percentage resistant, resistance patterns, and MIC distributions for *Campylobacter* all reflect the use of ECOFFs.

Introducing Epidemiological Cut-Off Values (ECOFFs) for the Interpretation of *Campylobacter* spp. Susceptibility Data

Figure H2. Constructed example illustrating the difference between clinical breakpoints and epidemiological cut-offs (ECOFFs)

References

- 1. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Odenholt I, Rodloff A, Soussy CJ, Steinbakk M, Soriano F, Stetsiouk O. 2006. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 12:501-503.
- 2. **Turnidge J, Paterson DL.** 2007. Setting and revising antibacterial susceptibility breakpoints. Clinical microbiology reviews **20**:391-408, table of contents.
- 3. Kahlmeter G, Brown DF, Goldstein FW, MacGowan AP, Mouton JW, Osterlund A, Rodloff A, Steinbakk M, Urbaskova P, Vatopoulos A. 2003. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. The Journal of antimicrobial chemotherapy **52**:145-148.
- 4. **Ge B, Wang F, Sjölund-Karlsson M, McDermott PF.** 2013. Antimicrobial resistance in campylobacter: susceptibility testing methods and resistance trends. Journal of microbiological methods **95:**57-67.
- 5. **Centers for Disease Control and Prevention.** 2013. Incidence and trends of infection with pathogens transmitted commonly through food foodborne diseases active surveillance network, 10 U.S. sites, 1996-2012. MMWR. Morbidity and mortality weekly report **62**:283-287.

Surveillance and Laboratory Testing Methods

Surveillance Sites and Isolate Submissions

In 2012, NARMS conducted nationwide surveillance among approximately 314 million persons (2012 estimates published in the 2013 U.S. Census Bureau report). Public health laboratories systematically selected every 20th non-typhoidal Salmonella, Shigella, and Escherichia coli O157 isolate and every Salmonella ser. Typhi, Salmonella ser. Paratyphi A, and Salmonella ser. Paratyphi C isolate received at their laboratories and forwarded these isolates to CDC for antimicrobial susceptibility testing. Salmonella ser. Paratyphi B was included in the sampling for non-typhoidal Salmonella because laboratory methods are not always available to reliably distinguish between ser. Paratyphi B (which typically causes typhoidal illness) and ser. Paratyphi B var. L(+) tartrate+ (which does not typically cause typhoidal illness). Serotype Paratyphi B isolates for which the results of tartrate fermentation testing are reported as either "negative" or "missing" are retested and confirmed at CDC. Those identified as ser. Paratyphi B var. L(+) tartrate+ are included with other nontyphoidal Salmonella serotypes in this report. Because the number of ser. Paratyphi B (tartrate negative) and ser. Paratyphi C isolates is very small, this report includes susceptibility results only for ser. Paratyphi A. Beginning in 2009, NARMS also performed susceptibility testing on isolates of Vibrio species other than V. cholerae submitted by the NARMS participating public health laboratories. Participants were asked to forward every Vibrio isolate that they received to CDC. Isolates of Vibrio cholerae are characterized in CDC's National Enteric Reference Laboratory. Isolates of species other than V. cholerae are confirmed in the Reference Laboratory and tested for antimicrobial susceptibility by NARMS. For Information on toxigenic Vibrio cholerae, refer to the Cholera and Other Vibrio Illness Surveillance System (COVIS) annual summaries.

Since 2005, public health laboratories of the 10 state health departments that participate in CDC's Foodborne Diseases Active Surveillance Network (FoodNet) have forwarded a sample of *Campylobacter* isolates received to CDC for susceptibility testing. The FoodNet sites, representing approximately 48 million persons (2012 estimates published in 2013 U.S. Census Bureau report), include Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York. NARMS uses a sampling scheme for *Campylobacter* based on the number of isolates received by each FoodNet site. All isolates received by Oregon and Tennessee; every other isolate from California, Colorado, Connecticut, Georgia, Maryland, and New York; every third isolate from New Mexico; and every fifth isolate from Minnesota are submitted to CDC and tested. From 2005 to 2009, however, all isolates from Georgia, Maryland, and New Mexico were tested. From 1997 to 2004, one *Campylobacter* isolate was submitted each week from participating FoodNet sites.

State/Site	Population Size*		Non-typhoidal Ty Salmonella Sal		Typh Salmo	/phoidal [†] Shi ilmonella Shi		gella E. co		0157	Campyl	obacter‡	Vit	orio
	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Alabama	4,817,528	(1.5)	72	(3.2)	1	(0.2)	16	(4.5)	1	(0.6)			3	(0.5)
Alaska	730,307	(0.2)	2	(0.1)	0	(0)	1	(0.3)	1	(0.6)			0	(0)
Arizona	6,551,149	(2.1)	46	(2.1)	9	(2.1)	0	(0)	1	(0.6)			8	(1.3)
Arkansas	2,949,828	(0.9)	28	(1.3)	0	(0)	1	(0.3)	2	(1.2)			0	(0)
California [§]	28,037,089	(8.9)	165	(7.4)	71	(16.2)	2	(0.6)	8	(4.8)	66	(4.9)	79	(13.1)
Colorado	5,189,458	(1.7)	29	(1.3)	6	(1.4)	6	(1.7)	5	(3.0)	38	(2.8)	11	(1.8)
Connecticut	3,591,765	(1.1)	25	(1.1)	4	(0.9)	4	(1.1)	3	(1.8)	129	(9.5)	22	(3.6)
Delaw are	917,053	(0.3)	9	(0.4)	0	(0)	1	(0.3)	0	(0)			5	(0.8)
District of Columbia	633,427	(0.2)	18	(0.8)	0	(0)	9	(2.5)	0	(0)			0	(0)
Florida	19,320,749	(6.2)	29	(1.3)	11	(2.5)	5	(1.4)	1	(0.6)			91	(15.1)
Georgia	9,915,646	(3.2)	139	(6.2)	12	(2.7)	26	(7.4)	6	(3.6)	238	(17.5)	17	(2.8)
Haw aii	1,390,090	(0.4)	12	(0.5)	5	(1.1)	3	(0.8)	2	(1.2)			26	(4.3)
Houston, Texas ¹	2,160,821	(0.7)	51	(2.3)	15	(3.4)	11	(3.1)	1	(0.6)			0	(0)
ldaho	1,595,590	(0.5)	8	(0.4)	0	(0)	1	(0.3)	4	(2.4)			1	(0.2)
Illinois	12,868,192	(4.1)	105	(4.7)	18	(4.1)	18	(5.1)	11	(6.6)			3	(0.5)
Indiana	6,537,782	(2.1)	43	(1.9)	3	(0.7)	4	(1.1)	10	(6.0)			2	(0.3)
low a	3,075,039	(1.0)	26	(1.2)	2	(0.5)	5	(1.4)	4	(2.4)			0	(0)
Kansas	2,885,398	(0.9)	15	(0.7)	1	(0.2)	2	(0.6)	1	(0.6)			1	(0.2)
Kentucky	4,379,730	(1.4)	32	(1.4)	0	(0)	4	(1.1)	0	(0)			0	(0)
Los Angeles**	9,962,789	(3.2)	58	(2.6)	9	(2.1)	2	(0.6)	0	(0)			0	(0)
Louisiana	4,602,134	(1.5)	0	(0)	0	(0)	0	(0)	0	(0)			0	(0)
Maine	1,328,501	(0.4)	0	(0)	0	(0)	0	(0)	0	(0)			5	(0.8)
Maryland	5,884,868	(1.9)	58	(2.6)	16	(3.7)	7	(2.0)	1	(0.6)	221	(16.3)	25	(4.1)
Massachusetts	6,645,303	(2.1)	54	(2.4)	15	(3.4)	7	(2.0)	4	(2.4)			35	(5.8)
Michigan	9,882,519	(3.1)	46	(2.1)	11	(2.5)	12	(3.4)	4	(2.4)			2	(0.3)
Minnesota	5,379,646	(1.7)	41	(1.8)	6	(1.4)	19	(5.4)	7	(4.2)	185	(13.6)	8	(1.3)
Mississippi	2,986,450	(1.0)	55	(2.5)	1	(0.2)	11	(3.1)	2	(1.2)			8	(1.3)
Missouri	6,024,522	(1.9)	59	(2.6)	3	(0.7)	6	(1.7)	6	(3.6)			6	(1)
Montana	1,005,494	(0.3)	4	(0.2)	0	(0)	1	(0.3)	1	(0.6)			1	(0.2)
Nebraska	1,855,350	(0.6)	12	(0.5)	0	(0)	9	(2.5)	3	(1.8)			0	(0)
Nevada	2,754,354	(0.9)	11	(0.5)	1	(0.2)	3	(0.8)	0	(0)			2	(0.3)
New Hampshire	1,321,617	(0.4)	9	(0.4)	1	(0.2)	1	(0.3)	0	(0)			2	(0.3)
New Jersey	8,867,749	(2.8)	58	(2.6)	22	(5.0)	32	(9.1)	4	(2.4)			23	(3.8)
New Mexico	2,083,540	(0.7)	17	(0.8)	2	(0.5)	4	(1.1)	0	(0)	89	(6.5)	0	(0)
New York ^{††}	11,239,428	(3.6)	72	(3.2)	31	(7.1)	30	(8.5)	7	(4.2)	178	(13.1)	60	(10.0)
New York City ^{‡‡}	8,336,697	(2.7)	66	(3.0)	59	(13.5)	16	(4.5)	4	(2.4)			12	(2.0)
North Carolina	9,748,364	(3.1)	0	(0)	0	(0)	0	(0)	0	(0)			14	(2.3)
North Dakota	701,345	(0.2)	4	(0.2)	1	(0.2)	1	(0.3)	1	(0.6)			0	(0)
Ohio	11,553,031	(3.7)	71	(3.2)	13	(3.0)	11	(3.1)	11	(6.6)			7	(1.2)
Oklahoma	3,815,780	(1.2)	36	(1.6)	0	(0)	3	(0.8)	2	(1.2)			0	(0)
Oregon	3,899,801	(1.2)	24	(1.1)	4	(0.9)	5	(1.4)	6	(3.6)	143	(10.5)	16	(2.7)
Pennsylvania	12,764,475	(4.1)	78	(3.5)	14	(3.2)	6	(1.7)	4	(2.4)			7	(1.2)
Rhode Island	1,050,304	(0.3)	6	(0.3)	2	(0.5)	1	(0.3)	1	(0.6)			6	(1.0)
South Carolina	4,723,417	(1.5)	64	(2.9)	4	(0.9)	2	(0.6)	1	(0.6)			2	(0.3)
South Dakota	834,047	(0.3)	9	(0.4)	0	(0)	1	(0.3)	2	(1.2)			0	(0)
Tennessee	6,454,914	(2.1)	52	(2.3)	3	(0.7)	8	(2.3)	5	(3.0)	73	(5.4)	8	(1.3)
Texas ^{§§}	23,899,975	(7.6)	211	(9.4)	22	(5.0)	15	(4.2)	2	(1.2)			27	(4.5)
Utah	2,854,871	(0.9)	14	(0.6)	2	(0.5)	1	(0.3)	4	(2.4)			0	(0)
Vermont	625,953	(0.2)	5	(0.2)	0	(0)	1	(0.3)	0	(0)			0	(0)
Virginia	8,186,628	(2.6)	58	(2.6)	12	(2.7)	3	(0.8)	2	(1.2)			13	(2.2)
Washington	6,895,318	(2.2)	39	(1.7)	20	(4.6)	8	(2.3)	6	(3.6)			43	(7.1)
West Virginia	1,856,680	(0.6)	36	(1.6)	0	(0)	2	(0.6)	6	(3.6)			0	(0)
Wisconsin	5,724,554	(1.8)	48	(2.1)	6	(1.4)	5	(1.4)	7	(4.2)			2	(0.3)
Wyoming	576,626	(0.2)	7	(0.3)	0	(0)	1	(0.3)	2	(1.2)			0	(0)
Total	313,873,685	(100)	2,236	(100)	438	(100)	353	(100)	166	(100)	1360	(100)	603	(100)

Table 1. Population size and number of isolates received and tested, NARMS, 2012

* 2012 population estimates published in 2013 U.S. Census Bureau population estimates

Typhoidal Salmouth in the postation of the postation o

‡ Campylobacter isolates are submitted only from FoodNet sites which include Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York. Of the clinical laboratories in each site that perform on-site testing for Campylobacter (range,18 to 94 per site in 2012), the number submitting isolates to the state public health laboratory ranged from one to ninety-four.

§ Excluding Los Angeles County

¶ Houston City
 ** Los Angeles County

tt Excluding New York City

tt Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

Testing of Salmonella, Shigella, and Escherichia coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and *E. coli* O157 isolates were tested using broth microdilution (Sensititre[®], Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) according to manufacturer's instructions to determine the MICs for each of 15 antimicrobial agents: ampicillin, amoxicillin-clavulanic acid, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole (Table 2). Interpretive criteria defined by CLSI were used when available. Before 2004, sulfamethoxazole was used instead of sulfisoxazole to represent the sulfonamides. In 2011, azithromycin replaced amikacin on the panel of drugs tested for *Salmonella*, *Shigella*, and *E. coli* O157, so only historical susceptibility data are provided for amikacin.

In January 2010, CLSI published revised interpretive criteria for ceftriaxone and *Enterobacteriaceae;* the revised resistance breakpoint for ceftriaxone is MIC \geq 4 µg/mL. Since the 2009 report, NARMS has applied the revised CLSI breakpoint for ceftriaxone resistance to data from all years. In January 2012, CLSI published revised ciprofloxacin breakpoints for invasive *Salmonella* infections. For those infections, ciprofloxacin susceptibility is defined as \leq 0.06 µg/mL; the intermediate category is defined as 0.12 to 0.5 µg/mL; and resistance is defined as \geq 1 µg/mL. In 2013, CLSI decided to apply these ciprofloxacin breakpoints to all subspecies and serotypes of *Salmonella* (Table 2).

Repeat testing of isolates was done based on criteria in Appendix B.

Table 2.	Antimicrobial ag	ents used for	susceptibility	testing for	Salmonella,	Shigella, ar	nd Escherichia
coli 0157	7 isolates, NARM	S, 1996–2012		_		-	

		Antimicrobial Agent	MIC Interpretive Standard (µg/mL)			
CLSI Class	Antimicrobial Agent	Concentration Range (µg/mL)	Susceptible	Intermediate*/ S-DD [†]	Resistant	
	Amikacin [‡]	0.5–64	≤16	32	≥64	
Aminoglycosides	Gentamicin	0.25–16	≤4	8	≥16	
	Kanamycin	8–64	≤16	32	≥64	
	Streptomycin [§]	32–64	≤32	N/A*	≥64	
β–lactam /	Amoxicillin-clavulanic acid	1/0.5–32/16	≤8/4	16/8	≥32/16	
inhibitor combinations	Piperacillin-tazobactam ¹	0.5–128	≤16	32–64	≥128	
	Cefepime ^{†, ¶}	0.06–32	≤2	4–8 [†]	≥16	
	Cefotaxime [¶]	0.06–128	≤1	2	≥4	
	Cefoxitin	0.5–32	≤8	16	≥32	
Cephems	Ceftazidime [¶]	0.06–128	≤4	8	≥16	
	Ceftiofur	0.12–8	≤2	4	≥8	
	Ceftriaxone**	0.25–64	≤1	2	≥4	
	Cephalothin ^{††}	2–32	≤8	16	≥32	
	Sulfamethoxazole ^{‡‡}	16–512	≤256	N/A*	≥512	
Folate pathway inhibitors	Sulfisoxazole	16–256	≤256	N/A*	≥512	
	Trimethoprim- sulfamethoxazole	0.12/2.38–4/76	≤2/38	N/A*	≥4/76	
Macrolides	Azithromycin ^{§§}	0.12-16	≤16	N/A*	≥32	
Monobactams	Aztreonam [¶]	0.06–32	≤4	8	≥16	
Penems	Imipenem [¶]	0.06–16	≤1	2	≥4	
Penicillins	Ampicillin	1–32	≤8	16	≥32	
Phenicols	Chloramphenicol	2–32	≤8	16	≥32	
	Ciprofloxacin (Shigella and E. coli O157)	0.015–4	≤1	2	≥4	
Quinolones	Ciprofloxacin (Salmonella spp.)	0.015-4	≤0.06	0.12-0.5	≥1	
	Nalidixic acid	0.5–32	≤16	N/A*	≥32	
Tetracyclines	Tetracycline	4–32	≤4	8	≥16	

* N/A indicates that no MIC range of intermediate susceptibility exists

Cefepime MICs above the susceptible range, but below the resistant range are now designated by CLSI to be S-DD. t

Amikacin was tested from 1997 to 2010 for Salmonella, Shigella, and E. coli O157 ŧ

No CLSI breakpoints; resistance breakpoint used in NARMS is ≥64 µg/mL §

Broad-spectrum β-lactam antimicrobial agent only tested for non-typhoidal Salmonella isolates displaying ceftriaxone ſ and/or ceftiofur resistance

** CLSI updated the ceftriaxone interpretive standards in January, 2010. NARMS Human Isolate Reports for 1996 through 2008 used susceptible ≤8 µg/mL, intermediate 16-32 µg/mL, and resistant ≥64 µg/mL.

the Cephalothin was tested from 1996 to 2003 for Salmonella, Shigella, and E. coli O157

\$\$ CLSI breakpoints are not established for azithromycin. The azithromycin breakpoints used in this report are NARMSestablished breakpoints for resistance monitoring and should not be used to predict clinical efficacy.

Additional Testing of Salmonella Strains

β-lactam Panel Testing

Isolates displaying resistance to either ceftriaxone (MIC $\ge 4 \ \mu$ g/mL) or ceftiofur (MIC $\ge 8 \ \mu$ g/mL) on the Trek Sensititre[®] gram-negative panel were subsequently tested using broth microdilution on a Sensititre[®] β -lactam panel (Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) according to manufacturer's instruction. The panel contained additional broad-spectrum β -lactam drugs: aztreonam, cefepime, cefotaxime, ceftazidime, imipenem, and piperacillin-tazobactam (Table 2). Briefly, a suspension of each isolate was made in water to a McFarland standard equivalency of 0.5, 10uL of this suspension was then used to inoculate a 10mL tube of Muller-Hinton broth, 50uL of this inoculated broth was dosed into each well of the 96-well β -lactam panel plate, and results were read manually after 18-20 hours of incubation at 35°C. Quality control isolates for this testing were *E. coli* ATCC 25922, *K. pneumoniae* ATCC 700603, *P. aeruginosa* ATCC 27853, and *S. aureus* ATCC 29213.

Cephalosporin Retesting of Isolates from 1996-1998

Some Salmonella isolates tested in NARMS during 1996 to 1998 had inconsistent cephalosporin susceptibility results. In particular, some isolates previously reported in NARMS as ceftiofur-resistant exhibited a low ceftriaxone MIC, and some did not exhibit an elevated MIC to other β -lactams. Because these findings suggested that some previously reported results were inaccurate, isolates of Salmonella tested in NARMS during 1996 to 1998 that exhibited an MIC $\geq 2 \mu g/mL$ to ceftiofur or ceftriaxone were retested using the 2003 NARMS Sensititre[®] plate. The retest results have been included in the NARMS annual reports since 2003.

Serotype Confirmation/Categorization

The *Salmonella* serotype reported by the submitting laboratory was used for reporting with few exceptions. The serotype was confirmed by CDC for isolates that underwent subsequent molecular analysis. Because of challenges in interpretation of tartrate fermentation assays, ability to ferment tartrate was confirmed for isolates reported as *Salmonella* ser. Paratyphi B by the submitting laboratory (ser. Paratyphi B is by definition unable to ferment L(+) tartrate). To distinguish *Salmonella* ser. Paratyphi B and ser. Paratyphi B var. L(+) tartrate+ (formerly ser. Java), CDC performed Jordan's tartrate test or Kauffmann's tartrate test or both tests on all *Salmonella* ser. Paratyphi B isolates from 1996 to 2012 for which the tartrate result was not reported or was reported to be negative. Isolates negative for tartrate fermentation by all assays conducted were categorized as ser. Paratyphi B; as noted above, because the number of ser. Paratyphi B (tartrate negative) is very small, this report does not include susceptibility results for this serotype. Isolates that were positive for tartrate fermentation by either assay were categorized as ser. Paratyphi B var. L(+) tartrate+ and were included with other nontyphoidal *Salmonella* in this report. CDC did not confirm other biochemical reactions or somatic and flagellar antigens.

Because of increased submissions of *Salmonella* ser. I 4,[5],12:i:- noted in previous years and recognition of the possibility that this serotype may have been underreported in previous years, isolates reported as serogroup B and tested in NARMS during 1996 to 2012 were reviewed; isolates that could be clearly identified as serogroup B, first-phase flagellar antigen "i" second phase flagellar antigen absent were categorized in this report as *Salmonella* ser. I 4,[5],12:i:-.

Testing of Campylobacter

Changes in Sampling over Time

Starting in 2005, four changes were made to the *Campylobacter* testing methodology. First, a surveillance scheme for selecting a more representative sample of *Campylobacter* isolates for submission by FoodNet sites was implemented. State public health laboratories within FoodNet sites receive *Campylobacter* isolates from reference and clinical laboratories in their state. Until 2005, FoodNet sites submitted the first isolate received each week. In 2005, they started submitting every isolate (Georgia, Maryland, New Mexico, Oregon, and Tennessee), every other isolate (California, Colorado, Connecticut, and New York), or every fifth isolate received (Minnesota). Starting in 2010, Georgia and Maryland submitted every other isolate, and New Mexico submitted every third. Of the clinical laboratories in each site that perform on-site testing for *Campylobacter* (range,18 to 94 per site in 2012), the number submitting isolates to the state public health laboratory ranged from one to 94.

Changes in Identification/Speciation and Antimicrobial Susceptibility Testing Over Time

From 2003 to 2004, *Campylobacter* isolates were identified as *C. jejuni* or *C. coli* using BAX® System PCR Assay according to the manufacturer's instructions (DuPont Wilmington, DE). Isolates not identified as *C. jejuni* or *C. coli* were further characterized by other PCR assays (Linton *et al.* 1996) or were characterized by the CDC National *Campylobacter* Reference Laboratory. From 1997 to 2002, methodology similar to that used from 2005 to 2009 was used.

From 2005 to 2010, isolates were confirmed as *Campylobacter* by determination of typical morphology and motility using dark-field microscopy and a positive oxidase test reaction. Identification of *C. jejuni* was performed using the hippurate hydrolysis test. Hippurate-positive isolates were identified as *C. jejuni*. Hippurate-negative isolates were further characterized with PCR assays with specific targets for *C. jejuni* (*mapA* or *hipO* gene), *C. coli*-specific *ceuE* gene (Linton *et al.* 1997, Gonzales *et al.* 1997, Pruckler *et al.* 2006), or other species-specific primers. In 2010, all *C. jejuni* and suspected *C. coli* isolates were also confirmed through a multiplex PCR (Vandamme *et al.* 1997). Additionally the *ceuE* PCR was not used in 2010.

The methods for susceptibility testing of *Campylobacter* and criteria for interpreting the results have also changed during the course of NARMS surveillance. From 1997 to 2004. Etest® (AB bioMerieux, Solna, Sweden) was used for susceptibility testing of Campylobacter isolates. Campylobacter-specific CLSI interpretive criteria were used for erythromycin, ciprofloxacin, and tetracycline beginning with the 2004 NARMS annual report. NARMS breakpoints were used for agents for which CLSI breakpoints were not available. Beginning in 2004, NARMS breakpoints were established based on the MIC distributions of NARMS isolates and the presence of known resistance genes or mutations. In pre-2004 annual reports, NARMS breakpoints used had been based on those available for other organisms. Establishment of breakpoints based on MIC distributions resulted in higher MIC breakpoints for azithromycin and erythromycin resistance compared with those reported in pre-2004 annual reports. Beginning in 2005, broth microdilution using the Sensititre® system (Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) was performed according to manufacturer's instructions to determine the MICs for nine antimicrobial agents: azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline (Table 3). CLSI recommendations for guality control were followed. The interpretive criteria listed in Table 3 have been applied to MIC data collected for all years so that resistance prevalence is comparable over time. In 2012, the criteria for interpretation of results were changed from the previously used breakpoints to European Committee on Antimicrobial Susceptibility Testing (EUCAST) epidemiological cut-off values (ECOFFs). Repeat testing of isolates was based on criteria in Appendix B.

			MIC Interpretive Standard (μg/mL)					
CLSI Class	Antimicrobial	Concentration Range	C. je	ijuni	C. coli			
	Agent	(µg/mL)	Susceptible	Resistant	Susceptible	Resistant		
Aminoglycosides	Gentamicin	0.12–32 0.016–256*	≤2	≥4	≤2	≥4		
Ketolides	Telithromycin [†]	0.015–8	≤4	≥8	4	≥8		
Lincosamides	Clindamycin	0.03–16 0.016–256*	≤0.5	≥1	≤1	≥2		
	Azithromycin	0.015–64 0.016–256*	≤0.25	≥0.5	≤0.5	≥1		
Macrondes	Erythromycin	0.03–64 0.016–256*	≤4	≥8	≤8	≥16		
Dhaniaala	Chloramphenicol [‡]	0.016–256*	≤16	≥32	≤16	≥32		
Flienicois	Florfenicol	0.03–64	≤4	≥8	≤4	≥8		
Quinclones	Ciprofloxacin	0.015–64 0.002–32*	≤0.5	≥1	≤0.5	≥1		
Quinciones	Nalidixic acid	4–64 0.016–256*	≤16	≥32	≤16	≥32		
Tetracyclines	Tetracycline	0.06–64 0.016–256*	≤1	≥2	≤2	≥4		

 Table 3. Antimicrobial agents used for susceptibility testing of Campylobacter isolates, NARMS, 1997–2012

* Etest dilution range used from 1997–2004

† Telithromycin added to NARMS panel in 2005

‡ Chloramphenicol, tested from 1997–2004, replaced by florfenicol in 2005

Testing of Vibrio species other than V. cholerae

NARMS participating public health laboratories were asked to forward every *Vibrio* isolate that they received to CDC. Isolates of *Vibrio cholerae* are characterized in CDC's National Enteric Reference Laboratory. Isolates of species other than *V. cholerae* are confirmed in the Reference Laboratory and tested for antimicrobial susceptibility by NARMS. Minimum inhibitory concentrations were determined by Etest® (AB bioMerieux, Solna, Sweden) according to manufacturer's instructions for nine antimicrobial agents: ampicillin, cephalothin, chloramphenicol, ciprofloxacin, kanamycin, nalidixic acid, streptomycin, tetracycline, and trimethoprim-sulfamethoxazole (Table 4). CLSI breakpoints specific for *Vibrio* species other than *V. cholerae* were available for ampicillin, ciprofloxacin, tetracycline, and trimethoprim-sulfamethoxazole. Frequency of isolates susceptible, intermediate, and resistant to those agents is shown in this report (Table 55). MIC distributions are shown for all agents tested. For information on toxigenic *Vibrio cholerae*, refer to the Cholera and Other *Vibrio* Illness Surveillance System (COVIS) annual summaries.

Table 4. Antimicrobial agents used for susceptibility testing of *Vibrio* species other than *V. cholerae* isolates, NARMS, 2009–2012

	Antimicrobial	Antimicrobial Agent	MIC Interpretive Standard (µg/mL)				
	Agent	concentration Kange (μg/mL)	Susceptible	Intermediate*	Resistant		
Aminoglycosidos	Kanamycin	0.016-256	No CLSI or NARMS breakpoints		kpoints		
Aminogrycosides	Streptomycin	0.064-1024	No CLSI	No CLSI or NARMS breakpoints			
Cephems	Cephalothin	0.016-256	No CLSI or NARMS breakpoints		akpoints		
Folate pathway inhibitors	Trimethoprim- sulfamethoxazole	0.002-32	≤2/38	N/A	≥4/76		
Penicillins	Ampicillin	0.016-256	≤8	16	≥32		
Phenicols	Chloramphenicol	0.016-256	No CLSI or NARMS breakpoints		kpoints		
Quinclance	Ciprofloxacin	0.002-32	≤1	2	≥4		
Quinolones	Nalidixic acid	0.016-256	No CLSI or NARMS breakpoints		kpoints		
Tetracyclines	Tetracycline	0.016-256	≤4	8	≥16		

* N/A indicates that no MIC range of intermediate susceptibility exists

Data Analysis

For all pathogens, isolates were categorized as resistant, intermediate (if applicable), or susceptible. Analysis was restricted to the first isolate received per patient in the calendar year (per serotype for *Salmonella*, per species for *Shigella* and *Campylobacter*). If two or more *Salmonella* ser. Typhi isolates were received for the same patient, the first blood isolate or other isolate from a normally sterile site collected, was included in the analysis. If no blood isolate or other isolate from a normally sterile site was submitted, the first isolate collected was included in analysis. The 95% confidence intervals (CIs) for the percentage resistant, which were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method, are included in the MIC distribution tables.

In the analysis of antimicrobial class resistance among *Salmonella, Shigella,* and *E. coli* O157, nine CLSI classes (Table 2) were represented by the following 15 agents: amoxicillin-clavulanic acid, ampicillin, azithromycin, ceftoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole. Isolates that were not resistant to any of these 15 agents were considered to have no resistance detected. In the analysis of antimicrobial class resistance among *Campylobacter*, six CLSI classes were represented by azithromycin, ciprofloxacin, chloramphenicol/florfenicol, clindamycin, erythromycin, gentamicin, nalidixic acid, and tetracycline (Table 3). *Campylobacter* isolates that were not resistant to any of these detected.

Using logistic regression, we modelled annual data from 2003–2012 to assess changes in prevalence of antimicrobial resistance among *Salmonella*, *Shigella*, and *Campylobacter* isolates. Since 2003, all 50 states have participated in *Salmonella* and *Shigella* surveillance and all 10 FoodNet sites in *Campylobacter* surveillance. We compared the prevalence of resistance among isolates tested in 2012 with the average prevalence in 2003–2007. Because we defined the prevalence of resistance described in this report do not necessarily reflect changes in the incidence of resistant infections. The incidence and relative changes in the incidence of *Salmonella*, *Shigella*, and *Campylobacter* infections are reported annually from surveillance in FoodNet sites (CDC, 2012). Comparisons were made for the following:

• Non-typhoidal *Salmonella*: resistance to nalidixic acid, ceftriaxone, one or more CLSI classes, three or more CLSI classes

- Salmonella of particular serotypes
 - Salmonella ser. Enteritidis: resistance to nalidixic acid
 - Salmonella ser. Typhimurium: resistance to at least ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline)
 - Salmonella ser. Newport: resistance to at least ACSSuTAuCx (ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone)
 - Salmonella ser. Typhi: resistance to nalidixic acid
- Shigella: resistance to nalidixic acid
- Campylobacter species: resistance to ciprofloxacin
 - o Campylobacter jejuni: resistance to ciprofloxacin

To account for site-to-site variation in the prevalence of antimicrobial resistance, we included main effects adjustments for site in the analysis. The final regression models for *Salmonella* and *Shigella* adjusted for the submitting site using the nine geographic regions described by the U.S. Census Bureau: East North Central, East South Central, Mid-Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. For *Campylobacter*, the final regression models adjusted for the submitting FoodNet site. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation. The adequacy of model fit was assessed in several ways (Fleiss et al., 2004; Kleinbaum et al., 2008). The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. When the main effect of year was significant, we report ORs with 95% CIs (for 2012 compared with 2003-2007) that did not include 1.0 as statistically significant.

MIC Distribution Tables and Proportional Figures

An explanation of "how to read a squashtogram" has been provided to assist the reader with the table (Figure 1). A squashtogram shows the distribution of MICs for antimicrobial agents tested. Proportional figures visually display data from squashtograms for an immediate comparative summary of resistance in specific pathogens and serotypes. These figures are a visual aid for the interpretation of MIC values. For most antimicrobial agents tested, three categories (susceptible, intermediate, and resistant) are used to interpret MICs. The proportion representing each category is shown in a horizontal proportional bar chart (Figure 2).

Figure 1. How to read a squashtogram

Figure 2.	Proportional	chart. a	a categorical	araph of	a squashtogram

Bank [*]	CL SI [†] Antimicrobial Class	Antimicrobial Agent	Perc	centage	of isolates						Percent	tage of	all isola	teswit	h MIC (j	µg/m L)"					
Rank	CESI [®] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	<0.1	1.7	[1.2 - 2.3]					8.3	76.4	13.1	0.5		<0.1	0.2	1.5				
		Kanamycin	<0.1	1.7	[1.2 - 2.3]										98.2	0.1	<0.1	<0.1	1.6		
		Streptomycin	N/A	9.8	[8.6 - 11.1]											_	90.2	2.3	7.5		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.0	2.6	[2.0 - 3.3]							89.2	1.7	0.6	3.9	2.0	0.8	1.8			
	Cephems	Ceftiofur	<0.1	2.5	[1.9 - 3.2]				0.3	0.8	37.7	57.7	1.0	<0.1	0.2	2.3	•				
		Ceftriaxone	<0.1	2.5	[1.9 - 3.2]					97.5			<0.1	0.1	0.3	1.0	0.8	0.3	0.1		
	Macrolide	Azithromycin	N/A	0.2	[0.1 - 0.5]						0.2	0.4	11.2	80.4	7.3	0.2	0.2				
	Penicillins	Ampicillin	0.1	9.1	[8.0 - 10.3]			_				86.9	3.5	0.3	0.1	0.1	0.2	8.9			
	Quinolones	Ciprofloxacin	2.8	0.2	[0.0 - 0.4]	91.9	4.9	0.2	1.0	0.9	0.9	0.1			0.1		•				
		Nalidixic acid	N/A	2.4	[1.8 - 3.1]	/	\mathbf{T}				0.2	0.6	47.4	48.1	- 0	0.4	0.1	2.3			
	Cephems	Cefoxitin	0.2	2.6	[2.0 - 3.3]						0.4	31.1	53.7	10.7	.3	0.2	1.1	1.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	8.6	[7.5 - 9.8]									_	/	5.9	46.1	37.8	1.5		8.6
п		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.8 - 1.7]				96.8	1.7	0.2		<0.1	<0.1	1.2						-
	Phenicols	Chloramphenicol	0.6	4.4	[3.6 - 5.3]								0.9	51.0	43.1	0.6	0.1	4.3			
	Tetracyclines	Tetracycline	0.2	10.5	[9.2 - 11.8]									89.4	0.2	0.3	1.9	8.2	>		

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Table 1): Rank I, Critically Important; Rank II, Highly Important CLSI: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists § Percentage of isolates with were resistant 1 The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method * The unshaded areas indicate the elinition range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicates represent on the low est tested concentration. CLSI breakpoints were used when available. points for resistance. Numbers in the centages of isolates with MICs equal to al bars indicate brea ions represent the

Antimicrobial Agent

Gentamicin
Kanamycin
Streptomycin
Amoxicillin-clavulanic acid
Ceftiofur
Ceftriaxone
Azithromycin
Ampicillin
Ciprofloxacin
Nalidixic acid
Cefoxitin
Sulfisoxazole
Trimethoprim-sulfamethoxazole
Chloramphenicol
Tetracycline

Susceptible, Intermediate, and Resistant Proportion

Results

1. Non-typhoidal Salmonella

Table 5.	Number of non-typhoidal	Salmonella isolates of the 20 most common seroty	bes* tested b	y NARMS with the number	er of resistant isolates by
class an	d agent, 2012				

				Nu	mber o	of Isolates Number of Resistant Isolates by CLSI [†] Antimicrobial Class and Agent [‡]																	
	Isol	lates	Ni Ci	ımber asses	of CLS to whi Resi	61 [†] Antii ich Iso stant	microb lates a	oial Ire	Amir	noglyco	sides	β-lactam/β- lactamase inhibitor combinations	с	ephen	าร	Fol path inhib	late hway pitors	Macrolides	Penicillins	Phenicols	Quinc	olones	Tetracyclines
Serotype*	Ν	(%)	0	1	2–3	4–5	6–7	8	GEN	KAN	STR	AMC	FOX	τιο	AXO	FIS	сот	AZI	AMP	CHL	CIP	NAL	TET
Enteritidis	365	(16.3)	321	25	13	6	0	0	0	0	7	3	3	3	3	10	4	0	16	2	0	28	13
Typhimurium	295	(13.2)	203	6	25	50	9	2	9	6	70	16	15	16	16	79	5	0	69	53	1	5	79
Newport	259	(11.6)	240	1	7	0	11	0	0	0	11	16	16	17	17	11	2	0	19	11	0	0	12
Javiana	134	(6.0)	131	1	2	0	0	0	0	0	1	0	0	0	0	1	0	0	2	1	0	0	1
I 4,[5],12:i:-	118	(5.3)	73	8	6	31	0	0	3	0	34	2	1	1	1	34	0	0	34	0	0	1	39
Infantis	89	(4.0)	83	3	2	0	1	0	0	1	0	1	1	2	2	2	3	0	2	0	0	3	3
Montevideo	60	(2.7)	56	3	1	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	3
Muenchen	58	(2.6)	56	0	2	0	0	0	0	0	1	0	0	0	0	2	0	0	0	0	0	0	1
Oranienburg	51	(2.3)	50	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Saintpaul	50	(2.2)	42	2	4	1	1	0	2	0	1	0	0	1	1	5	4	0	3	1	1	1	7
Bareilly	49	(2.2)	47	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1
Braenderup	48	(2.1)	46	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	0	1
Heidelberg	41	(1.8)	25	0	15	1	0	0	3	4	7	9	9	9	9	1	0	0	11	0	0	0	6
Thompson	34	(1.5)	34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mississippi	27	(1.2)	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Paratyphi B var. L(+) tartrate+	27	(1.2)	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Schwarzengrund	22	(1.0)	16	4	2	0	0	0	0	0	2	2	2	2	2	0	0	0	2	0	0	2	0
Agona	20	(0.9)	11	1	5	1	2	0	1	1	3	3	3	3	3	7	0	0	5	2	0	1	6
Hadar	18	(0.8)	1	1	16	0	0	0	0	1	16	0	0	0	0	0	0	0	2	0	0	1	16
Litchfield	17	(0.8)	14	1	2	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	0	2
Poona	17	(0.8)	16	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Stanley	16	(0.7)	11	0	5	0	0	0	1	0	2	0	0	0	0	2	2	0	3	0	0	0	5
Anatum	15	(0.7)	12	1	2	0	0	0	2	2	2	0	0	0	0	2	0	0	0	0	0	0	3
Sandiego	14	(0.6)	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I 4,[5],12:b:- var. L(+) tartrate+	12	(0.5)	11	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Berta	12	(0.5)	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Norwich	12	(0.5)	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I 13,23:b:-	11	(0.5)	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rubislaw	11	(0.5)	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hartford	10	(0.4)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mbandaka	10	(0.4)	7	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Panama	10	(0.4)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subtotal	1932	(86.4)	1640	65	111	90	24	2	22	15	160	52	50	54	54	159	23	0	171	71	3	44	201
All other serotypes	251	(11.2)	206	11	17	4	10	3	4	9	24	12	10	11	10	26	7	0	22	15	5	11	41
Partiallyserotyped	27	(1.2)	24	0	0	2	1	0	0	0	3	1	1	1	1	3	0	0	3	2	0	0	3
Rough/Nonmotile isolates	7	(0.3)	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Unknown serotype	19	(0.8)	17	1	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1
Total	2236	(100)	1892	79	128	97	35	5	26	24	188	65	61	66	65	189	30	1	197	88	8	56	247

* Only serotypes with at least 10 isolates are listed individually

† CLSI: Clinical and Laboratory Standards Institute

Antimicrobial agent abbreviations: GEN, gentamicin; KAN, kanamycin; STR, streptomycin; AMC, amoxicillin-clavulanic acid; FOX, cefoxitin; TIO, ceftiofur; AXO, ceftriaxone; FIS, sulfisoxazole; COT, trimethoprim-sulfamethoxazole; AZI, azithromycin; AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; NAL, nalidixic acid; TET, tetracycline

Table 6.	Percentage and number of non-typhoidal	Salmonella isolates in	NARMS with sel	ected resistance
patterns	, by serotype, 2012			

			A	t least	A	t least	A	t least						At least
			AC	CSSuT*		ACT/S [†]	ACS	SuTAuCx [‡]	Nalio	dixic Acid	Cef	triaxone		CxN [§]
		Ν	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Twent	y most common serotypes													
1	Enteritidis	365	0	(0)	0	(0)	0	(0)	28	(50.0)	3	(4.6)	0	(0)
2	Typhimurium	295	50	(64.1)	2	(25.0)	11	(32.4)	5	(8.9)	16	(24.6)	2	(33.3)
3	Newport	259	11	(14.1)	2	(25.0)	10	(29.4)	0	(0)	17	(26.2)	0	(0)
4	Javiana	134	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
5	l 4,[5],12:i:-	118	0	(0)	0	(0)	0	(0)	1	(1.8)	1	(1.5)	0	(0)
6	Infantis	89	0	(0)	0	(0)	0	(0)	3	(5.4)	2	(3.1)	1	(16.7)
7	Montevideo	60	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
8	Muenchen	58	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
9	Oranienburg	51	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
10	Saintpaul	50	0	(0)	0	(0)	0	(0)	1	(1.8)	1	(1.5)	0	(0)
11	Bareilly	49	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
12	Braenderup	48	0	(0)	1	(12.5)	0	(0)	0	(0)	0	(0)	0	(0)
13	Heidelberg	41	0	(0)	0	(0)	0	(0)	0	(0)	9	(13.8)	0	(0)
14	Thompson	34	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
15	Mississippi	27	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Paratyphi B var. L(+) tartrate+	27	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
17	Schwarzengrund	22	0	(0)	0	(0)	0	(0)	2	(3.6)	2	(3.1)	0	(0)
18	Agona	20	2	(2.6)	0	(0)	2	(5.9)	1	(1.8)	3	(4.6)	0	(0)
19	Hadar	18	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
20	Litchfield	17	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Poona	17	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
Additi	onal serotypes [¶]													
	Senftenberg	9	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
	Dublin	8	7	(9.0)	1	(12.5)	6	(17.6)	1	(1.8)	6	(9.2)	1	(16.7)
	Reading	8	1	(1.3)	1	(12.5)	0	(0)	0	(0)	0	(0)	0	(0)
	Derby	7	1	(1.3)	0	(0)	1	(2.9)	0	(0)	1	(1.5)	0	(0)
	Kentucky	7	1	(1.3)	0	(0)	0	(0)	3	(5.4)	0	(0)	0	(0)
	Virchow	5	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
	l 6,7:r:-	3	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
	Blockley	2	1	(1.3)	1	(12.5)	1	(2.9)	0	(0)	1	(1.5)	0	(0)
	Albert	1	1	(1.3)	0	(0)	1	(2.9)	1	(1.8)	1	(1.5)	1	(16.7)
	Choleraesuis	1	1	(1.3)	0	(0)	1	(2.9)	1	(1.8)	1	(1.5)	1	(16.7)
	l 4,[5],12:-:1,2	1	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
	Illa 50:z4,z23:-	1	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
Subto	tal	1852	76	(97.4)	8	(100)	33	(97.1)	55	(98.2)	64	(98.5)	6	(100)
1	All other serotypes	331	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
1	Partiallyserotyped	27	2	(2.6)	0	(0)	1	(2.9)	0	(0)	1	(1.5)	0	(0)
1	Rough/Nonmotile isolates	7	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Unknown serotype	19	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
Total		2236	78	(100)	8	(100)	34	(100)	56	(100)	65	(100)	6	(100)

* ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline

† ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

‡ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone

§ CxN: resistance to ceftriaxone and nalidixic acid ¶ Additional serotypes that displayed resistance to at least one of the selected patterns

Table 7. Percentage and number of non-typhoidal	Salmonella isolates in NARMS with resistance, by
number of CLSI* classes and serotype, 2012	

			≥ 3 CL	SI classes*	≥ 4 CL	SI classes*	≥ 5 Cl	LSI classes*	≥ 6 CL	_SI classes*	≥ 7 CI	SI classes*	≥ 8 C	LSI classes*	≥ 9 CI	LSI classes*
		N	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Twent	ty most common serotypes															
1	Enteritidis	365	11	(5.7)	6	(4.4)	2	(2.2)	0	(0)	0	(0)	0	(0)	0	(0)
2	Typhimurium	295	72	(37.1)	61	(44.5)	54	(60.7)	11	(27.5)	11	(30.6)	2	(40.0)	0	(0)
3	Newport	259	17	(8.8)	11	(8.0)	11	(12.4)	11	(27.5)	10	(27.8)	0	(0)	0	(0)
4	Javiana	134	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
5	l 4,[5],12:i:-	118	33	(17.0)	31	(22.6)	1	(1.1)	0	(0)	0	(0)	0	(0)	0	(0)
6	Infantis	89	3	(1.5)	1	(0.7)	1	(1.1)	1	(2.5)	0	(0)	0	(0)	0	(0)
7	Montevideo	60	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
8	Muenchen	58	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
9	Oranienburg	51	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
10	Saintpaul	50	3	(1.5)	2	(1.5)	1	(1.1)	1	(2.5)	0	(0)	0	(0)	0	(0)
11	Bareilly	49	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
12	Braenderup	48	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
13	Heidelberg	41	11	(5.7)	1	(0.7)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
14	Thompson	34	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
15	Mississippi	27	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Paratyphi B var. L(+) tartrate+	27	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
17	Schwarzengrund	22	2	(1.0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
18	Agona	20	5	(2.6)	3	(2.2)	2	(2.2)	2	(5.0)	2	(5.6)	0	(0)	0	(0)
19	Hadar	18	2	(1.0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
20	Litchfield	17	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Poona	17	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
Additi	onal serotypes [†]															
	Stanley	16	2	(1.0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Anatum	15	2	(1.0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Dublin	8	7	(3.6)	7	(5.1)	7	(7.9)	7	(17.5)	7	(19.4)	1	(20.0)	0	(0)
	Reading	8	2	(1.0)	1	(0.7)	1	(1.1)	0	(0)	0	(0)	0	(0)	0	(0)
	Derby	7	4	(2.1)	2	(1.5)	1	(1.1)	1	(2.5)	1	(2.8)	0	(0)	0	(0)
	Kentucky	7	2	(1.0)	2	(1.5)	2	(2.2)	2	(5.0)	1	(2.8)	0	(0)	0	(0)
	Brandenburg	5	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Johannesburg	5	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Ohio	5	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Virchow	5	1	(0.5)	1	(0.7)	1	(1.1)	0	(0)	0	(0)	0	(0)	0	(0)
	Uganda	4	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	l 6,7:r:-	3	1	(0.5)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Blockley	2	1	(0.5)	1	(0.7)	1	(1.1)	1	(2.5)	1	(2.8)	0	(0)	0	(0)
	Albert	1	1	(0.5)	1	(0.7)	1	(1.1)	1	(2.5)	1	(2.8)	1	(20.0)	0	(0)
	Choleraesuis	1	1	(0.5)	1	(0.7)	1	(1.1)	1	(2.5)	1	(2.8)	1	(20.0)	0	(0)
	I 4,[5],12:-:1,2	1	1	(0.5)	1	(0.7)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
Subto	tal	1892	190	(97.9)	133	(97.1)	87	(97.8)	39	(97.5)	35	(97.2)	5	(100)	0	(0)
	All other serotypes	291	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Partiallyserotyped	7	3	(1.5)	3	(2.2)	2	(2.2)	1	(2.5)	1	(2.8)	0	(0)	0	(0)
	Rough/Nonmotile isolates	19	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Unknown serotype	27	1	(0.5)	1	(0.7)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
Total		2236	194	(100)	137	(100)	89	(100)	40	(100)	36	(100)	5	(100)	0	(100)

* CLSI: Clinical and Laboratory Standards Institute † Additional serotypes that displayed resistance to at least three CLSI classes

Table 8. Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2012 (N=2236)

Bault			Perc	entage	of isolates					1	Percent	tage of all isolates wi			h MIC (µ	ıg/m L)**)**				
Rank-	CLSI' Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	<0.1	1.2	[0.8 - 1.7]					16.2	72.5	9.2	0.7	0.1	<0.1	0.3	0.9				
		Kanamycin	0.0	1.1	[0.7 - 1.6]										98.9	-		<0.1	1.0		
		Streptomycin	N/A	8.4	[7.3 - 9.6]												91.6	2.7	5.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.6	2.9	[2.3 - 3.7]							89.3	1.7	0.9	2.6	2.6	0.2	2.7			
	Cephems	Ceftiofur	0.1	3.0	[2.3 - 3.7]				0.3	0.6	23.7	70.7	1.7	0.1	0.2	2.8	•				
l '		Ceftriaxone	<0.1	2.9	[2.3 - 3.7]					97.0	<0.1		<0.1	<0.1	0.2	1.0	1.2	0.3	0.1		
	Macrolide	Azithromycin	N/A	<0.1	[0.0 - 0.2]						0.1	0.3	9.3	83.2	6.8	0.3	<0.1				
	Penicillins	Ampicillin	0.1	8.8	[7.7 - 10.1]							86.4	4.2	0.4	<0.1	0.1		8.8			
	Quinolones	Ciprofloxacin	3.3	0.4	[0.2 - 0.7]	89.6	6.5	0.3	1.1	1.3	1.0	0.2			0.1						
		Nalidixic acid	N/A	2.5	[1.9 - 3.2]						0.1	0.6	40.2	54.4	1.3	0.8	0.2	2.3			
	Cephems	Cefoxitin	0.2	2.7	[2.1 - 3.5]						0.1	17.7	62.4	15.1	1.7	0.2	0.9	1.8			
	Folate pathway inhibitors	Sulfisoxazole	N/A	8.5	[7.3 - 9.7]											8.8	50.4	31.6	0.7	0.1	8.5
п		Trimethoprim-sulfamethoxazole	N/A	1.3	[0.9 - 1.9]				97.1	1.4	<0.1		<0.1	0.2	1.2						
	Phenicols	Chloramphenicol	0.6	3.9	[3.2 - 4.8]								1.1	47.0	47.4	0.6	0.1	3.8			
	Tetracyclines	Tetracycline	0.2	11.0	[9.8 - 12.4]									88.7	0.2	0.5	2.2	8.4			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Percentage or isolates with intermediate susceptionity, invert in one retrieve or intermediate susceptionity value
 Secretage of isolates with vere resistant
 The 95% confidence intervals (Q) for percent resistant (%R) were calculated using the Paulson-Camp-Prat approximation to the Copper-Rearson exact method
 " The ushaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the the breakpoints for resistant experiments with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 3. Antimicrobial resistance pattern for non-typhoidal Salmonella, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

2000	J-2012											
Year Total	Isolates		2003 1855	2004 1782	2005 2036	2006 2171	2007 2145	2008 2384	2009 2193	2010 2449	2011 2338	2012 2236
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC > 64)	0.0%	0.0%	< 0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	Not Tested	Not Tested
		Gentamicin	1.4%	1.3%	2.2%	2.0%	2.1%	1.5%	1.3%	1.0%	1.7%	1.2%
		(MIC ≥ 16)	26	24	44	44	45	35	28	24	40	26
		Kanamycin	3.5%	2.8%	3.4%	2.9%	2.8%	2.1%	2.5%	2.2%	1.7%	1.1%
		(MIC ≥ 64)	64	50	70	63	61	50	54	54	39	24
		Streptomycin (MIC ≥ 64)	15.0% 279	12.0% 213	11.1% 225	10.7% 233	10.3% 222	10.0% 238	8.9% 196	8.6% 210	9.8% 230	8.4% 188
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	4.6%	3.7%	3.2%	3.7%	3.3%	3.1%	3.4%	2.9%	2.6%	2.9%
	combinations	(MIC ≥ 32/16)	86	66	65	81	70	73	75	70	60	65
I	Cephems	Ceftiofur (MIC ≥ 8)	4.5% 83	3.4% 60	2.9% 60	3.6% 79	3.3% 70	3.1% 73	3.4% 75	2.8% 69	2.5% 58	3.0% 66
		Ceftriaxone (MIC ≥ 4)	4.4% 81	3.3% 59	2.9% 59	3.7% 80	3.3% 70	3.1% 73	3.4% 75	2.9% 70	2.5% 58	2.9% 65
	Macrolides	Azithromycin	Not	Not	Not	Not	Not	Not	Not	Not	0.2%	< 0.1%
		$(MIC \ge 32)$	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	5	1
	Penicillins	Ampicillin (MIC ≥ 32)	13.6% 253	12.1% 216	11.4% 232	10.9% 237	10.1% 217	9.7% 232	9.8% 216	9.1% 223	9.1% 213	8.8% 197
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.2% 4	0.3% 5	0.1% 2	0.1% 3	0.1% 2	0.2% 5	0.3% 7	0.2% 6	0.2% 4	0.4% 8
		Nalidixic Acid (MIC ≥ 32)	1.9% 36	2.2% 39	1.9% 38	2.4% 52	2.2% 48	2.1% 49	1.8% 39	2.0% 48	2.2% 51	2.5% 56
	Cephems	Cefoxitin (MIC ≥ 32)	4.3% 79	3.4% 61	3.0% 62	3.5% 77	2.9% 63	3.0% 72	3.2% 71	2.6% 63	2.6% 60	2.7% 61
		Cephalothin (MIC > 32)	5.3%	Not	Not Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	15.1%	13.3%	12.6%	12.1%	12.3%	10.1%	9.9%	9.0%	8.6%	8.5%
		(MIC ≥ 512)	280	237	256	263	264	240	217	221	202	189
		Trimethoprim-sulfamethoxazole	1.9%	1.7%	1.7%	1.7%	1.5%	1.6%	1.7%	1.6%	1.2%	1.3%
		(MIC ≥ 4/76)	36	31	34	36	33	37	38	38	28	30
	Phenicols	Chloramphenicol $(MIC \ge 32)$	10.1% 187	7.6% 136	7.8% 159	6.4% 139	7.3% 156	6.1% 146	5.7% 125	5.0% 122	4.4% 103	3.9% 88
	Tetracyclines	Tetracycline	16.3%	13.6%	13.9%	13.5%	14.5%	11.5%	11.9%	11.0%	10.5%	11.0%

Table 9. Percentage and number of non-typhoidal Salmonella isolates resistant to antimicrobial agents, 2003-2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 10. Resistance patterns of non	·typ	bhoidal 3	Salmonella	a isolates	, 2003-	-2012
--------------------------------------	------	-----------	------------	------------	---------	-------

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	1855	1782	2036	2171	2145	2384	2193	2449	2338	2236
Resistance Pattern										
	70.00/	70.00/	00.00/	00.5%	04.40/	00.00/	00.00/	04.00/	0.4.00/	0.4.00/
No resistance detected	1447	1424	80.9% 1649	80.5% 1749	01.1% 1720	2000	83.2% 1924	04.0% 2072	04.0% 1092	04.0% 1902
Pagistanas > 1 CLSL alago*	22.09/	20.19/	10.40	10.5%	18.09/	2000	16.99/	15 49/	15 29/	16.40/
	408	20.1%	388	423	406	384	369	376	355	344
Resistance ≥ 2 CLSL classes*	17.6%	15.0%	14.8%	14 7%	14 2%	12.5%	13.0%	11.3%	11 1%	11.9%
	326	267	302	320	305	298	284	276	260	265
Resistance ≥ 3 CLSI classes*	14.2%	11.4%	12.0%	11.8%	11.1%	9.6%	9.6%	9.2%	9.1%	8.7%
	263	204	244	256	239	228	211	225	213	194
Resistance ≥ 4 CLSI classes*	11.4%	9.3%	9.1%	8.2%	8.2%	7.4%	7.3%	6.8%	6.5%	6.1%
	211	165	185	177	176	177	159	166	152	137
Resistance ≥ 5 CLSI classes*	9.8%	8.0%	7.2%	6.3%	6.9%	6.6%	6.2%	5.2%	4.6%	4.0%
	182	142	146	137	149	157	137	128	108	89
At least ACSSuT [†]	9.3%	7.2%	6.9%	5.6%	6.3%	5.8%	5.1%	4.4%	3.9%	3.5%
	173	129	141	121	136	138	112	107	91	78
At least ASSuT [‡] and not resistant to	0.9%	1.1%	0.8%	1.0%	0.8%	0.7%	0.6%	1.7%	1.8%	2.0%
chloramphenicol	17	19	16	22	17	17	14	42	42	44
At least ACT/S§	1.2%	0.6%	0.9%	0.7%	0.7%	0.5%	0.7%	0.4%	0.4%	0.4%
	23	10	18	15	16	11	15	11	9	8
At least ACSSuTAuCx [¶]	3.2%	2.4%	2.0%	2.0%	2.1%	1.8%	1.4%	1.3%	1.5%	1.5%
	60	42	41	43	46	44	30	33	36	34
At least AAuCx**	4.4%	3.3%	2.9%	3.6%	3.0%	2.9%	3.3%	2.5%	2.5%	2.8%
	81	59	59	78	65	69	73	62	58	62
At least ceftriaxone and nalidixic acid	0.1%	0.1%	< 0.1%	0.2%	0.2%	< 0.1%	0.2%	0.1%	0.1%	0.3%
resistant	1	2	1	4	5	1	4	2	2	6
At least nalidixic acid and azithromycin	Not	Not	Not	Not	Not	Not	Not	Not	0.1%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	2	0
At least ceftriaxone and azithromycin	Not	Not	Not	Not	Not	Not	Not	Not	< 0.1%	0.0%
resistant	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	1	0

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 § ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
 ¶ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
 ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone
Table 11. Broad-Spectrum β-lactam resistance among all ceftriaxone or ceftiofur resistant non-typhoidal Salmonella isolates, 2011-2012

Develop	CLSI [†] Antimicrobial	Antimicrobial		Percenta	ge of i	solates					Per	centag	je of al	lisola	teswi	h MIC	(µg/m L	.)**				
Ralik	Class	Agent	fear (# of isolates)	% I [‡] (or S-DD [§])	%R [¶]	[95% CI]**	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	β-lactam / β-lactamase inhibitor combinations	Piperacillin- tazobactam	2011 (58)	15.5	10.3	[3.9 - 21.2]							1.7	5.2	15.5	39.7	12.1	5.2	10.3	3.4	6.9	
			2012 (66)	9.1	6.1	[1.7 - 14.8]								6.1	12.1	54.5	12.1	7.6	1.5	3.0	3.0	
	Cephems	Cefepime§	2011 (58)	(1.7 [§])	1.7	[0.0 - 9.2]				3.4	32.8	41.4	13.8	5.2		1.7 [§]			1.7			
			2012 (66)	(6.1 [§])	0.0	[0.0 - 5.4]				1.5	13.6	54.5	16.7	7.6	3.0	3.0						
		Cefotaxime	2011 (58)	0.0	100	[93.8 - 100]									1.7	10.3	37.9	34.5	10.3	3.4	1.7	
			2012 (66)	0.0	100	[94.6 - 100]									4.5	4.5	48.5	34.8	4.5	1.5	1.5	
		Ceftazidime	2011 (58)	3.4	96.6	[88.1 - 99.6]										3.4	22.4	53.4	12.1	6.9	1.7	
			2012 (66)	4.5	87.9	[77.5 - 94.6]							1.5		6.1	4.5	39.4	36.4	9.1	3.0		
	Monobactams	Aztreonam	2011 (58)	43.1	41.4	[28.6 - 55.1]								6.9	8.6	43.1	27.6	8.6	5.2			
			2012 (66)	54.5	27.3	[17.0 - 39.6]					1.5	1.5		1.5	13.6	54.5	18.2	7.6	1.5			
	Penems	Imipenem	2011 (58)	0.0	1.7	[0.0 - 9.2]				1.7	77.6	19.0			1.7							
			2012 (66)	0.0	0.0	[0.0 - 5.4]				3.0	56.1	40.9										

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important

† CLSI: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility

Proceedings of isolates that are susceptible-dose dependent (S-DD). Cefepime MICs above the susceptible range but below the resistant range are now designated by CLSI to be S-DD. Corresponding dilution ranges are shaded in orange.
Percentage of isolates that were resistant
Percentage of isolates that were resistant
Percentage of isolates that were resistant

The unshaded and orange-shaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Orange-shaded areas also indicate the dilution range of the Sensitire® plates used to test isolates. Orange-shaded areas also indicate the dilution range of the Sensitire® plates used to test isolates. Orange-shaded areas also indicate the generative of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentrations. CLSI breakpoints were used when available.

A. Salmonella ser. Enteritidis

Table 12. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2012 (N=365)

Rank*	CI SI [†] Antimiarahial Class	Antimics shiel Assest	Perc	centage	ofisolates					I	Percent	age of	all isola	ites wit	h MIC (j	ıg/m L)*'	,				
Rank	CLSP Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.0]					45.2	51.8	2.5	0.5								
		Kanamycin	0.0	0.0	[0.0 - 1.0]										100.0	-					
		Streptomycin	N/A	1.9	[0.8 - 3.9]												98.1	0.3	1.6		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.3	0.8	[0.2 - 2.4]							92.6	2.7	0.3	3.3	0.3		0.8			
	Cephems	Ceftiofur	0.3	0.8	[0.2 - 2.4]				0.5	1.4	4.7	88.8	3.6	0.3		0.8	•				
		Ceftriaxone	0.0	0.8	[0.2 - 2.4]					99.2				1		0.3	0.5				
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.0]						0.3	0.5	9.9	84.1	4.9	0.3					
	Penicillins	Ampicillin	0.0	4.4	[2.5 - 7.0]							80.0	14.0	1.4	0.3			4.4			
	Quinolones	Ciprofloxacin	7.9	0.0	[0.0 - 1.0]	61.6	30.1	0.3	4.7	3.0	0.3						-				
		Nalidixic acid	N/A	7.7	[5.2 - 10.9]						0.3	1.4	14.5	74.0	1.9	0.3	0.3	7.4			
	Cephems	Cefoxitin	0.5	0.8	[0.2 - 2.4]							11.5	70.7	15.1	1.4	0.5	0.3	0.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	2.7	[1.3 - 5.0]											7.1	52.9	37.0	0.3		2.7
п		Trimethoprim-sulfamethoxazole	N/A	1.1	[0.3 - 2.8]				97.5	1.4					1.1						l l
	Phenicols	Chloramphenicol	0.0	0.5	[0.1 - 2.0]								1.1	52.6	45.8		0.3	0.3			
	Tetracyclines	Tetracycline	0.5	3.6	[1.9 - 6.0]									95.9	0.5		0.5	3.0			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute

† CLS: Clinical and Laboratory Standards Institute
 ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 § Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 § Percentage of isolates with intermediate susceptibility; WA if no MIC range of intermediate susceptibility exists
 § Percentage of isolates with intermediate susceptibility; WA if no MIC range of intermediate susceptibility exists
 § Percentage of isolates with more resistant
 ¶ The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 * The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 4. Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2012 -..... -

Susceptible, Intermediate, and Resistant Proportion

200	5-2012											
Year Total	Isolates		2003 257	2004 271	2005 384	2006 412	2007 385	2008 442	2009 410	2010 513	2011 391	2012 365
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested							
		Gentamicin (MIC ≥ 16)	0.4% 1	0.4% 1	0.8% 3	0.2% 1	0.0% 0	0.2% 1	0.0% 0	0.2% 1	0.5% 2	0.0% 0
		Kanamycin (MIC ≥ 64)	0.0% 0	0.7% 2	0.3% 1	0.2% 1	0.5% 2	0.0% 0	0.2% 1	0.2% 1	0.3% 1	0.0% 0
		Streptomycin (MIC ≥ 64)	1.2% 3	2.2% 6	1.0% 4	1.2% 5	0.5% 2	0.7% 3	1.2% 5	0.6% 3	1.8% 7	1.9% 7
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0% 0	0.0% 0	0.8% 3	0.5% 2	0.5% 2	0.0% 0	0.0% 0	0.4% 2	0.3% 1	0.8% 3
I	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	0.0% 0	0.5% 2	0.5% 2	0.3% 1	0.2% 1	0.0% 0	0.0% 0	0.3% 1	0.8% 3
		Ceftriaxone (MIC ≥ 4)	0.0% 0	0.0% 0	0.3% 1	0.5% 2	0.3% 1	0.2% 1	0.0% 0	0.0% 0	0.3% 1	0.8% 3
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0	0.0% 0							
	Penicillins	Ampicillin (MIC ≥ 32)	2.3% 6	4.1% 11	2.9% 11	4.1% 17	2.1% 8	4.1% 18	3.9% 16	2.3% 12	5.1% 20	4.4% 16
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.4% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.2% 1	0.0% 0	0.0% 0
		Nalidixic Acid (MIC ≥ 32)	4.7% 12	6.6% 18	4.7% 18	7.0% 29	5.7% 22	7.2% 32	3.7% 15	5.3% 27	7.2% 28	7.7% 28
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0	0.0% 0	1.0% 4	0.5% 2	0.3% 1	0.0% 0	0.0% 0	0.0% 0	0.3% 1	0.8% 3
		Cephalothin (MIC ≥ 32)	1.2% 3	Not Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC \geq 512)	1.2% 3	1.8% 5	1.6% 6	1.5% 6	1.6% 6	1.4% 6	1.7% 7	1.9% 10	2.0% 8	2.7% 10
II		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	0.8% 2	0.0% 0	0.5% 2	0.5% 2	1.0% 4	0.9% 4	0.7% 3	1.0% 5	0.5% 2	1.1% 4
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.4% 1	0.4% 1	0.5% 2	0.0% 0	0.5% 2	0.5% 2	0.0% 0	0.6% 3	0.0% 0	0.5% 2
	Tetracyclines	Tetracycline (MIC ≥ 16)	1.6% 4	3.3% 9	2.3% 9	1.7% 7	3.9% 15	1.8% 8	1.2% 5	2.1% 11	1.8% 7	3.6% 13

Table 13. Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 2003-2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important CLSI: Clinical and Laboratory Standards Institute
 Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 14 Resistance patterns of Salmonella ser Enteritidis isolates 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	257	271	384	412	385	442	410	513	391	365
Resistance Pattern										
No resistance detected	91.8% 236	86.7% 235	91.4% 351	88.8% 366	90.4% 348	87.3% 386	92.0% 377	92.0% 472	88.0% 344	87.9% 321
Resistance ≥ 1 CLSI class*	8.2%	13.3%	8.6%	11.2%	9.6%	12.7%	8.0%	8.0% 41	12.0% 47	12.1%
Resistance ≥ 2 CLSI classes*	2.3%	3.0%	3.6% 14	2.9%	3.4%	2.3%	2.4%	2.9%	2.6%	5.2%
Resistance ≥ 3 CLSI classes*	0.4%	1.1%	1.6%	1.7%	1.0%	0.7%	1.0%	2.1%	2.3%	3.0%
Resistance ≥ 4 CLSI classes*	0.4%	0.7%	1.0% 4	0.7%	0.3%	0.2%	0.5%	0.4%	1.3%	1.6%
Resistance ≥ 5 CLSI classes*	0.4%	0.7%	0.5%	0.2%	0.3%	0.0%	0.2%	0.0%	0.5%	0.5%
At least ACSSuT [†]	0.4%	0.4%	0.5% 2	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
At least ASSuT [‡] and not resistant to	0.0%	0.4% 1	0.0% 0	0.2% 1	0.0% 0	0.0%	0.2% 1	0.4% 2	1.3% 5	1.1% 4
At least ACT/S§	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.3%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
At least AAuCx**	0.0% 0	0.0% 0	0.3% 1	0.5% 2	0.3% 1	0.0% 0	0.0% 0	0.0% 0	0.3% 1	0.8% 3
At least ceftriaxone and nalidixic acid resistant	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.3% 1	0.2% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0
At least nalidixic acid and azithromycin resistant	Not Tested	0.0% 0	0.0% 0							
At least ceftriaxone and azithromycin resistant	Not Tested	0.0% 0	0.0% 0							

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 § ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

¶ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clawlanic acid, ceftriaxone
** AAuCx: resistance to ampicillin, amoxicillin-clawlanic acid, ceftriaxone

B. Salmonella ser. Typhimurium

Table 15. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2012 (N=295)

Baula		Autimize this August	Perc	entage	ofisolates					I	Percent	age of	all isola	tes wit	h MIC (j	Jg/m L)*′					
Rank-	CLSI' Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	3.1	[1.4 - 5.7]					7.8	76.6	11.2	1.0	0.3		0.7	2.4				
		Kanamycin	0.0	2.0	[0.7 - 4.4]										98.0	-			2.0		
		Streptomycin	N/A	23.7	[19.0 - 29.0]												76.3	7.5	16.3		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	15.3	5.4	[3.1 - 8.7]							74.6	2.0	0.3	2.4	15.3	0.3	5.1			
	Cephems	Ceftiofur	0.0	5.4	[3.1 - 8.7]					0.3	16.6	75.3	2.4		0.7	4.7	-				
I		Ceftriaxone	0.0	5.4	[3.1 - 8.7]					94.2	0.3			1	1.7	2.4	1.4				
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.2]								5.1	92.5	2.4						
	Penicillins	Ampicillin	0.0	23.4	[18.7 - 28.6]							72.2	4.1	0.3				23.4			
	Quinolones	Ciprofloxacin	1.4	0.3	[0.0 - 1.9]	96.9	1.4		0.3	0.7	0.3	0.3									
		Nalidixic acid	N/A	1.7	[0.5 - 3.9]				•			0.7	42.7	54.2	0.7		0.3	1.4			
	Cephems	Cefoxitin	0.3	5.1	[2.9 - 8.2]						0.3	14.9	70.2	6.8	2.4	0.3	2.7	2.4			
	Folate pathway inhibitors	Sulfisoxazole	N/A	26.8	[21.8 - 32.2]											5.4	59.0	8.1	0.3	0.3	26.8
н		Trimethoprim-sulfamethoxazole	N/A	1.7	[0.5 - 3.9]				94.2	4.1				0.3	1.4						
	Phenicols	Chloramphenicol	0.7	18.0	[13.8 - 22.8]								0.3	44.4	36.6	0.7	0.3	17.6			
	Tetracyclines	Tetracycline	0.0	26.8	[21.8 - 32.2]									73.2		3.4	11.5	11.9			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important
 CLS: Clinical and Laboratory Standards Institute
 Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 Secontage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 Percentage of isolates with were resistant
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 The unshaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 5. Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportio	on
Gentamicin		
Kanamycin		
Streptomycin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Azithromycin		
Ampicillin		
Ciprofloxacin		
Nalidixic acid		
Cefoxitin		
Sulfisoxazole		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Tetracycline		

aye	1113, 2003–2012											
Year			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total I	solates		408	382	438	408	405	396	370	359	323	295
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	Tested	Tested
		Gentamicin	2.0%	2.1%	1.8%	2.7%	2.5%	1.5%	1.9%	0.8%	2.2%	3.1%
		(MIC ≥ 16)	8	8	8	11	10	6	7	3	7	9
		Kanamycin	7.1%	5.8%	5.7%	5.1%	5.9%	2.5%	4.9%	7.2%	4.0%	2.0%
		(MIC ≥ 64)	29	22	25	21	24	10	18	26	13	6
		Streptomycin	35.5%	31.9%	28.1%	29.4%	32.3%	28.5%	25.9%	25.6%	25.7%	23.7%
		(MIC ≥ 64)	145	122	123	120	131	113	96	92	83	70
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	5.6%	4.7%	3.2%	4.4%	6.7%	3.5%	6.2%	4.2%	6.8%	5.4%
	combinations	(MIC ≥ 32/16)	23	18	14	18	27	14	23	15	22	16
	Cephems	Ceftiofur	4.9%	4.5%	2.5%	4.2%	6.4%	3.5%	6.5%	4.7%	6.8%	5.4%
		(MIC ≥ 8)	20	17	11	17	26	14	24	17	22	16
		Ceftriaxone	4.9%	4.5%	2.5%	4.2%	6.4%	3.5%	6.5%	4.7%	6.8%	5.4%
		(MIC ≥ 4)	20	17	11	17	26	14	24	17	22	16
	Macrolides	Azithromycin	Not	0.0%	0.0%							
		(MIC ≥ 32)	Tested	0	0							
	Penicillins	Ampicillin	36.3%	32.2%	29.0%	28.2%	31.6%	26.3%	28.1%	26.2%	25.7%	23.4%
		(MIC ≥ 32)	148	123	127	115	128	104	104	94	83	69
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.2%	0.2%	0.0%	0.0%	0.8%	0.0%	0.0%	0.3%
		(MIC ≥ 1)	0	0	1	1	0	0	3	0	0	1
		Nalidixic Acid	1.2%	0.5%	0.9%	0.7%	1.5%	1.0%	2.2%	1.4%	0.3%	1.7%
		(MIC ≥ 32)	5	2	4	3	6	4	8	5	1	5
	Cephems	Cefoxitin	4.4%	4.7%	2.5%	3.9%	5.7%	3.5%	5.4%	3.3%	6.8%	5.1%
		(MIC ≥ 32)	18	18	11	16	23	14	20	12	22	15
		Cephalothin	6.1%	Not								
		(MIC ≥ 32)	25	Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	38.7%	36.1%	32.0%	33.3%	37.3%	30.3%	30.0%	28.7%	27.2%	26.8%
п		(MIC ≥ 512)	158	138	140	136	151	120	111	103	88	79
II		Trimethoprim-sulfamethoxazole	3.4%	2.6%	2.7%	2.2%	2.5%	1.8%	3.0%	1.9%	1.9%	1.7%
		(MIC ≥ 4/76)	14	10	12	9	10	7	11	7	6	5
	Phenicols	Chloramphenicol	28.2%	24.3%	24.4%	22.1%	25.4%	23.5%	20.5%	20.3%	19.5%	18.0%
		(MIC ≥ 32)	115	93	107	90	103	93	76	73	63	53
	Tetracyclines	Tetracycline	38.0%	30.4%	30.4%	31.6%	36.8%	27.8%	28.9%	29.0%	27.2%	26.8%
		(MIC ≥ 16)	155	116	133	129	149	110	107	104	88	79

Table 16. Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents 2003-2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 17 Resistance patterns of Salmonella ser Typhimurium isolates 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	408	382	438	408	405	396	370	359	323	295
Resistance Pattern										
No resistance detected	54.7%	60.5%	65.1%	62.5%	57.5%	67.9%	63.5%	66.9%	69.0%	68.8%
	223	231	285	255	233	269	235	240	223	203
Resistance ≥ 1 CLSI class*	45.3%	39.5%	34.9%	37.5%	42.5%	32.1%	36.5%	33.1%	31.0%	31.2%
	185	151	153	153	172	127	135	119	100	92
Resistance ≥ 2 CLSI classes*	41.4%	37.2%	33.3%	34.1%	39.3%	31.3%	33.2%	30.4%	28.8%	29.2%
	169	142	146	139	159	124	123	109	93	86
Resistance ≥ 3 CLSI classes*	37.3%	31.7%	30.1%	30.4%	34.3%	27.8%	28.1%	27.3%	26.3%	24.4%
	152	121	132	124	139	110	104	98	85	72
Resistance ≥ 4 CLSI classes*	32.4%	27.7%	27.4%	27.0%	29.9%	24.7%	24.1%	24.2%	21.7%	20.7%
	132	106	120	110	121	98	89	87	70	61
Resistance ≥ 5 CLSI classes*	27.7%	24.3%	22.8%	20.8%	24.9%	24.0%	22.2%	20.9%	20.7%	18.3%
	113	93	100	85	101	95	82	75	67	54
At least ACSSuT [†]	26.5%	23.6%	22.4%	19.6%	22.7%	23.2%	19.5%	18.7%	19.5%	16.9%
	108	90	98	80	92	92	72	67	63	50
At least ASSuT [‡] and not resistant to	2.7%	2.4%	2.3%	3.2%	3.7%	0.3%	1.6%	3.6%	1.2%	1.7%
chloramphenicol	11	9	10	13	15	1	6	13	4	5
At least ACT/S [§]	3.2%	1.6%	2.1%	0.7%	2.0%	0.5%	2.2%	1.1%	0.6%	0.7%
	13	6	9	3	8	2	8	4	2	2
At least ACSSuTAuCx ¹	2.2%	2.6%	1.8%	2.9%	3.7%	2.3%	1.6%	1.7%	5.3%	3.7%
	9	10	8	12	15	9	6	6	17	11
At least AAuCx**	4.9%	4.5%	2.5%	4.2%	6.2%	3.5%	6.2%	3.6%	6.8%	5.4%
	20	17	11	17	25	14	23	13	22	16
At least ceftriaxone and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.5%	0.3%	0.0%	0.7%
	0	0	0	0	1	0	2	1	0	2
At least nalidixic acid and azithromycin resistant	Not	0.0%	0.0%							
	Tested	0	0							
At least ceftriaxone and azithromycin resistant	Not	0.0%	0.0%							
	Tested	0	0							

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 § ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clawlanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clawlanic acid, ceftriaxone

C. Salmonella ser. Newport

Table 18. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2012 (N=259)

-			Perc	centage	ofisolates						Percent	age of	all isola	tes wit	h MIC (j	ug/m L)**	,				
Rank-	CLSI' Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.4]					8.5	84.9	6.2	0.4								
		Kanamycin	0.0	0.0	[0.0 - 1.4]										100.0	-					
		Streptomycin	N/A	4.2	[2.1 - 7.5]												95.8		4.2		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.8	6.2	[3.6 - 9.8]							91.5	0.8	0.4	0.4	0.8		6.2			
	Cephems	Ceftiofur	0.0	6.6	[3.9 - 10.3]						19.3	74.1				6.6	•				
1		Ceftriaxone	0.0	6.6	[3.9 - 10.3]					93.4					-	2.3	2.7	1.2	0.4		
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.4]							0.8	17.4	77.6	4.2						
	Penicillins	Ampicillin	0.4	7.3	[4.5 - 11.2]							91.1	1.2			0.4		7.3			
	Quinolones	Ciprofloxacin	3.1	0.0	[0.0 - 1.4]	96.1	0.8				3.1						-				
		Nalidixic acid	N/A	0.0	[0.0 - 1.4]							0.4	39.0	56.8	0.8	3.1					
	Cephems	Cefoxitin	0.0	6.2	[3.6 - 9.8]							18.9	70.3	3.5	1.2		1.9	4.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	4.2	[2.1 - 7.5]											4.2	35.5	55.6	0.4		4.2
п		Trimethoprim-sulfamethoxazole	N/A	0.8	[0.1 - 2.8]				98.8	0.4					0.8						-
	Phenicols	Chloramphenicol	0.0	4.2	[2.1 - 7.5]								0.8	72.6	22.4			4.2			
	Tetracyclines	Tetracycline	0.4	4.6	[2.4 - 8.0]									95.0	0.4		0.4	4.2			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important
 † CLS: Clinical and Laboratory Standards histitute
 ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 § Percentage of isolates with were resistant
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
 * The unshaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs greater than the navilable.

Figure 6. Antimicrobial resistance pattern for Salmonella ser. Newport, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

200.	5-2012											
Year Total	solates		2003 226	2004 191	2005 207	2006 218	2007 222	2008 258	2009 239	2010 305	2011 285	2012 259
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested							
		Gentamicin (MIC ≥ 16)	3.1% 7	0.5% 1	1.0% 2	0.9% 2	0.9% 2	0.4% 1	0.4% 1	0.3% 1	0.7% 2	0.0% 0
		Kanamycin (MIC ≥ 64)	4.4% 10	2.6% 5	1.9% 4	2.3% 5	0.9% 2	3.5% 9	1.7% 4	0.7% 2	0.4% 1	0.0% 0
		Streptomycin (MIC ≥ 64)	24.3% 55	15.7% 30	14.0% 29	13.8% 30	10.4% 23	13.6% 35	8.4% 20	8.2% 25	4.2% 12	4.2% 11
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	21.7% 49	15.2% 29	12.6% 26	12.4% 27	8.1% 18	12.4% 32	7.5% 18	7.5% 23	3.9% 11	6.2% 16
Т	Cephems	Ceftiofur (MIC ≥ 8)	22.1% 50	15.2% 29	12.6% 26	12.4% 27	8.1% 18	12.4% 32	7.1% 17	7.2% 22	3.9% 11	6.6% 17
		Ceftriaxone (MIC ≥ 4)	21.7% 49	14.7% 28	12.6% 26	12.8% 28	8.1% 18	12.4% 32	7.1% 17	7.2% 22	3.9% 11	6.6% 17
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0	0.0% 0							
	Penicillins	Ampicillin (MIC ≥ 32)	23.0% 52	15.7% 30	14.0% 29	15.1% 33	9.9% 22	14.3% 37	8.4% 20	7.5% 23	3.9% 11	7.3% 19
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0									
		Nalidixic Acid (MIC ≥ 32)	0.4% 1	0.5% 1	0.0% 0	0.9% 2	0.0% 0	0.4% 1	0.0% 0	0.3% 1	0.4% 1	0.0% 0
	Cephems	Cefoxitin (MIC \geq 32)	21.7% 49	15.2% 29	12.6% 26	12.8% 28	8.1% 18	12.4% 32	6.7% 16	7.2% 22	3.9% 11	6.2% 16
		Cephalothin (MIC \geq 32)	22.6% 51	Not Tested								
II	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	24.8% 56	16.8% 32	15.5% 32	15.1% 33	10.4% 23	13.2% 34	8.8% 21	7.5% 23	4.6% 13	4.2% 11
		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	1.3% 3	2.1% 4	1.9% 4	3.2% 7	1.8% 4	3.1% 8	1.3% 3	1.3% 4	0.0% 0	0.8% 2
	Phenicols	Chloramphenicol (MIC ≥ 32)	22.6% 51	15.2% 29	13.5% 28	12.4% 27	9.5% 21	12.0% 31	7.5% 18	7.2% 22	3.5% 10	4.2% 11
	Tetracyclines	Tetracycline	24.3%	16.8%	14.5%	14.2%	9.9%	14.0%	8.8%	8.2%	4.6%	4.6%

Table 19. Percentage and number of *Salmonella* ser. Newport isolates resistant to antimicrobial agents, 2003–2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 20 Resistance patterns of Salmonella ser Newport isolates 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	226	191	207	218	222	258	239	305	285	259
Resistance Pattern										
No resistance detected	73.5%	82.2%	84.1%	82.6%	89.2%	85.3%	89.1%	90.8%	94.4%	92.7%
	166	157	174	180	198	220	213	277	269	240
Resistance ≥ 1 CLSI class*	26.5%	17.8%	15.9%	17.4%	10.8%	14.7%	10.9%	9.2%	5.6%	7.3%
	60	34	33	38	24	38	26	28	16	19
Resistance ≥ 2 CLSI classes*	25.2%	17.3%	15.0%	16.5%	10.8%	13.6%	9.2%	7.9%	4.6%	6.9%
	57	33	31	36	24	35	22	24	13	18
Resistance ≥ 3 CLSI classes*	23.5%	16.2%	14.5%	15.1%	10.8%	13.6%	8.4%	7.5%	3.9%	6.6%
	53	31	30	33	24	35	20	23	11	17
Resistance ≥ 4 CLSI classes*	23.0%	15.7%	14.0%	13.3%	9.5%	13.6%	7.5%	7.5%	3.9%	4.2%
	52	30	29	29	21	35	18	23	11	11
Resistance ≥ 5 CLSI classes*	22.6%	14.7%	12.6%	12.8%	8.6%	12.8%	7.1%	7.2%	3.5%	4.2%
	51	28	26	28	19	33	17	22	10	11
At least ACSSuT [†]	22.1%	14.7%	12.6%	11.9%	8.6%	11.6%	7.1%	7.2%	3.5%	4.2%
	50	28	26	26	19	30	17	22	10	11
At least ASSuT [‡] and not resistant to	0.4%	0.0%	0.5%	1.4%	0.5%	1.6%	0.0%	0.3%	0.0%	0.0%
chloramphenicol	1	0	1	3	1	4	0	1	0	0
At least ACT/S§	1.3%	1.0%	1.9%	2.3%	0.5%	2.7%	1.3%	1.3%	0.0%	0.8%
	3	2	4	5	1	7	3	4	0	2
At least ACSSuTAuCx ¹	21.2%	14.7%	12.6%	10.6%	8.1%	11.6%	7.1%	7.2%	3.5%	3.9%
	48	28	26	23	18	30	17	22	10	10
At least AAuCx**	21.7%	14.7%	12.6%	11.9%	8.1%	12.4%	7.1%	7.2%	3.9%	6.2%
	49	28	26	26	18	32	17	22	11	16
At least ceftriaxone and nalidixic acid resistant	0.0%	0.5%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%
	0	1	0	1	0	0	0	0	1	0
At least nalidixic acid and azithromycin resistant	Not	0.0%	0.0%							
	Tested	0	0							
At least ceftriaxone and azithromycin resistant	Not	0.0%	0.0%							
	Tested	0	0							

* CLSI: Clinical and Laboratory Standards Institute † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

ACT/S: resistance to ampicillin, clopamphenicol, trimethoprim-sulfamethoxazole
 ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
 ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

D. Salmonella ser. Heidelberg

Table 21. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2012 (N=41)

Denkt	CI SI [†] Antimicrohial Class	Antimicrobial Arout	Perc	entage	of isolates						Percent	tage of a	all isola	tes wit	h MIC (µ	.⁄g/m L)*′	•				
Rank	CLSP Antimicrobial class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	7.3	[1.5 - 19.9]					4.9	70.7	17.1					7.3				
		Kanamycin	0.0	9.8	[2.7 - 23.1]										90.2	-			9.8		
		Streptomycin	N/A	17.1	[7.1 - 32.1]												82.9	12.2	4.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	22.0	[10.5 - 37.6]							70.7	2.4		4.9			22.0			
Ι.	Cephems	Ceftiofur	0.0	22.0	[10.5 - 37.6]						29.3	46.3	2.4			22.0					
l '		Ceftriaxone	0.0	22.0	[10.5 - 37.6]					78.0				1	-	14.6	4.9	2.4			
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 8.6]								2.4	97.6							
	Penicillins	Ampicillin	0.0	26.8	[14.2 - 42.9]							70.7	2.4					26.8			
	Quinolones	Ciprofloxacin	2.4	0.0	[0.0 - 8.6]	95.1	2.4				2.4						•				
		Nalidixic acid	N/A	0.0	[0.0 - 8.6]							-	12.2	85.4		2.4					
	Cephems	Cefoxitin	0.0	22.0	[10.5 - 37.6]							39.0	36.6		2.4		9.8	12.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	2.4	[0.0 - 12.8]											17.1	63.4	17.1			2.4
п		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 8.6]				100.0												
	Phenicols	Chloramphenicol	0.0	0.0	[0.0 - 8.6]								2.4	24.4	73.2						
	Tetracyclines	Tetracycline	0.0	14.6	[5.5 - 29.2]									85.4			2.4	12.2			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute

Click Cullicity and Laboratory Standards institute
 Forcentage of isolates with interrediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 Forcentage of isolates with interrediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 Percentage of isolates with an were resistant
 The 95% confidence intervals (C) for percent registrat (%R) were calculated using the Paulson-Camp-Prait approximation to the Copper-Pearson exact method
 ** The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for resistant concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 7. Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistant	Proportion
Gentamicin		
Kanamycin		
Streptomycin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Azithromycin		
Ampicillin		
Ciprofloxacin		
Nalidixic acid		
Cefoxitin		
Sulfisoxazole		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Tetracycline		

Table 22.	Percentage and number of	Salmone	lla ser	. Heid	elberg	isolat	es resi	istant	to anti	microl	bial	
agents, 2	003–2012											
												- 22

Year Total I	solates		2003 96	2004 92	2005 125	2006 102	2007 98	2008 75	2009 86	2010 62	2011 70	2012 41
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested							
		Gentamicin (MIC ≥ 16)	5.2% 5	4.3% 4	6.4% 8	4.9% 5	16.3% 16	14.7% 11	2.3% 2	8.1% 5	20.0% 14	7.3% 3
		Kanamycin (MIC ≥ 64)	8.3% 8	8.7% 8	12.8% 16	8.8% 9	11.2% 11	26.7% 20	20.9% 18	21.0% 13	21.4% 15	9.8% 4
		Streptomycin (MIC ≥ 64)	12.5% 12	15.2% 14	13.6% 17	11.8% 12	12.2% 12	30.7% 23	23.3% 20	25.8% 16	37.1% 26	17.1% 7
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	5.2% 5	9.8% 9	8.8% 11	9.8% 10	7.1% 7	8.0% 6	20.9% 18	24.2% 15	10.0% 7	22.0% 9
Т	Cephems	Ceftiofur (MIC ≥ 8)	5.2% 5	8.7% 8	8.8% 11	9.8% 10	7.1% 7	8.0% 6	20.9% 18	24.2% 15	8.6% 6	22.0% 9
		Ceftriaxone (MIC \geq 4)	5.2% 5	8.7% 8	8.8% 11	9.8% 10	7.1% 7	8.0% 6	20.9% 18	24.2% 15	8.6% 6	22.0% 9
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0	0.0% 0							
	Penicillins	Ampicillin (MIC ≥ 32)	10.4% 10	25.0% 23	20.0% 25	18.6% 19	18.4% 18	28.0% 21	27.9% 24	38.7% 24	30.0% 21	26.8% 11
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0									
		Nalidixic Acid (MIC ≥ 32)	1.0% 1	0.0% 0	0.8% 1	0.0% 0						
	Cephems	Cefoxitin (MIC ≥ 32)	5.2% 5	7.6% 7	8.8% 11	8.8% 9	7.1% 7	8.0% 6	19.8% 17	24.2% 15	8.6% 6	22.0% 9
		Cephalothin (MIC ≥ 32)	7.3% 7	Not Tested								
ш	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC \ge 512)	7.3% 7	7.6% 7	8.0% 10	4.9% 5	18.4% 18	12.0% 9	7.0% 6	11.3% 7	7.1% 5	2.4% 1
		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	2.1% 2	0.0% 0	0.8% 1	0.0% 0	0.0% 0	2.7% 2	3.5% 3	0.0% 0	1.4% 1	0.0% 0
	Phenicols	Chloramphenicol (MIC \geq 32)	0.0% 0	1.1% 1	0.8% 1	0.0% 0	3.1% 3	1.3% 1	4.7% 4	1.6% 1	4.3% 3	0.0% 0
	Tetracyclines	Tetracycline (MIC ≥ 16)	16.7% 16	19.6% 18	18.4% 23	13.7% 14	22.4% 22	36.0% 27	27.9% 24	22.6% 14	34.3% 24	14.6% 6

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 23 Resistance patterns of Salmonella ser Heidelberg isolates 2003–2012

Veer	2002	2004	2005	2000	2007	2000	2000	2040	2044	2012
Tetal laslatas	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	96	92	125	102	98	75	86	62	70	41
Resistance Pattern										
	00.00/	50.50/	00.40/	07.00/	50.00/	57.00/	00.50/	50.00/	FE 70/	04.00/
No resistance detected	68.8%	56.5%	62.4%	67.6%	58.2%	57.3%	60.5%	53.2%	55.7%	61.0%
	66	52	78	69	57	43	52	33	39	25
Resistance ≥ 1 CLSI class*	31.3%	43.5%	37.6%	32.4%	41.8%	42.7%	39.5%	46.8%	44.3%	39.0%
	30	40	47	33	41	32	34	29	31	16
Resistance ≥ 2 CLSI classes*	17.7%	22.8%	24.8%	23.5%	28.6%	40.0%	34.9%	41.9%	44.3%	39.0%
	17	21	31	24	28	30	30	26	31	16
Resistance ≥ 3 CLSI classes*	10.4%	13.0%	15.2%	12.7%	17.3%	28.0%	25.6%	33.9%	30.0%	26.8%
	10	12	19	13	17	21	22	21	21	11
Resistance ≥ 4 CLSI classes*	0.0%	4.3%	4.8%	2.0%	5.1%	13.3%	17.4%	11.3%	4.3%	2.4%
	0	4	6	2	5	10	15	7	3	1
Resistance \geq 5 CLSI classes*	0.0%	3.3%	1.6%	2.0%	4.1%	6.7%	15.1%	9.7%	4.3%	0.0%
	0	3	2	2	4	5	13	6	3	0
At least ACSSuT [†]	0.0%	1.1%	0.0%	0.0%	3.1%	1.3%	3.5%	1.6%	1.4%	0.0%
	0	1	0	0	3	1	3	1	1	0
At least ASSuT [‡] and not resistant to	0.0%	3.3%	0.8%	0.0%	0.0%	6.7%	2.3%	6.5%	0.0%	0.0%
chloramphenicol	0	3	1	0	0	5	2	4	0	0
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.5%	0.0%	1.4%	0.0%
	0	0	0	0	0	0	3	0	1	0
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%	1.4%	0.0%
	0	0	0	0	0	0	1	0	1	0
At least AAuCx**	5.2%	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	8.6%	22.0%
	5	8	11	10	7	6	18	15	6	9
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0
At least nalidixic acid and azithromycin	Not	0.0%	0.0%							
resistant	Tested	0	0							
At least ceftriaxone and azithromycin	Not	0.0%	0.0%							
resistant	Tested	0	0							

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone ** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

E. Salmonella ser. I 4,[5],12:i:-

Table 24. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:isolates to antimicrobial agents, 2012 (N=118)

Barris		And the local black and a	Perc	entage	ge of isolates ¹⁵ [95% Cl] ¹¹ 0.015 0.					I	Percent	tage of	all isola	tes wit	h MIC (ıg/m L)*'					
Rank-	CLSI' Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	2.5	[0.5 - 7.2]					2.5	80.5	13.6	0.8			0.8	1.7				
		Kanamycin	0.0	0.0	[0.0 - 3.1]										100.0	-					
		Streptomycin	N/A	28.8	[20.8 - 37.9]												71.2	1.7	27.1		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	1.7	[0.2 - 6.0]							70.3	0.8	9.3	17.8		0.8	0.8			
	Cephems	Ceftiofur	0.0	0.8	[0.0 - 4.6]					0.8	22.0	73.7	2.5			0.8	-				
· ·		Ceftriaxone	0.0	0.8	[0.0 - 4.6]					99.2					-	0.8					
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 3.1]								6.8	89.0	4.2						
	Penicillins	Ampicillin	0.0	28.8	[20.8 - 37.9]							69.5	1.7					28.8			
	Quinolones	Ciprofloxacin	0.8	0.0	[0.0 - 3.1]	98.3	0.8				0.8						-				
		Nalidixic acid	N/A	0.8	[0.0 - 4.6]							0.8	49.2	48.3	0.8			0.8			
	Cephems	Cefoxitin	0.0	0.8	[0.0 - 4.6]							27.1	63.6	8.5				0.8			
	Folate pathway inhibitors	Sulfisoxazole	N/A	28.8	[20.8 - 37.9]									_		3.4	47.5	19.5	0.8		28.8
п		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 3.1]				100.0				_			_	_				-
	Phenicols	Chloramphenicol	0.8	0.0	[0.0 - 3.1]								0.8	55.1	43.2	0.8					
	Tetracyclines	Tetracycline	0.0	33.1	[24.7 - 42.3]									66.9			-	33.1			

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists § Percentage of isolates that were resistant

3 To epsilon the weight of the state of t

Figure 8. Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resis	tant Proportion
Gentamicin		
Kanamycin		
Streptomycin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Azithromycin		
Ampicillin		
Ciprofloxacin		
Nalidixic acid		
Cefoxitin		
Sulfisoxazole		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Tetracycline		

uge	113, 2000 2012											
Year Total I	solates		2003 36	2004 36	2005 33	2006 105	2007 73	2008 84	2009 72	2010 78	2011 82	2012 118
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested							
		Gentamicin (MIC ≥ 16)	5.6% 2	5.6% 2	0.0% 0	4.8% 5	1.4% 1	3.6% 3	2.8% 2	1.3% 1	1.2% 1	2.5% 3
		Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.4% 1	1.2% 1	0.0% 0	1.3% 1	0.0% 0	0.0% 0
		Streptomycin (MIC ≥ 64)	8.3% 3	5.6% 2	3.0% 1	3.8% 4	8.2% 6	10.7% 9	12.5% 9	19.2% 15	24.4% 20	28.8% 34
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	5.6% 2	2.8% 1	3.0% 1	3.8% 4	1.4% 1	4.8% 4	4.2% 3	3.8% 3	4.9% 4	1.7% 2
Т	Cephems	Ceftiofur (MIC ≥ 8)	5.6% 2	2.8% 1	3.0% 1	3.8% 4	2.7% 2	4.8% 4	2.8% 2	2.6% 2	3.7% 3	0.8% 1
		Ceftriaxone (MIC ≥ 4)	5.6% 2	2.8% 1	3.0% 1	3.8% 4	2.7% 2	4.8% 4	2.8% 2	2.6% 2	3.7% 3	0.8% 1
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0	0.0% 0							
	Penicillins	Ampicillin (MIC ≥ 32)	8.3% 3	5.6% 2	6.1% 2	6.7% 7	5.5% 4	9.5% 8	11.1% 8	21.8% 17	26.8% 22	28.8% 34
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	1.3% 1	0.0% 0	0.0% 0						
		Nalidixic Acid (MIC ≥ 32)	2.8% 1	2.8% 1	0.0% 0	1.0% 1	1.4% 1	1.2% 1	0.0% 0	2.6% 2	0.0% 0	0.8% 1
	Cephems	Cefoxitin (MIC ≥ 32)	5.6% 2	2.8% 1	3.0% 1	3.8% 4	1.4% 1	4.8% 4	2.8% 2	2.6% 2	4.9% 4	0.8% 1
		Cephalothin (MIC ≥ 32)	5.6% 2	Not Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	5.6% 2	11.1% 4	0.0% 0	8.6% 9	4.1% 3	13.1% 11	13.9% 10	19.2% 15	23.2% 19	28.8% 34
		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	0.0% 0	2.8% 1	0.0% 0	0.0% 0	1.4% 1	4.8% 4	1.4% 1	1.3% 1	1.2% 1	0.0% 0
	Phenicols	Chloramphenicol $(MIC \ge 32)$	0.0% 0	2.8% 1	0.0% 0	1.9% 2	1.4% 1	6.0% 5	8.3% 6	1.3% 1	2.4% 2	0.0% 0
	Tetracyclines	Tetracycline (MIC ≥ 16)	0.0% 0	11.1% 4	3.0% 1	8.6% 9	9.6% 7	16.7% 14	16.7% 12	28.2% 22	25.6% 21	33.1% 39

Table 25. Percentage and number of *Salmonella* ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 2003–2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important CLSI: Clinical and Laboratory Standards Institute
 Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 26 Resistance patterns of Salmonella ser 14 [5] 12:j- isolates 2003-2012

Vear	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	36	36	33	105	73	84	72	78	82	118
Resistance Pattern				105	10	04	12	10	02	110
No resistance detected	77.8%	80.6%	87.9%	85.7%	82.2%	76.2%	76.4%	66.7%	65.9%	61.9%
	28	29	29	90	60	64	55	52	54	73
Resistance ≥ 1 CLSI class*	22.2%	19.4%	12.1%	14.3%	17.8%	23.8%	23.6%	33.3%	34.1%	38.1%
	8	7	4	15	13	20	17	26	28	45
Resistance ≥ 2 CLSI classes*	11.1%	13.9%	3.0%	11.4%	6.8%	17.9%	16.7%	21.8%	28.0%	31.4%
	4	5	1	12	5	15	12	17	23	37
Resistance ≥ 3 CLSI classes*	5.6%	8.3%	3.0%	9.5%	5.5%	10.7%	12.5%	21.8%	26.8%	28.0%
	2	3	1	10	4	9	9	17	22	33
Resistance ≥ 4 CLSI classes*	0.0%	2.8%	0.0%	3.8%	2.7%	7.1%	9.7%	19.2%	20.7%	26.3%
	0	1	0	4	2	6	7	15	17	31
Resistance ≥ 5 CLSI classes*	0.0%	2.8%	0.0%	2.9%	1.4%	4.8%	6.9%	3.8%	1.2%	0.8%
	0	1	0	3	1	4	5	3	1	1
At least ACSSuT [†]	0.0%	2.8%	0.0%	1.9%	1.4%	3.6%	6.9%	1.3%	1.2%	0.0%
	0	1	0	2	1	3	5	1	1	0
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.0%	1.0%	0.0%	1.2%	1.4%	16.7%	18.3%	26.3%
chloramphenicol	0	0	0	1	0	1	1	13	15	31
At least ACT/S§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ACSSuTAuCx ¹	0.0%	0.0%	0.0%	0.0%	0.0%	2.4%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	2	0	0	0	0
At least AAuCx**	5.6%	2.8%	3.0%	3.8%	1.4%	4.8%	2.8%	2.6%	3.7%	0.8%
	2	1	1	4	1	4	2	2	3	1
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0
At least nalidixic acid and azithromycin	Not	0.0%	0.0%							
resistant	Tested	0	0							
At least ceftriaxone and azithromycin	Not	0.0%	0.0%							
resistant	Tested	0	0							

* CLSI: Clinical and Laboratory Standards Institute † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxa

2. Typhoidal Salmonella

A. Salmonella ser. Typhi

Table 27. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2012 (N=326)

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

† CLSI: Clinical and Laboratory Standards Institute + Percentage of isolates with intermediate susceptibility: NA if no MIC range of intermediate susceptibility exists

Percentage of isolates that were resistant
The urshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the
"The urshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for resistance. Numbers in the
"The urshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for resistance. Numbers in the
"The urshaded areas indicate the under the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for resistance. Numbers in the
"The urshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for resistance. Numbers in the
"The urshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for resistance. Numbers in the
"The urshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for resistance. Numbers in the
"The urshaded areas indicate the dilution range of the Sensitire® plates used to test isolates." shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available

Figure 9. Antimicrobial resistance pattern for Salmonella ser. Typhi, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

2000	5-2012											
Year			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total I	solates		332	304	318	323	400	407	363	446	383	326
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	Tested	Tested
		Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	0	0	0	0	0	0	0
		Kanamycin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	1	0	0
		Streptomycin	14.5%	11.8%	13.2%	18.9%	15.8%	11.5%	10.7%	10.1%	10.7%	9.2%
		(MIC ≥ 64)	48	36	42	61	63	47	39	45	41	30
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.0%	0.0%	0.3%	0.3%	0.0%	0.3%	0.0%	0.0%	0.0%
	combinations	(MIC ≥ 32/16)	0	0	0	1	1	0	1	0	0	0
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 8)	0	0	0	0	0	0	0	0	0	0
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
	Macrolides	Azithromycin	Not	0.0%	0.0%							
		(MIC ≥ 32)	Tested	0	0							
	Penicillins	Ampicillin	16.0%	11.8%	13.2%	20.4%	17.0%	13.0%	12.7%	12.3%	11.2%	10.1%
		(MIC ≥ 32)	53	36	42	66	68	53	46	55	43	33
	Quinolones	Ciprofloxacin	0.3%	0.0%	0.3%	0.9%	2.0%	0.7%	3.9%	4.3%	7.3%	6.4%
		(MIC ≥ 1)	1	0	1	3	8	3	14	19	28	21
		Nalidixic Acid	37.7%	41.8%	48.4%	54.5%	62.0%	59.0%	59.8%	69.3%	70.8%	68.4%
		(MIC ≥ 32)	125	127	154	176	248	240	217	309	271	223
	Cephems	Cefoxitin	0.3%	0.0%	0.0%	0.3%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	1	0	0	1	2	0	0	0	0	0
		Cephalothin	0.0%	Not								
		(MIC ≥ 32)	0	Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	16.9%	11.8%	14.2%	20.7%	17.5%	13.0%	13.8%	12.3%	12.0%	10.4%
		(MIC ≥ 512)	56	36	45	67	70	53	50	55	46	34
		Trimethoprim-sulfamethoxazole	16.9%	13.2%	14.5%	20.7%	16.3%	12.5%	12.7%	11.9%	11.7%	10.1%
		(MIC ≥ 4/76)	56	40	46	67	65	51	46	53	45	33
	Phenicols	Chloramphenicol	16.6%	13.2%	13.2%	19.5%	15.8%	12.8%	11.8%	11.7%	10.7%	10.1%
		(MIC ≥ 32)	55	40	42	63	63	52	43	52	41	33
	Tetracyclines	Tetracycline	15.4%	8.9%	10.1%	8.4%	6.3%	4.4%	6.1%	3.6%	4.4%	1.5%
		(MIC > 16)	51	27	32	27	25	18	22	16	17	5

Table 28. Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 2003–2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 29 Resistance patterns of Salmonella ser Typhi isolates 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	332	304	318	323	400	407	363	446	383	326
Resistance Pattern										
No resistance detected	56.6% 188	56.6% 172	48.1%	40.2%	35.5% 142	38.3% 156	37.5% 136	29.4% 131	27.9% 107	30.7% 100
Resistance ≥ 1 CLSI class*	43.4%	43.4%	51.9%	59.8%	64.5%	61.7%	62.5%	70.6%	72.1%	69.3% 226
Resistance ≥ 2 CLSI classes*	17.5%	13.2%	14.5%	21.7%	18.0%	14.3%	14.6%	13.7%	12.5%	11.0%
Resistance ≥ 3 CLSI classes*	16.6%	12.8%	13.8%	20.7%	17.5%	13.3%	13.2%	13.7%	12.3% 47	10.4%
Resistance ≥ 4 CLSI classes*	16.3%	12.5%	12.9%	19.2%	17.0%	12.8%	12.7%	11.7%	11.2%	9.5%
	54	38	41	62	68	52	46	52	43	31
Resistance ≥ 5 CLSI classes*	14.2%	11.8%	11.9%	16.7%	14.8%	10.8%	10.2%	9.6%	9.9%	8.9%
	47	36	38	54	59	44	37	43	38	29
At least ACSSuT [†]	12.7%	7.9%	9.1%	5.9%	3.8%	2.5%	2.8%	1.6%	2.3%	0.9%
	42	24	29	19	15	10	10	7	9	3
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.0%	0.6%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%
chloramphenicol	0	0	0	2	1	0	0	0	0	0
At least ACT/S§	15.7%	11.8%	12.9%	18.6%	15.2%	12.0%	11.0%	10.5%	10.4%	9.2%
	52	36	41	60	61	49	40	47	40	30
At least ACSSuTAuCx ¹	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least nalidixic acid and azithromycin resistant	Not	Not	Not	Not	Not	Not	Not	Not	0.0%	0.0%
	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0
At least ceftriaxone and azithromycin resistant	Not	Not	Not	Not	Not	Not	Not	Not	0.0%	0.0%
	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	0	0

* CLSI: Clinical and Laboratory Standards Institute

+ ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

ACT/S: resistance to ampicillin, Stoppingent, Standard and Standard Stan

B. Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C

Table 30. Frequency of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C, 2012 (see Methods for varying sampling method by serotype)

Serotype	20	12
	n	(%)
Paratyphi A	111	(99.1)
Paratyphi B	1	(0.9)
Paratyphi C	0	(0)
Total	112	(100)

Table 31. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2012 (N=111)

Denkt	CI SI [†] Antimicrohial Class	Antimics chiel Areas	Perc	entage	of isolates					I	Percent	tage of	all is ola	teswit	h MIC (j	µg/m L)*	•				
Rank	CLSP Antimicrobial class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 3.3]					98.2	1.8										
		Kanamycin	0.0	0.0	[0.0 - 3.3]										100.0	-					
		Streptomycin	N/A	0.0	[0.0 - 3.3]												100.0				
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.0	[0.0 - 3.3]							49.5	46.8	3.6							
	Cephems	Ceftiofur	0.0	0.0	[0.0 - 3.3]				0.9		4.5	94.6									
		Ceftriaxone	0.0	0.0	[0.0 - 3.3]					100.0]	-						
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 3.3]								1.8	38.7	55.9	3.6					
	Penicillins	Ampicillin	0.0	0.0	[0.0 - 3.3]							7.2	87.4	5.4							
	Quinolones	Ciprofloxacin	92.8	2.7	[0.5 - 7.7]	4.5			0.9	1.8	90.1	2.7				•	-				
		Nalidixic acid	N/A	94.6	[88.6 - 98.0]							•	1.8	2.7	0.9			94.6			
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 3.3]								4.5	72.1	23.4						
	Folate pathway inhibitors	Sulfisoxazole	N/A	0.0	[0.0 - 3.3]											6.3	82.9	10.8			
н		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 3.3]				93.7	6.3										-	
	Phenicols	Chloramphenicol	9.0	0.9	[0.0 - 4.9]						2.7	87.4	9.0		0.9						
	Tetracyclines	Tetracycline	0.0	0.9	[0.0 - 4.9]						99.1			-	0.9						

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

+ CLSI: Clinical and Laboratory Standards Institute

Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists § Percentage of isolates that were resistant

§ Percentage of isolates that were resistant [] The 95% confidence intervals (O) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method ** The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 10. Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, 2012

Vear			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total	solates		2003	2004	13	10	16	116	99	145	152	111
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested							
		Gentamicin (MIC ≥ 16)	0.0% 0	0.7% 1	0.0% 0	0.0% 0						
		Kanamycin (MIC ≥ 64)	0.0% 0	0.7% 1	0.0% 0	0.0% 0						
		Streptomycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	2.1% 3	0.0% 0	0.0% 0
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0% 0									
Т	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0									
		Ceftriaxone (MIC ≥ 4)	0.0% 0									
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0	0.0% 0							
	Penicillins	Ampicillin (MIC ≥ 32)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0% 0	0.0% 0
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.9% 1	0.0% 0	2.8% 4	2.0% 3	2.7% 3
		Nalidixic Acid (MIC ≥ 32)	100.0% 6	100.0% 8	92.3% 12	80.0% 8	93.8% 15	88.8% 103	86.9% 86	92.4% 134	96.7% 147	94.6% 105
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0									
		Cephalothin (MIC ≥ 32)	0.0% 0	Not Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0% 0	0.0% 0
		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	2.1% 3	0.0% 0	0.0% 0
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	1.0% 1	1.4% 2	0.0% 0	0.9% 1
	Tetracyclines	Tetracycline (MIC ≥ 16)	0.0%	0.0%	0.0%	0.0%	0.0%	0.9% 1	1.0% 1	1.4% 2	0.0%	0.9% 1

Table 32. Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial agents, 2003-2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 33. Resistance	patterns of	Salmonella ser.	Paratyphi A	isolates, 2003–2012
----------------------	-------------	-----------------	-------------	---------------------

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	6	8	13	10	16	116	99	145	152	111
Resistance Pattern										
No resistance detected	0.0%	0.0%	7.7%	20.0%	6.3%	10.3%	12.1%	5.5%	3.3%	5.4%
	0	0	1	2	1	12	12	8	5	6
Resistance ≥ 1 CLSI class*	100.0%	100.0%	92.3%	80.0%	93.8%	89.7%	87.9%	94.5%	96.7%	94.6%
	6	8	12	8	15	104	87	137	147	105
Resistance ≥ 2 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	2.8%	0.0%	0.9%
	0	0	0	0	0	0	1	4	0	1
Resistance ≥ 3 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%	0.9%
	0	0	0	0	0	0	1	2	0	1
Resistance ≥ 4 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%	0.0%
	0	0	0	0	0	0	1	2	0	0
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%
	0	0	0	0	0	0	1	1	0	0
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%
	0	0	0	0	0	0	1	1	0	0
At least ASSuT [‡] and not resistant to	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%	0.0%
chloramphenicol	0	0	0	0	0	0	0	1	0	0
At least ACT/S [§]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%	0.0%
	0	0	0	0	0	0	1	1	0	0
At least ACSSuTAuCx ¹	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least AAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least nalidixic acid and azithromycin resistant	Not	0.0%	0.0%							
	Tested	0	0							
At least ceftriaxone and azithromycin resistant	Not	0.0%	0.0%							
	Tested	0	0							

* CLSI: Clinical and Laboratory Standards Institute
† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
‡ ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
§ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
¶ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone
** AAuCx: resistance to ampicillin, amoxicillin-clavulanic acid, ceftriaxone

3. Shigella

Table 34. Frequency of Shigella species, 2012

Species	20	12
	n	(%)
Shigella sonnei	287	(81.3)
Shigella flexneri	59	(16.7)
Shigella boydii	5	(1.4)
Other	2	(0.6)
Total	353	(100)

Table 35. Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2012 (N=353)

Denlet	CI SI [†] Antimizzahial Class	Antimizzahiel Azent	Perc	entage	of isolates					I	Percent	age of	all isola	teswitl	h MIC (µ	ıg/m L)**					
rank*	CLOF Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.0]					2.3	14.7	78.5	4.5								
		Kanamycin	0.0	0.3	[0.0 - 1.6]										99.7	-			0.3		
		Streptomycin	N/A	83.0	[78.7 - 86.8]												17.0	43.1	39.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	14.2	1.7	[0.6 - 3.7]							5.9	6.2	56.9	15.0	14.2	1.1	0.6			
	Cephems	Ceftiofur	0.0	1.1	[0.3 - 2.9]				10.2	70.5	13.0	5.1			0.3	0.8					
, ,		Ceftriaxone	0.0	1.1	[0.3 - 2.9]					98.3	0.6				0.3	0.3		0.6			
	Macrolide	Azithromycin	N/A	4.2	[2.4 - 6.9]					0.3	2.0	6.5	9.3	72.5	4.5	0.6	4.2				
	Penicillins	Ampicillin	0.3	25.5	[21.0 - 30.4]							9.6	53.0	11.6		0.3	0.3	25.2			
	Quinolones	Ciprofloxacin	0.0	2.0	[0.8 - 4.0]	93.5	0.8	0.6	1.4	0.6	0.8	0.3		0.8	1.1						
		Nalidixic acid	N/A	4.5	[2.6 - 7.3]						0.6	74.8	17.0	3.1			0.6	4.0			
	Cephems	Cefoxitin	0.6	0.6	[0.1 - 2.0]							5.7	69.7	22.4	1.1	0.6	0.6				
	Folate pathway inhibitors	Sulfisoxazole	N/A	34.8	[29.9 - 40.1]											51.6	9.3	4.0	0.3		34.8
п		Trimethoprim-sulfamethoxazole	N/A	43.3	[38.1 - 48.7]				12.2	2.3	3.7	19.5	19.0	7.9	35.4						
	Phenicols	Chloramphenicol	0.0	11.3	[8.2 - 15.1]								12.7	69.4	6.5		2.0	9.3			
	Tetracyclines	Tetracycline	0.0	37.1	[32.1 - 42.4]									62.9		0.3	4.5	32.3			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

Forcentage of isolates that were resistant
The number of the state of the or less than the low est tested concentration. CLSI breakpoints were used when available

Figure 11. Antimicrobial resistance pattern for Shigella, 2012

Table 36.	Percentage and	number of SI	nigella isolates	resistant to	antimicrobial	agents.	2003-2012

Year	0	· · · · · · · · · · · · · · · · · · ·	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total I	solates		495	316	396	402	480	551	475	411	293	353
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	Tested	Tested
		Gentamicin	0.0%	0.0%	1.0%	0.2%	0.8%	0.4%	0.6%	0.5%	0.7%	0.0%
		(MIC ≥ 16)	0	0	4	1	4	2	3	2	2	0
		Kanamycin	0.4%	0.0%	0.8%	0.0%	0.2%	0.5%	0.4%	0.0%	0.0%	0.3%
		(MIC ≥ 64)	2	0	3	0	1	3	2	0	0	1
		Streptomycin	57.0%	59.8%	68.7%	60.7%	73.3%	80.6%	89.1%	91.0%	87.7%	83.0%
		(MIC ≥ 64)	282	189	272	244	352	444	423	374	257	293
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	1.4%	1.6%	1.0%	1.5%	0.4%	3.3%	2.1%	0.0%	2.0%	1.7%
	combinations	(MIC ≥ 32/16)	7	5	4	6	2	18	10	0	6	6
	Cephems	Ceftiofur	0.2%	0.3%	0.5%	0.2%	0.0%	0.0%	0.6%	0.2%	1.7%	1.1%
		(MIC ≥ 8)	1	1	2	1	0	0	3	1	5	4
		Ceftriaxone	0.2%	0.3%	0.5%	0.2%	0.0%	0.0%	0.6%	0.2%	1.7%	1.1%
		(MIC ≥ 4)	1	1	2	1	0	0	3	1	5	4
	Macrolides Penicillins	Azithromycin	Not	3.1%	4.2%							
		(MIC ≥ 32)	Tested	9	15							
	Penicillins	Ampicillin	79.4%	77.5%	70.7%	62.4%	63.8%	62.4%	46.3%	40.9%	33.8%	25.5%
		(MIC ≥ 32)	393	245	280	251	306	344	220	168	99	90
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.2%	0.2%	0.7%	0.6%	1.7%	2.4%	2.0%
		(MIC ≥ 4)	0	0	0	1	1	4	3	7	7	7
		Nalidixic Acid	1.0%	1.6%	1.5%	3.5%	1.7%	1.6%	2.1%	4.4%	6.1%	4.5%
		(MIC ≥ 32)	5	5	6	14	8	9	10	18	18	16
	Cephems	Cefoxitin	0.0%	0.3%	0.5%	0.0%	0.0%	0.0%	0.6%	0.0%	1.0%	0.6%
		(MIC ≥ 32)	0	1	2	0	0	0	3	0	3	2
		Cephalothin	9.3%	Not								
		(MIC ≥ 32)	46	Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	33.9%	52.5%	57.6%	40.3%	25.8%	28.5%	30.5%	29.9%	44.7%	34.8%
Ш		(MIC ≥ 512)	168	166	228	162	124	157	145	123	131	123
		Trimethoprim-sulfamethoxazole	38.6%	46.8%	53.3%	46.0%	25.8%	31.2%	40.4%	47.7%	66.9%	43.3%
		(MIC ≥ 4/76)	191	148	211	185	124	172	192	196	196	153
	Phenicols	Chloramphenicol	8.5%	15.2%	10.9%	10.9%	8.3%	6.9%	9.3%	10.0%	12.3%	11.3%
		(MIC ≥ 32)	42	48	43	44	40	38	44	41	36	40
	Tetracyclines	Tetracycline	29.1%	49.4%	38.4%	34.6%	25.6%	24.3%	29.5%	31.4%	40.6%	37.1%
		(MIC ≥ 16)	144	156	152	139	123	134	140	129	119	131

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 37 Resistance natterns of *Shigella* isolates 2003–2012

2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
495	316	396	402	480	551	475	411	293	353
								200	
8.5%	4.7%	4.5%	6.5%	7.1%	4.5%	4.0%	3.6%	4.4%	7.4%
42	15	18	26	34	25	19	15	13	26
91.5% 453	95.3% 301	95.5% 378	93.5% 376	92.9% 446	95.5% 526	96.0% 456	96.4% 396	95.6% 280	92.6% 327
57.8%	64.2% 203	72.0%	64.7% 260	65.4% 314	68.2% 376	68.0% 323	69.8% 287	74.4%	53.8%
40.2%	59.5%	58.6%	43.8%	27.7%	35.2%	36.4%	39.7%	51.2%	37.4%
24.8%	32.9%	19.4%	15.4%	133	10.3%	13.3%	14.1%	22.2%	132
3.6%	104 7.0%	4.8%	62 5.2%	4.6%	2.7%	63	4.6%	9.9%	69 7.6%
3.2%	6.0%	4.0%	5.0%	3.8%	2.2%	5.9%	4.4%	6.1%	5.7%
16 3.6%	19 6.6%	16 6.3%	20 6.0%	18 4.0%	12 2.9%	28 6.7%	18 4.9%	18 7.8%	20
18	21	25	24	19	16	32	20	23	26
33.7% 167	34.5% 109	35.6% 141	26.6% 107	12.9% 62	16.0% 88	17.5% 83	17.8% 73	25.9% 76	15.6% 55
0.8%	0.6%	0.5% 2	0.5% 2	0.8% 4	0.0%	0.2% 1	1.2% 5	2.4% 7	0.8%
0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
0.2%	0.3%	0.3%	0.2%	0.0%	0.0%	0.0%	0.2%	1.4%	0.8%
1	1	1	1	0	0	0	1	4	3
Not	Not	Not	Not	Not	Not	Not	Not	0.3%	0.3%
Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	1	1
Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.0%	0.0%
	2003 495 8.5% 42 91.5% 453 57.8% 286 40.2% 199 24.8% 123 3.6% 18 3.6% 18 3.2% 16 3.6% 18 33.7% 167 0.8% 4 0.0% 0 0.2% 1 Not Tested	2003 2004 495 316 8.5% 4.7% 42 15 91.5% 95.3% 453 301 57.8% 64.2% 286 203 40.2% 59.5% 199 188 24.8% 32.9% 123 104 3.6% 6.0% 16 19 3.6% 6.6% 18 21 33.7% 34.5% 167 109 0.8% 0.6% 4 2 0.0% 0.0% 0 0 0.2% 0.3% 1 1 Not Not Tested Tested Not Not	2003 2004 2005 495 316 396 495 316 396 8.5% 4.7% 4.5% 42 15 18 91.5% 95.3% 95.5% 453 301 378 57.8% 64.2% 72.0% 286 203 285 40.2% 59.5% 58.6% 199 188 232 24.8% 32.9% 19.4% 123 104 77 3.6% 7.0% 4.8% 18 22 19 3.2% 6.0% 4.0% 16 19 16 3.6% 6.6% 6.3% 18 21 25 33.7% 34.5% 35.6% 167 109 141 0.8% 0.6% 0.0% 4 2 2 0.0% 0.0% 0.3% 1 1 <td>2003 2004 2005 2006 495 316 396 402 495 316 396 402 8.5% 4.7% 4.5% 6.5% 42 15 18 26 91.5% 95.3% 95.5% 93.5% 453 301 378 376 57.8% 64.2% 72.0% 64.7% 286 203 285 260 40.2% 59.5% 58.6% 43.8% 199 188 232 176 24.8% 32.9% 19.4% 15.4% 123 104 77 62 3.6% 7.0% 4.8% 5.2% 18 22 19 21 3.6% 6.6% 6.3% 6.0% 16 19 16 20 3.6% 6.6% 0.5% 0.5% 16 19 14 107 0.8% 0.6%</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>20032004200520062007200820094953163964024805514758.5%4.7%4.5%6.5%7.1%4.5%4.0%4215182634251991.5%95.3%95.5%93.5%92.9%95.5%96.0%45330137837644652645657.8%64.2%72.0%64.7%65.4%68.2%68.0%28620328526031437632340.2%59.5%58.6%43.8%27.7%35.2%36.4%19918823217613319417324.8%32.9%19.4%15.4%11.7%10.3%13.3%12310477625657633.6%7.0%4.8%5.2%4.6%2.7%6.5%182219212215313.2%6.0%4.0%5.0%3.8%2.2%5.9%161916201812283.6%6.6%6.3%6.0%4.0%2.9%6.7%1821252419163233.7%34.5%35.6%26.6%12.9%16.0%17.5%1671091411076288830.8%0.6%0.5%0.8%0.0%0.0%0.0%</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>200320042005200620072008200920102011495316396402480551475411293<!--</td--></td>	2003 2004 2005 2006 495 316 396 402 495 316 396 402 8.5% 4.7% 4.5% 6.5% 42 15 18 26 91.5% 95.3% 95.5% 93.5% 453 301 378 376 57.8% 64.2% 72.0% 64.7% 286 203 285 260 40.2% 59.5% 58.6% 43.8% 199 188 232 176 24.8% 32.9% 19.4% 15.4% 123 104 77 62 3.6% 7.0% 4.8% 5.2% 18 22 19 21 3.6% 6.6% 6.3% 6.0% 16 19 16 20 3.6% 6.6% 0.5% 0.5% 16 19 14 107 0.8% 0.6%	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20032004200520062007200820094953163964024805514758.5%4.7%4.5%6.5%7.1%4.5%4.0%4215182634251991.5%95.3%95.5%93.5%92.9%95.5%96.0%45330137837644652645657.8%64.2%72.0%64.7%65.4%68.2%68.0%28620328526031437632340.2%59.5%58.6%43.8%27.7%35.2%36.4%19918823217613319417324.8%32.9%19.4%15.4%11.7%10.3%13.3%12310477625657633.6%7.0%4.8%5.2%4.6%2.7%6.5%182219212215313.2%6.0%4.0%5.0%3.8%2.2%5.9%161916201812283.6%6.6%6.3%6.0%4.0%2.9%6.7%1821252419163233.7%34.5%35.6%26.6%12.9%16.0%17.5%1671091411076288830.8%0.6%0.5%0.8%0.0%0.0%0.0%	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	200320042005200620072008200920102011495316396402480551475411293 </td

* CLSI: Clinical and Laboratory Standards Institute

ACSSUT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
 AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, nalidixic acid
 ** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clawlanic acid, ceftriaxone

Table 38. Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2012 (N=287)

Rank* CLSI [†] Antimicrobial			Perc	entage	of isolates					I	Percent	tage of	all isola	teswit	h MIC (µ	.ıg/m L)**	•				
Rank	CLSP Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.3]					2.1	12.9	79.8	5.2								
		Kanamycin	0.0	0.3	[0.0 - 1.9]										99.7	-			0.3		
		Streptomycin	N/A	89.2	[85.0 - 92.5]												10.8	49.8	39.4		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	6.6	1.7	[0.6 - 4.0]							4.9	2.4	67.9	16.4	6.6	1.0	0.7			
	Cephems	Ceftiofur	0.0	1.0	[0.2 - 3.0]				4.5	76.3	12.5	5.6			0.3	0.7					
ı		Ceftriaxone	0.0	1.0	[0.2 - 3.0]					98.3	0.7				0.3			0.7			
	Macrolide	Azithromycin	N/A	2.1	[0.8 - 4.5]					0.3		1.4	3.8	86.8	5.2	0.3	2.1				
	Penicillins	Ampicillin	0.3	18.1	[13.8 - 23.1]							4.9	63.1	13.6		0.3	0.3	17.8			
	Quinolones	Ciprofloxacin	0.0	2.1	[0.8 - 4.5]	94.4	0.3	0.3	1.0	0.7	0.7	0.3		1.0	1.0		•				
		Nalidixic acid	N/A	4.2	[2.2 - 7.2]						0.7	77.7	14.6	2.8			0.3	3.8			
	Cephems	Cefoxitin	0.7	0.7	[0.1 - 2.5]							6.6	78.4	13.6		0.7	0.7				
	Folate pathway inhibitors	Sulfisoxazole	N/A	30.0	[24.7 - 35.6]											55.1	10.5	4.5			30.0
п		Trimethoprim-sulfamethoxazole	N/A	41.8	[36.0 - 47.8]				6.3	1.4	3.5	24.0	23.0	9.8	32.1						
	Phenicols	Chloramphenicol	0.0	3.1	[1.4 - 5.9]								5.6	83.3	8.0			3.1			
	Tetracyclines	Tetracycline	0.0	27.5	[22.4 - 33.1]									72.5			4.5	23.0			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

CLSI: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MC range of intermediate susceptibility exists § Percentage of isolates that were resistant

S Percentage or isolates that were resistant [] The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method ** The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. CLS breakpoints were used when available.

Figure 12. Antimicrobial resistance pattern for Shigella sonnei, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Table 39. F	Percentage	and number of	Shigella	sonnei isolates	resistant to	antimicrobial a	igents, 2003-	-2012

Year Total I	solates		2003 434	2004 241	2005 340	2006 321	2007 414	2008 494	2009 410	2010 337	2011 225	2012 287
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested	Not Tested							
		Gentamicin (MIC ≥ 16)	0.0% 0	0.0% 0	1.2% 4	0.0% 0	1.0% 4	0.4% 2	0.7% 3	0.0% 0	0.9% 2	0.0% 0
		Kanamycin (MIC ≥ 64)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.2% 1	0.6% 3	0.2% 1	0.0% 0	0.0% 0	0.3% 1
		Streptomycin (MIC ≥ 64)	56.5% 245	56.8% 137	70.3% 239	61.7% 198	76.8% 318	82.4% 407	91.5% 375	96.1% 324	95.6% 215	89.2% 256
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	1.4% 6	1.7% 4	1.2% 4	1.9% 6	0.5% 2	3.2% 16	2.0% 8	0.0% 0	2.7% 6	1.7% 5
I	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	0.4% 1	0.6% 2	0.0% 0	0.0% 0	0.0% 0	0.5% 2	0.3% 1	1.8% 4	1.0% 3
		Ceftriaxone (MIC ≥ 4)	0.0% 0	0.4% 1	0.6% 2	0.0% 0	0.0% 0	0.0% 0	0.5% 2	0.3% 1	1.8% 4	1.0% 3
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.9% 2	2.1% 6							
	Penicillins	Ampicillin (MIC ≥ 32)	79.7% 346	79.3% 191	70.6% 240	62.6% 201	64.0% 265	61.3% 303	43.2% 177	36.8% 124	27.6% 62	18.1% 52
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.6% 3	0.0% 0	1.5% 5	1.3% 3	2.1% 6
		Nalidixic Acid (MIC ≥ 32)	0.5% 2	1.7% 4	1.2% 4	2.8% 9	1.2% 5	1.6% 8	1.7% 7	3.3% 11	3.6% 8	4.2% 12
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0	0.4% 1	0.6% 2	0.0% 0	0.0% 0	0.0% 0	0.7% 3	0.0% 0	1.3% 3	0.7% 2
		Cephalothin (MIC ≥ 32)	10.1% 44	Not Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	31.3% 136	49.0% 118	57.9% 197	33.3% 107	20.0% 83	24.5% 121	23.9% 98	25.2% 85	39.6% 89	30.0% 86
		Trimethoprim-sulfamethoxazole (MIC \geq 4/76)	38.5% 167	46.9% 113	55.0% 187	42.7% 137	22.0% 91	29.1% 144	36.1% 148	46.9% 158	68.9% 155	41.8% 120
	Phenicols	Chloramphenicol (MIC ≥ 32)	1.2% 5	2.5% 6	2.4% 8	0.9% 3	1.2% 5	0.8%	1.2% 5	1.5% 5	2.7% 6	3.1% 9
	Tetracyclines	Tetracycline (MIC ≥ 16)	22.1% 96	36.1% 87	29.4% 100	22.7% 73	16.2% 67	16.8% 83	20.7% 85	21.4% 72	29.8% 67	27.5% 79

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 40 Resistance patterns of Shigella sonnei isolates 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	434	241	340	321	414	494	410	337	225	287
Resistance Pattern									-	
No resistance detected	8.5%	5.4%	4.4%	6.2%	6.8%	4.7%	3.7%	1.5%	0.9%	5.9%
	37	13	15	20	28	23	15	5	2	17
Resistance ≥ 1 CLSI class*	91.5%	94.6%	95.6%	93.8%	93.2%	95.3%	96.3%	98.5%	99.1%	94.1%
	397	228	325	301	386	471	395	332	223	270
Resistance ≥ 2 CLSI classes*	54.1%	56.4%	70.6%	59.8%	63.0%	65.4%	65.4%	68.0%	73.8%	49.1%
	235	136	240	192	261	323	268	229	166	141
Resistance ≥ 3 CLSI classes*	35.3%	51.0%	55.3%	35.8%	21.3%	29.4%	29.8%	32.6%	44.9%	31.0%
	153	123	188	115	88	145	122	110	101	89
Resistance ≥ 4 CLSI classes*	20.5%	25.7%	12.4%	8.1%	5.1%	5.3%	5.9%	6.5%	13.3%	11.5%
	89	62	42	26	21	26	24	22	30	33
Resistance ≥ 5 CLSI classes*	0.5%	0.8%	0.9%	0.0%	1.2%	0.4%	0.5%	0.6%	3.6%	2.8%
	2	2	3	0	5	2	2	2	8	8
At least ACSSuT [†]	0.2%	0.0%	0.3%	0.0%	0.5%	0.2%	0.0%	0.6%	0.4%	1.0%
	1	0	1	0	2	1	0	2	1	3
At least ACT/S [‡]	0.9%	1.7%	2.4%	0.9%	0.5%	0.8%	1.0%	0.9%	2.2%	2.8%
	4	4	8	3	2	4	4	3	5	8
At least AT/S§	33.6%	35.3%	35.6%	22.7%	9.4%	14.2%	12.2%	14.2%	22.2%	10.8%
	146	85	121	73	39	70	50	48	50	31
At least ANT/S ¹	0.2%	0.8%	0.3%	0.0%	0.7%	0.0%	0.0%	0.0%	1.3%	1.0%
	1	2	1	0	3	0	0	0	3	3
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.3%	1.3%	0.7%
resistant	0	1	1	0	0	0	0	1	3	2
At least nalidixic acid and azithromycin	Not	0.0%	0.3%							
resistant	Tested	0	1							
At least ceftriaxone and azithromycin	Not	0.0%	0.0%							
resistant	Tested	0	0							

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole § AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, nalidixic acid
 ** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clawlanic acid, ceftriaxone

Table 41. Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2012 (N=59)

Devila			Perc	entage	of isolates					I	Percent	tage of	all isola	tes wit	h MIC (j	Jg/m L)*′	,				
Rank-	CLSI [®] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 6.1]					1.7	22.0	74.6	1.7								
		Kanamycin	0.0	0.0	[0.0 - 6.1]										100.0	-					
		Streptomycin	N/A	55.9	[42.4 - 68.8]												44.1	15.3	40.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	52.5	1.7	[0.0 - 9.1]							6.8	25.4	5.1	8.5	52.5	1.7				
	Cephems	Ceftiofur	0.0	1.7	[0.0 - 9.1]				32.2	47.5	16.9	1.7				1.7	-				
· ·		Ceftriaxone	0.0	1.7	[0.0 - 9.1]					98.3]		1.7					
	Macrolide	Azithromycin	N/A	15.3	[7.2 - 27.0]						11.9	25.4	33.9	10.2	1.7	1.7	15.3				
	Penicillins	Ampicillin	0.0	61.0	[47.4 - 73.5]							28.8	6.8	3.4				61.0			
	Quinolones	Ciprofloxacin	0.0	1.7	[0.0 - 9.1]	93.2	1.7		1.7		1.7				1.7		-				
		Nalidixic acid	N/A	5.1	[1.0 - 14.1]							64.4	27.1	3.4				5.1			
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 6.1]							1.7	25.4	66.1	6.8						
	Folate pathway inhibitors	Sulfisoxazole	N/A	55.9	[42.4 - 68.8]											37.3	3.4	1.7	1.7		55.9
п		Trimethoprim-sulfamethoxazole	N/A	50.8	[37.5 - 64.1]				37.3	5.1	5.1		1.7		50.8						-
	Phenicols	Chloramphenicol	0.0	52.5	[39.1 - 65.7]								39.0	8.5			11.9	40.7			
	Tetracyclines	Tetracycline	0.0	84.7	[73.0 - 92.8]									15.3			5.1	79.7			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

 Percentage of isolates that were resistant
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method
 The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available

Figure 13. Antimicrobial resistance pattern for Shigella flexneri, 2012

2012												
Year			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total I	solates		51	62	52	74	61	49	57	61	58	59
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	Tested	Tested
		Gentamicin	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	3.3%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	1	0	0	0	2	0	0
		Kanamycin	3.9%	0.0%	3.8%	0.0%	0.0%	0.0%	1.8%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	2	0	2	0	0	0	1	0	0	0
		Streptomycin	60.8%	71.0%	57.7%	58.1%	52.5%	63.3%	73.7%	68.9%	58.6%	55.9%
		(MIC ≥ 64)	31	44	30	43	32	31	42	42	34	33
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.0%	1.6%	0.0%	0.0%	0.0%	4.1%	3.5%	0.0%	0.0%	1.7%
	combinations	(MIC ≥ 32/16)	1	1	0	0	0	2	2	0	0	1
	Cephems	Ceftiofur	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%	0.0%	1.7%	1.7%
		(MIC ≥ 8)	1	0	0	1	0	0	1	0	1	1
		Ceftriaxone	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%	0.0%	1.7%	1.7%
		(MIC ≥ 4)	1	0	0	1	0	0	1	0	1	1
	Macrolides	Azithromycin	Not	10.3%	15.3%							
		(MIC ≥ 32)	Tested	6	9							
	Penicillins	Ampicillin	84.3%	80.6%	75.0%	63.5%	63.9%	75.5%	70.2%	67.2%	60.3%	61.0%
		(MIC ≥ 32)	43	50	39	47	39	37	40	41	35	36
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	1.4%	1.6%	2.0%	3.5%	3.3%	6.9%	1.7%
		(MIC ≥ 4)	0	0	0	1	1	1	2	2	4	1
		Nalidixic Acid	5.9%	1.6%	3.8%	5.4%	4.9%	2.0%	3.5%	11.5%	12.1%	5.1%
		(MIC ≥ 32)	3	1	2	4	3	1	2	7	7	3
	Cephems	Cefoxitin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	0	0	0	0	0	0	0	0	0	0
		Cephalothin	3.9%	Not								
		(MIC ≥ 32)	2	Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	52.9%	66.1%	55.8%	68.9%	62.3%	63.3%	73.7%	55.7%	60.3%	55.9%
п		(MIC ≥ 512)	27	41	29	51	38	31	42	34	35	33
		Trimethoprim-sulfamethoxazole	39.2%	46.8%	44.2%	59.5%	49.2%	49.0%	68.4%	55.7%	58.6%	50.8%
		(MIC ≥ 4/76)	20	29	23	44	30	24	39	34	34	30
	Phenicols	Chloramphenicol	68.6%	61.3%	65.4%	54.1%	55.7%	65.3%	66.7%	55.7%	50.0%	52.5%
		(MIC ≥ 32)	35	38	34	40	34	32	38	34	29	31
	Tetracyclines	Tetracycline	82.4%	95.2%	94.2%	83.8%	83.6%	87.8%	87.7%	86.9%	79.3%	84.7%
1	1	(MIC > 16)	40	50	40	60	E 1	42	E0	E2	46	50

Table 42. Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2003-2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly † Important ‡ CLSI: Clinical and Laboratory Standards Institute

Table 43 Resistance patterns of Shigella flexneri isolates 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	51	62	52	74	61	49	57	61	58	59
Resistance Pattern										
No resistance detected	7.8%	0.0%	5.8%	5.4%	9.8%	4.1%	5.3%	9.8%	17.2%	11.9%
	4	0	3	4	6	2	3	6	10	7
Resistance ≥ 1 CLSI class*	92.2%	100.0%	94.2%	94.6%	90.2%	95.9%	94.7%	90.2%	82.8%	88.1%
	47	62	49	70	55	47	54	55	48	52
Resistance ≥ 2 CLSI classes*	86.3%	93.5%	80.8%	85.1%	80.3%	93.9%	86.0%	83.6%	77.6%	76.3%
	44	58	42	63	49	46	49	51	45	45
Resistance ≥ 3 CLSI classes*	80.4%	90.3%	78.8%	75.7%	68.9%	85.7%	82.5%	80.3%	72.4%	67.8%
	41	56	41	56	42	42	47	49	42	40
Resistance ≥ 4 CLSI classes*	62.7%	64.5%	65.4%	47.3%	55.7%	57.1%	63.2%	57.4%	56.9%	59.3%
	32	40	34	35	34	28	36	35	33	35
Resistance ≥ 5 CLSI classes*	31.4%	29.0%	30.8%	28.4%	27.9%	26.5%	49.1%	27.9%	32.8%	32.2%
	16	18	16	21	17	13	28	17	19	19
At least ACSSuT [†]	29.4%	27.4%	28.8%	27.0%	26.2%	22.4%	47.4%	26.2%	27.6%	28.8%
	15	17	15	20	16	11	27	16	16	17
At least ACT/S [‡]	27.5%	24.2%	32.7%	28.4%	26.2%	24.5%	47.4%	27.9%	29.3%	30.5%
	14	15	17	21	16	12	27	17	17	18
At least AT/S§	37.3%	35.5%	38.5%	43.2%	36.1%	32.7%	52.6%	41.0%	41.4%	37.3%
	19	22	20	32	22	16	30	25	24	22
At least ANT/S ¹	5.9%	0.0%	1.9%	2.7%	1.6%	0.0%	1.8%	8.2%	5.2%	0.0%
	3	0	1	2	1	0	1	5	3	0
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	1.7%	1.7%
resistant	1	0	0	1	0	0	0	0	1	1
At least nalidixic acid and azithromycin	Not	0.0%	0.0%							
resistant	Tested	0	0							
At least ceftriaxone and azithromycin	Not	0.0%	0.0%							
resistant	Tested	0	0							

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole § AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, nalidixic acid
 ** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clawlanic acid, ceftriaxone

4. Escherichia coli O157

Table 44. Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2012 (N=166)

Denkt		Antimizzahiel Asset	Perc	entage	of isolates					I	Percent	age of	all isola	ites wit	h MIC (I	ug/mL)*					
Rank	CESI" Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] ¹	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.6	[0.0 - 3.3]					7.8	78.3	13.3					0.6				
		Kanamycin	0.0	0.0	[0.0 - 2.2]										100.0	-					
		Streptomycin	N/A	2.4	[0.7 - 6.1]												97.6	0.6	1.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.6	[0.0 - 3.3]							3.0	6.0	88.6	1.8			0.6			
	Cephems	Ceftiofur	0.0	0.6	[0.0 - 3.3]				1.2	6.0	90.4	1.8				0.6					
		Ceftriaxone	0.0	0.6	[0.0 - 3.3]					99.4					-		0.6				
	Macrolide	Azithromycin	N/A	0.6	[0.0 - 3.3]						0.6	7.8	77.1	13.9			0.6				
	Penicillins	Ampicillin	0.0	1.8	[0.4 - 5.2]							5.4	77.7	15.1				1.8			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 2.2]	95.8	1.8			1.8	0.6										
		Nalidixic acid	N/A	2.4	[0.7 - 6.1]						0.6	1.2	81.9	13.3		0.6		2.4			
	Cephems	Cefoxitin	1.2	0.6	[0.0 - 3.3]							1.2	6.0	73.5	17.5	1.2		0.6			
	Folate pathway inhibitors	Sulfisoxazole	N/A	3.6	[1.3 - 7.7]											77.7	15.7	3.0			3.6
ш		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.1 - 4.3]				98.2	0.6					1.2					•	
	Phenicols	Chloramphenicol	1.2	1.8	[0.4 - 5.2]								0.6	15.1	81.3	1.2	0.6	1.2			
	Tetracyclines	Tetracycline	0.0	5.4	[2.5 - 10.0]									94.6		0.6	0.6	4.2			

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt: Clinical and Laboratory Standards Institute

CLST Unincial and Laboratory Standards institute
 Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists
 Percentage of isolates with a were resistant
 The 95% confidence intervals (Q) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Copper-Pearson exact method
 ** The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for resistant concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal tc or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 14. Antimicrobial resistance pattern for Escherichia coli O157, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

2000	5-2012											
Year			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total I	solates		158	169	194	233	189	161	187	170	162	166
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	Tested	Tested
		Gentamicin	0.0%	0.6%	0.5%	0.0%	0.0%	1.2%	0.5%	0.6%	0.6%	0.6%
		(MIC ≥ 16)	0	1	1	0	0	2	1	1	1	1
		Kanamycin	0.0%	0.0%	0.5%	0.4%	0.0%	0.0%	0.5%	1.2%	1.9%	0.0%
		(MIC ≥ 64)	0	0	1	1	0	0	1	2	3	0
		Streptomycin	1.9%	1.8%	2.1%	2.6%	2.1%	1.9%	4.8%	2.4%	4.3%	2.4%
		(MIC ≥ 64)	3	3	4	6	4	3	9	4	7	4
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	1.3%	0.0%	0.0%	1.3%	0.0%	0.6%	0.5%	0.0%	0.0%	0.6%
	combinations	(MIC ≥ 32/16)	2	0	0	3	0	1	1	0	0	1
	Cephems	Ceftiofur	1.3%	0.0%	0.0%	1.3%	0.0%	0.6%	0.0%	0.0%	0.0%	0.6%
		(MIC ≥ 8)	2	0	0	3	0	1	0	0	0	1
		Ceftriaxone	1.3%	0.0%	0.0%	1.3%	0.0%	0.6%	0.0%	0.0%	0.0%	0.6%
		(MIC ≥ 4)	2	0	0	3	0	1	0	0	0	1
	Macrolides	Azithromycin	Not	0.0%	0.6%							
		(MIC ≥ 32)	Tested	0	1							
	Penicillins	Ampicillin	3.2%	1.2%	4.1%	2.6%	2.1%	3.7%	4.3%	1.8%	3.7%	1.8%
		(MIC ≥ 32)	5	2	8	6	4	6	8	3	6	3
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.4%	0.5%	0.0%	0.5%	0.0%	0.6%	0.0%
		(MIC ≥ 4)	0	0	0	1	1	0	1	0	1	0
		Nalidixic Acid	0.6%	1.8%	1.5%	2.1%	2.1%	1.2%	2.1%	1.2%	1.2%	2.4%
		(MIC ≥ 32)	1	3	3	5	4	2	4	2	2	4
	Cephems	Cefoxitin	1.3%	0.6%	0.0%	1.3%	0.0%	1.2%	0.5%	0.0%	0.0%	0.6%
		(MIC ≥ 32)	2	1	0	3	0	2	1	0	0	1
		Cephalothin	3.2%	Not								
		(MIC ≥ 32)	5	Tested								
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	3.8%	1.8%	6.7%	3.0%	2.6%	3.1%	6.4%	4.7%	4.9%	3.6%
п		(MIC ≥ 512)	6	3	13	7	5	5	12	8	8	6
		Trimethoprim-sulfamethoxazole	0.6%	0.0%	0.5%	0.4%	1.1%	1.2%	4.3%	1.2%	2.5%	1.2%
		(MIC ≥ 4/76)	1	0	1	1	2	2	8	2	4	2
	Phenicols	Chloramphenicol	1.3%	0.6%	1.0%	1.3%	0.5%	0.6%	1.1%	0.6%	1.2%	1.8%
		(MIC ≥ 32)	2	1	2	3	1	1	2	1	2	3
	Tetracyclines	Tetracycline	5.7%	1.8%	8.8%	4.7%	4.2%	1.9%	7.5%	4.7%	4.9%	5.4%
1	1	(MIC ≥ 16)	9	3	17	1 11	8	3	14	8	8	9

Table 45. Percentage and number of *Escherichia coli* O157 isolates resistant to antimicrobial agents,2003–2012

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important † CI.SI: Clinical and Laboratory Standards Institute

CLSI: Clinical and Laboratory Standards Institute
 Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 46. Resistance patterns of Escherichia coli O157 isolates, 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	158	169	194	233	189	161	187	170	162	166
Resistance Pattern										
No resistance detected	90.5%	94.7%	87.6%	91.8%	92.6%	91.9%	89.8%	93.5%	92.6%	92.2%
	143	160	170	214	175	148	168	159	150	153
Resistance ≥ 1 CLSI class*	9.5%	5.3%	12.4%	8.2%	7.4%	8.1%	10.2%	6.5%	7.4%	7.8%
	15	9	24	19	14	13	19	11	12	13
Resistance ≥ 2 CLSI classes*	5.1%	2.4%	6.7%	4.7%	2.6%	3.1%	7.5%	4.7%	4.9%	4.2%
	8	4	13	11	5	5	14	8	8	7
Resistance ≥ 3 CLSI classes*	3.2%	1.2%	5.2%	3.4%	2.1%	2.5%	5.9%	4.1%	4.3%	3.0%
	5	2	10	8	4	4	11	7	7	5
Resistance ≥ 4 CLSI classes*	1.3%	0.6%	1.0%	2.1%	1.1%	1.2%	4.3%	1.8%	2.5%	1.8%
	2	1	2	5	2	2	8	3	4	3
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.9%	0.5%	0.0%	0.5%	0.0%	0.6%	1.2%
	0	0	0	2	1	0	1	0	1	2
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	0.6%	1.2%
	0	0	0	2	0	0	0	0	1	2
At least ACT/S [‡]	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	1.2%	0.6%
	0	0	0	0	0	1	0	0	2	1
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	1	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

5. Campylobacter

Table 47. Frequency of Campylobacter species, 2012

Species	20	12
	n	(%)
Campylobacter jejuni	1191	(86.3)
Campylobacter coli	134	(10.0)
Other	35	(3.7)
Total	1360	(100)

Table 48. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2012 (N=1191)

			Perc	entage	of isolates	Percentage of all isolates with MIC (µg/mL)**															
Rank*	CLSI' Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	N/A	1.0	[0.5 - 1.8]				3.0	27.0	57.4	11.4	0.2	0.1			0.3	0.7			
	Ketolide	Telithromycin	N/A	1.4	[0.8 - 2.3]	0.1			0.3	3.3	19.1	38.8	31.0	6.0	0.3	1.1					
	Macrolides	Azithromycin	N/A	1.8	[1.1 - 2.7]	0.7	9.6	32.8	34.3	20.9	0.3	0.1			-			0.3	1.2		
1		Erythromycin	N/A	1.5	[0.9 - 2.4]		0.1		1.6	19.5	26.1	35.3	14.4	1.5	0.1			0.3	1.2		
	Quinolones	Ciprofloxacin	N/A	25.3	[22.8 - 27.8]	0.2	0.6	22.8	42.1	8.2	0.8	0.3	0.1	1.7	9.1	8.1	3.4	1.6	1.1		
		Nalidixic acid	N/A	25.5	[23.1 - 28.1]							•		56.7	16.6	1.2		2.0	23.5		
	Lincosamides	Clindamycin	N/A	10.8	[9.1 - 12.7]		0.7	8.9	30.1	23.3	26.2	8.4	0.8	0.2	0.3	0.3	0.8				
п	Phenicols	Florfenicol	N/A	1.4	[0.8 - 2.3]						2.9	53.7	34.4	7.5	1.0	0.3			0.2		
	Tetracyclines	Tetracycline	N/A	47.8	[44.9 - 50.7]			1.3	14.9	21.7	11.1	3.2	1.9	0.5	-	0.3	1.2	6.0	37.9		

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

For example a solution with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists \$ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

³ The SS% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
** The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. ECOFFs were used when available.

Figure 15. Antimicrobial resistance pattern for Campylobacter jejuni, 2012

Antimicrobial Agent	Susceptible, Intermediate, and Resistan	t Proportion
Gentamicin		
Telithromycin		
Azithromycin		
Erythromycin		
Ciprofloxacin		
Nalidixic acid		
Clindamycin		
Florfenicol		
Tetracycline		

Table 49. Percentage and number of Campylobacter jejuni isolates resistant to antimicrobial agents,2003–2012

Year			2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total I	solates		303	320	788	709	992	1033	1350	1159	1275	1191
Rank*	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Gentamicin	0.0%	2.2%	0.1%	0.0%	0.8%	1.1%	0.6%	0.6%	1.0%	1.0%
		(MIC ≥ 4)	0	7	1	0	8	11	8	7	13	12
	Ketolides	Telithromycin	Not	Not	0.8%	1.0%	1.3%	2.2%	1.9%	2.4%	2.6%	1.4%
I		(MIC ≥ 8)	Tested	Tested	6	7	13	23	25	28	33	17
	Macrolides	les Azithromycin		9.4%	2.7%	1.3%	1.8%	2.6%	1.9%	2.7%	4.9%	1.8%
		(MIC ≥ 0.5)	4	30	21	9	18	27	26	31	63	21
		Erythromycin	0.3%	0.9%	1.5%	0.8%	1.6%	2.2%	1.5%	1.2%	1.8%	1.5%
		(MIC ≥ 8)	1	3	12	6	16	23	20	14	23	18
	Quinolones	Ciprofloxacin	17.5%	18.1%	21.6%	19.6%	26.0%	22.6%	23.1%	22.0%	24.1%	25.3%
		(MIC ≥ 1)	53	58	170	139	258	233	312	255	307	301
		Nalidixic Acid	17.8%	19.1%	22.5%	19.5%	26.5%	22.8%	23.1%	22.1%	24.1%	25.5%
		(MIC ≥ 32)	54	61	177	138	263	236	312	256	307	304
	Lincosamides	Clindamycin	4.3%	5.6%	3.2%	2.4%	3.5%	3.8%	2.9%	14.1%	21.5%	10.8%
		(MIC ≥ 1)	13	18	25	17	35	39	39	163	274	129
	Phenicols	Chloramphenicol	0.0%	1.6%	Not							
		(MIC ≥ 32)	0	5	Tested							
Ш		Florfenicol	Not	Not	0.4%	0.0%	0.0%	0.6%	0.6%	1.5%	2.1%	1.4%
		(MIC ≥ 8)	Tested	Tested	3	0	0	6	8	17	27	17
	Tetracyclines	Tetracycline	40.9%	47.5%	43.7%	48.7%	45.7%	45.3%	44.1%	44.2%	48.3%	47.8%
		(MIC ≥ 2)	124	152	344	345	453	468	595	512	616	569

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, † Highly Important

Table 50. Resistance patterns of *Campylobacter jejuni* isolates, 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	303	320	788	709	992	1033	1350	1159	1275	1191
Resistance Pattern										
No resistance detected	48.5% 147	41.9% 134	46.4% 366	42.5% 301	44.4%	45.2% 467	46.0% 621	39.6% 459	33.2% 423	38.6% 460
Resistance ≥ 1 CLSI class*	51.5%	58.1%	53.6%	57.5%	55.6%	54.8%	54.0%	60.4%	66.8%	61.4%
	156	186	422	408	552	566	729	700	852	731
Resistance ≥ 2 CLSI classes*	11.6%	19.7%	16.2%	12.8%	18.9%	15.8%	15.0%	18.5%	23.5%	19.9%
	35	63	128	91	187	163	203	214	299	237
Resistance ≥ 3 CLSI classes*	1.0%	5.3%	2.3%	1.3%	2.0%	3.1%	2.5%	3.8%	7.4%	4.7%
	3	17	18	9	20	32	34	44	94	56
Resistance ≥ 4 CLSI classes*	0.3%	1.9%	0.5%	0.3%	1.2%	1.6%	1.0%	1.6%	3.1%	1.4%
	1	6	4	2	12	17	14	18	39	17
Resistance ≥ 5 CLSI classes*	0.0%	0.3%	0.0%	0.0%	0.7%	0.6%	0.5%	0.5%	1.2%	0.6%
	0	1	0	0	7	6	7	6	15	7
At least quinolone and macrolide resistant	0.3%	2.2%	1.4%	0.7%	1.4%	1.5%	1.2%	1.3%	3.0%	1.3%
	1	7	11	5	14	15	16	15	38	16

* CLSI: Clinical and Laboratory Standards Institute

Table 51. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2012 (N=134)

				Percentage of isolates			Percentage of all isolates with MIC (µg/mL)**														
Rank	CLSI' Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] ¹	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	N∕A	6.0	[2.6 - 11.4]					25.4	38.1	29.1	1.5				1.5	4.5			
	Ketolide	Telithromycin	N/A	11.2	[6.4 - 17.8]			0.7	1.5	12.7	25.4	4.5	17.2	26.9	4.5	6.7					
Ι.	Macrolides	Azithromycin	N/A	9.0	[4.7 - 15.1]		1.5	16.4	36.6	25.4	11.2							1.5	7.5		
'		Erythromycin	N/A	9.0	[4.7 - 15.1]				0.7	5.2	27.6	21.6	19.4	14.9	1.5			1.5	7.5		
	Quinolones	Ciprofloxacin	N/A	33.6	[25.7 - 42.2]	0.7	1.5	9.0	29.9	20.1	5.2			2.2	5.2	11.2	13.4	1.5			
		Nalidixic acid	N/A	33.6	[25.7 - 42.2]									23.1	40.3	3.0		4.5	29.1		
	Lincosamides	Clindamycin	N/A	16.4	[10.6 - 23.8]			0.7	6.7	34.3	24.6	17.2	6.7	0.7	0.7	5.2	3.0				
Ш	Phenicols	Florfenicol	N/A	1.5	[0.2 - 5.3]						3.7	35.8	42.5	16.4	0.7		0.7				
	Tetracyclines	Tetracycline	N/A	45.5	[36.9 - 54.3]			1.5	4.5	23.9	15.7	7.5	1.5		0.7		0.7	4.5	39.6		

* Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; NA if no MIC range of intermediate susceptibility exists

§ Percentage of isolates that were resistant

* The contriduce of indicate intervals (Q) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method
** The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. ECOFFs were used when available.

Figure 16. Antimicrobial resistance pattern for Campylobacter coli, 2012

Susceptible, Intermediate, and Resistant Proportion

Table 52. Percentage and number of Campylobacter coli isolates resistant to antimicrobial agents, 2003–2012

Year Total I	solates		2003 22	2004 26	2005 99	2006 97	2007 105	2008 115	2009 142	2010 115	2011 148	2012 134
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin (MIC ≥ 4)	4.5% 1	3.8% 1	3.0% 3	1.0% 1	0.0% 0	1.7% 2	3.5% 5	12.2% 14	12.2% 18	6.0% 8
	Ketolides	Telithromycin (MIC ≥ 8)	Not Tested	Not Tested	8.1% 8	9.3% 9	9.5% 10	10.4% 12	7.0% 10	13.9% 16	10.8% 16	11.2% 15
I	Macrolides	Azithromycin (MIC ≥ 1)	13.6% 3	3.8% 1	4.0% 4	9.3% 9	5.7% 6	10.4% 12	3.5% 5	7.0% 8	5.4% 8	9.0% 12
		Erythromycin (MIC ≥ 16)	9.1% 2	3.8% 1	4.0% 4	8.2% 8	5.7% 6	10.4% 12	3.5% 5	5.2% 6	2.7% 4	9.0% 12
	Quinolones	Ciprofloxacin (MIC ≥ 1)	22.7% 5	30.8% 8	25.3% 25	21.6% 21	28.6% 30	29.6% 34	23.9% 34	30.4% 35	36.5% 54	33.6% 45
		Nalidixic Acid (MIC ≥ 32)	22.7% 5	34.6% 9	27.3% 27	23.7% 23	30.5% 32	29.6% 34	24.6% 35	30.4% 35	35.8% 53	33.6% 45
	Lincosamides	Clindamycin (MIC ≥ 2)	18.2% 4	11.5% 3	8.1% 8	14.4% 14	9.5% 10	14.8% 17	7.7% 11	17.4% 20	16.9% 25	16.4% 22
	Phenicols	Chloramphenicol $(MIC \ge 32)$	0.0% 0	0.0% 0	Not Tested							
		Florfenicol (MIC ≥ 8)	Not Tested	Not Tested	1.0% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.7% 1	1.5% 2
	Tetracyclines	Tetracycline (MIC ≥ 4)	45.5% 10	38.5% 10	31.3% 31	39.2% 38	42.9% 45	39.1% 45	45.1% 64	50.4% 58	50.7% 75	45.5% 61

* Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, † Highly Important

Table 53. Resistance patterns of Campylobacter coli isolates, 2003–2012

Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Total Isolates	22	26	99	97	105	115	142	115	148	134
Resistance Pattern										
No resistance detected	40.9%	34.6%	50.5%	44.3%	39.0%	44.3%	43.7%	35.7%	31.8%	43.3%
	9	9	50	43	41	51	62	41	47	58
Resistance ≥ 1 CLSI class*	59.1%	65.4%	49.5%	55.7%	61.0%	55.7%	56.3%	64.3%	68.2%	56.7%
	13	17	49	54	64	64	80	74	101	76
Resistance ≥ 2 CLSI classes*	22.7%	26.9%	17.2%	19.6%	19.0%	27.0%	19.7%	35.7%	41.2%	32.1%
	5	7	17	19	20	31	28	41	61	43
Resistance ≥ 3 CLSI classes*	13.6%	0.0%	6.1%	8.2%	7.6%	7.8%	5.6%	11.3%	10.8%	11.2%
	3	0	6	8	8	9	8	13	16	15
Resistance ≥ 4 CLSI classes*	4.5%	0.0%	2.0%	3.1%	1.0%	3.5%	2.8%	3.5%	2.0%	6.7%
	1	0	2	3	1	4	4	4	3	9
Resistance ≥ 5 CLSI classes*	4.5%	0.0%	0.0%	1.0%	0.0%	1.7%	0.7%	2.6%	0.0%	4.5%
	1	0	0	1	0	2	1	3	0	6
At least quinolone and macrolide resistant	9.1%	0.0%	2.0%	4.1%	1.9%	4.3%	2.8%	3.5%	3.4%	8.2%
	2	0	2	4	2	5	4	4	5	11

* CLSI: Clinical and Laboratory Standards Institute

6. Vibrio species other than V. cholerae

Species	2009		20	10	20	11	2012		
	n	(%)	n	(%)	n	(%)	n	(%)	
Vibrio parahaemolyticus	149	(52.8)	179	(54.2)	201	(50.3)	370	(61.4)	
Vibrio alginolyticus	46	(16.3)	49	(14.8)	103	(25.8)	117	(19.4)	
Vibrio vulnificus	50	(17.7)	61	(18.5)	63	(15.8)	65	(10.8)	
Vibrio fluvialis	21	(7.4)	24	(7.3)	18	(4.5)	28	(4.6)	
Vibrio mimicus	11	(3.9)	9	(2.7)	9	(2.3)	11	(1.8)	
Vibrio harveyi	0	(0)	2	(0.6)	4	(1.0)	3	(0.5)	
Other	5	(1.8)	6	(1.8)	2	(0.5)	9	(1.5)	
Total	282	(100)	330	(100)	400	(100)	603	(100)	

Table 54. Frequency of Vibrio species other than V. cholerae, 2009-2012

Table 55. Minimum inhibitory concentrations (MICs) and resistance of isolates of Vibrio species other than V. cholerae to antimicrobial agents, 2012 (N=603)

Pank*	CLSI [†] Antimicrobial Class		Perce	entage	ofisolates								Perce	ntage	of all is	olates	with M	IIC (µg/	m L)**							
rafik*	Antimicrobial Agent	Species (# of isolates)	%l [‡]	%R ⁵	[95% CI] ¹	0.002	0.004	0.007	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048
	Aminoglycosides																									
	Kanamycin ^{††}	All (603)	N/A	N/A	N/A											2.5	49.3	42.3	5.6	0.3						
		parahaemolyticus (370)	N/A	N/A	N/A											1.6	50.0	47.0	1.4							
		alginolyticus (117)	N/A	N/A	N/A											1.7	64.1	33.3	0.9							
		vulnificus (65)	N/A	N/A	N/A												6.2	50.8	40.0	3.1						
	Streptomycin ^{††}	All (603)	N/A	N/A	N/A										0.2	1.8	5.8	50.1	40.8	1.0	0.2	0.2				
		parahaemolyticus (370)	N/A	N/A	N/A											0.5	1.1	50.5	46.8	0.5	0.3	0.3				
		alginolyticus (117)	N/A	N/A	N/A										0.9		7.7	82.9	8.5							
		vulnificus (65)	N/A	N/A	N/A												3.1	6.2	86.2	4.6						
	Penicillins																									
	Ampicillin	All (603)	15.8	29.9	[26.2 - 33.7]									0.3	10.0	10.3	20.2	13.6	15.8	8.5	2.8	1.7	2.5	14.4		
1		parahaemolyticus (370)	23.2	14.1	[10.7 - 18.0]										0.8	13.8	28.1	20.0	23.2	9.7	2.7	0.3		1.4		
		alginolyticus (117)	0.9	98.3	[94.0 - 99.8]											0.9			0.9	6.0	6.0	6.8	10.3	69.2		
		vulnificus (65)	0.0	1.5	[0.0 - 8.3]									1.5	84.6	9.2	3.1			1.5						
	Quinolones																									
	Ciprofloxacin	All (603)	0.0	0.0	[0.0 - 0.6]	0.2	0.8	4.5	0.7	6.3	12.4	46.8	26.9	1.5						_						
		parahaemolyticus (370)	0.0	0.0	[0.0 - 1.0]		0.3	0.5	0.3	3.0	5.4	61.9	28.4	0.3												
		alginolyticus (117)	0.0	0.0	[0.0 - 3.1]					3.4	8.5	40.2	45.3	2.6												
		vulnificus (65)	0.0	0.0	[0.0 - 5.5]		1.5	1.5		32.3	61.5	3.1														
	Nalidixic acid ^{††}	All (603)	N/A	N/A	NA								0.5	3.2	25.0	60.9	9.3	0.8	0.2					0.2		
		parahaemolvticus (370)	N/A	N/A	N/A									2.2	21.9	67.0	7.6	1.1	0.3							
		alginolyticus (117)	N/A	N/A	N/A								0.9	2.6	25.6	58.1	12.0							0.9		
		vulnificus (65)	N/A	N/A	N/A								1.5	3.1	30.8	47.7	16.9							0.0		
	Cephems																									
	Cephalothin ^{††}	All (603)	N/A	N/A	N/A										0.3	1.8	4.8	31.2	52.2	5.8	0.2	0.2	0.2	3.3		
		narabaemolyticus (370)	N/A	N/A	N/A												3.0	24.9	64.1	73	0.3		0.3	0.3		
		alginolyticus (117)	N/A	N/A	N/A										0.9	0.9	0.0	34.2	59.0	43	0.0		0.0	0.0		
		vulnificus (65)	N/A	N/A	N/A										0.0	0.0	10.8	81.5	6.2	4.0				15		
	Folate pathway inhibitors	(00)															10.0	01.0	0.2					1.0		
	Trimethoprim-sulfamethoyazole	All (603)	N/A	0.0	[0.0 - 0.6]				0.2	0.3	4.0	49.3	44.4	1.8												
	ministriophinestil ametrioxazole	narahaamalutiawa (270)	N/A	0.0	[0.0 1.0]				0.2	0.3	4.0	43.5	69.1	2.7												
		paranaemoryticus (370)	N/A	0.0	[0.0 - 1.0]					0.3	0.5	20.4	0.4	2.1												
		arginoryucus (117)	N/A	0.0	[0.0 = 5.1]				15	0.9	0.9	70.9	9.4	1.5												
ш	Phonicala	vaninicas (65)	IVA	0.0	[0.0 - 5.5]				1.5		24.0	70.8	1.5	1.5												
	Oblasseshavia	All (COO)										0.0		4.0	75.0	01.0	0.5	0.0	0.0							
	Chioramphenicol'	All (603)	N/A	N/A	N/A							0.2		1.8	75.6	21.2	0.5	0.3	0.3							
		paranaemolyticus (370)	N/A	N/A	N/A										68.6	29.7	0.8	0.3	0.5							
		alginolyticus (117)	N/A	N/A	N/A							0.9		3.4	88.0	1.1										
		vuinificus (65)	N/A	N/A	N/A					_			_	7.7	90.8	1.5										
	letracyclines																									
	Tetracycline	All (603)	0.3	0.3	[0.0 - 1.2]							0.2	0.5	3.3	36.3	52.6	6.5	0.3		0.2				0.2		
	1	parahaemolyticus (370)	0.5	0.5	[0.1 - 1.9]									0.3	28.6	63.8	6.2	0.5		0.3				0.3		
		alginolyticus (117)	0.0	0.0	[0.0 - 3.1]									2.6	51.3	45.3	0.9									
	1	vulnificus (65)	0.0	0.0	[0.0 - 5.5]							1.5	3.1	20.0	67.7	7.7										

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix B, Table 1): Rank I, Critically Important; Rank II, Highly Important
 (1,25) Clinical and Laboratory Standards Institute
 The cristical and Laboratory Standards Institute
 The cristical and Laboratory Standards Institute
 The cristical set with intermediate susceptibility; N/X if no MC range of intermediate susceptibility exists or no CLSI breakpoints have been established
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Part approximation to the Clopper-Pearson exact method; NA Indicates that no CLSI breakpoints have been established
 The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Part approximation to the Clopper-Pearson exact method; NA Indicates that no CLSI breakpoints have been established
 The 95% confidence intervals (C) for percent resistance. Numbers in the shaded areas indicate the divident area indicate the divident areas indicate the divident area indicate to divident areas indicate the divident areas indicates the the trakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs equal to or less than the low est tested concentrations represent the percentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints have been established
 CLSI MC interpretive criteria have not been established

 Table 56. Percentage and number of isolates of Vibrio species other than V. cholerae resistant to ampicillin, 2009–2012

Species	2009	2010	2011	2012
Vibrio parahaemolyticus	9.4%	8.4%	40.3%	14.1%
	14	15	81	52
Vibrio alginolyticus	82.6%	89.8%	95.1%	98.3%
	38	44	98	115
Vibrio vulnificus	2.0%	0.0%	4.8%	1.5%
	1	0	3	1
Vibrio fluvialis	33.3%	12.5%	44.4%	21.4%
	7	3	8	6
Vibrio mimicus	9.1%	0.0%	0.0%	9.1%
	1	0	0	1
Vibrio harveyi	N/A*	50.0%	100%	100%
	0	1	4	3
Other	20.0%	0.0%	0.0%	22.2%
	1	0	0	2
Total	22.0%	19.1%	48.5%	29.9%
	62	63	194	180

 * N/A indicates that no isolates were received and tested

Antimicrobial Resistance: 1996–2012

The following figures display resistance to selected agents and combinations of agents from 1996–2012 for nontyphoidal *Salmonella*, 1999–2012 for *Salmonella* ser. Typhi, 1997–2012 for *Campylobacter*, and 1999–2012 for *Shigella*.

---- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

• — Annual percentage resistant

• — Annual percentage resistant

Figure 19. Percentage of *Salmonella* ser. Enteritidis isolates resistant to nalidixic acid, by year, 1996–2012

---- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

• — Annual percentage resistant

Figure 20. Percentage of Salmonella ser. Heidelberg isolates resistant to ceftriaxone, by year, 1996-2012

• — Annual percentage resistant

Figure 21. Percentage of *Salmonella* ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2012

= --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Annual percentage resistant

• — Annual percentage resistant

Figure 23. Percentage of non-typhoidal *Salmonella* isolates resistant to 1 or more antimicrobial classes, by year, 1996–2012

---- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Annual percentage resistant

Figure 24. Percentage of non-typhoidal *Salmonella* isolates resistant to 3 or more antimicrobial classes, by year, 1996–2012

• — Annual percentage resistant

Figure 25. Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999–2012

---- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant

Annual percentage resistant

Figure 26. Percentage of Campylobacter jejuni isolates resistant to ciprofloxacin, by year, 1997–2012

• — Annual percentage resistant

Figure 27. Percentage of Campylobacter coli isolates resistant to ciprofloxacin, by year, 1997–2012

Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
 Annual percentage resistant

Figure 28. Percentage of *Shigella* isolates resistant to nalidixic acid, by year, 1999–2012

• — Annual percentage resistant

References

American Academy of Pediatrics. 2012 Shigella infections. In: L.K. Pickering (ed.), Red Book: 2012 Report of the Committee on Infectious Diseases, 29 ed. American Academy of Pediatrics, Elk Frove Village, IL.

CDC. <u>National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2005 human isolates</u> <u>final report</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2007.

CDC. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2012 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC. 2012.

CDC. National Surveillance Team: Cholera and Other *Vibrio* Illness Surveillance (COVIS) Report for 2011 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC. 2012.

Clinical and Laboratory Standards Institute. <u>Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: approved guideline—Second Edition</u>. CLSI Document M45-A2. CLSI, Wayne, Pennsylvania, 2010.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-Fourth Informational Supplement. CLSI Document M100-S24. CLSI, Wayne, Pennsylvania, 2014.

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard---Ninth Edition. CLSI Document M07-A9. CLSI, Wayne, Pennsylvania, 2012.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved Standard-Fourth Edition. CLSI Document VET01-A4. CLSI, Wayne, Pennsylvania, 2013.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Second Informational Supplement. CLSI Document VET01-S2. CLSI, Wayne, Pennsylvania, 2013.

Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for *Salmonella enterica* serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 2003;37:75–81.

European Society of Clinical Microbiology and Infectious Diseases. The European Committee on Antimicrobial Susceptibility Testing - EUCAST 2014. Sweden. 2013. [cited 2014 Apr 14]. Available from: http://www.eucast.org/.

Fleiss JL, Levin B, Paik MC. <u>Statistical methods in for rates and proportions</u>. In: Shewart WA, Wilks SS, eds. <u>Wiley Series in Probability and Statistics</u>. Published Online; 2004:284–308.

Gonzalez, I, Grant KA, Richardson PT, Park SF, Collins MD. <u>Specific identification of the enteropathogens</u> <u>Campylobacter jejuni and Campylobacter coli by using a PCR test based on the ceuE gene encoding a putative</u> <u>virulence determinant</u>. Journal of Clinical Microbiology 1997;35:759–63.

Howie RL, Folster JP, Bowen A, Barzilay EJ, Whichard JM. Reduced azithromycin susceptibility in Shigella sonnei, United States. Microb Drug Resist. 2010 Dec;16(4):245-8.

Kleinbaum DG, Kupper LL, Nizam A, Muller KE. Applied Regression Analysis and Other Multivariable Methods, 4th ed. Belmont. CA: Duxbury; 2008.

Linton D, Lawson AJ, Owen RJ, Stanley J. <u>PCR detection, identification to species level, and fingerprinting of</u> <u>*Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. Journal of Clinical Microbiology 1997;35:2568–72.</u>

Linton D, Owen RJ, Stanley J. <u>Rapid Identification by PCR of the genus Campylobacter and of five</u> <u>Campylobacter species enteropathogenic for man and animals</u>. Research in Microbiology 1996;147:707–18. Pruckler J et al., Comparison of four real-time PCR methods for the identification of the genus *Campylobacter* and speciation of *C. jejuni* and *C. coli*. ASM 106th General meeting; Poster C282.

Sjölund-Karlsson M, Joyce K, Blickenstaff K. et al. Antimicrobial Susceptibility to Azithromycin among *Salmonella enterica* isolated in the United States. Antimicrob Agents Chemother. 2011 Jun 20.

U.S. Census Bureau. <u>Guide to State and Local Geography – Selected Data from the 2011 Census.</u> Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2013.

U.S. Census Bureau. <u>Census Regions and Divisions of the United States</u>. Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2013.

Vandamme P, Van Doorn LJ, al Rashid ST, Quint WG, van der Plas J, Chan VL, On SL. <u>*Campylobacter hyoilei*</u> <u>Alderton et al. 1995 and *Campylobacter coli* Veron and Chatelain 1973 are subjective synonyms</u>. Inter. J. Syst. Bacteriol 1997; 47:1055–60.

World Health Organization (WHO). <u>Critically Important Antimicrobials for Human Medicine. 3rd Revision</u>. Switzerland, 2011.

World Health Organization, Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1, 2005, World Health Organization: Geneva.

NARMS Publications in 2012

Folster JP, Pecic G, Rickert R, Taylor J, Zhao S, Fedorka-Cray PJ, et al. <u>Characterization of multidrug-resistant</u> <u>Salmonella enterica serovar heidelberg from a ground turkey-associated outbreak in the United States in 2011</u>. Antimicrob Agents Chemother. 2012 Jun;56(6):3465-6.

Folster JP, Pecic G, Singh A, Duval B, Rickert R, Ayers S, et al. <u>Characterization of extended-spectrum</u> cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathog Dis. 2012 Jul;9(7):638-45.

Hoffmann M, Zhao S, Luo Y, Li C, Folster JP, Whichard J, et al. <u>Genome sequences of five Salmonella enterica</u> <u>serovar Heidelberg isolates associated with a 2011 multistate outbreak in the United States</u>. J Bacteriol. 2012 Jun;194(12):3274-5.

Appendix A. WHO Categorization of Antimicrobial Agents

In 2011 the World Health Organization (WHO) convened a panel of experts to update a list of antimicrobial agents ranked according to their relative importance to human medicine (<u>WHO, 2011</u>). The participants categorized antimicrobial agents as either Critically Important, Highly Important, or Important based upon two criteria: (1) used as sole therapy or one of the few alternatives to treat serious human disease and (2) used to treat disease caused by either organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources Antimicrobial agents tested in NARMS have been included in the WHO categorization table.

- Antimicrobial agents are critically important if both criteria (1) and (2) are true.
- Antimicrobial agents are highly important if either criterion (1) or (2) is true.
- Antimicrobial agents are important if neither criterion is true.

Table A1. WHO categorization of antimicrobials of critical importance to human medicine

WHO Category Level	Importance	CLSI* Class	Antimicrobial Agent tested in NARMS				
			Amikacin				
		Aminoglygogidog	Gentamicin				
		Aminogiycosides	Kanamycin				
			Streptomycin				
		β-lactam / β-lactamase inhibitor	Amoxicillin-clavulanic acid				
		combinations	Piperacillin-tazobactam				
			Cefepime				
		Conhome	Cefotaxime				
	Critically important	Cephenis	Ceftazidime				
•	Critically important		Ceftriaxone				
		Ketolides	Telithromycin				
		Macrolidos	Azithromycin				
		Macionaes	Erythromycin				
		Monobactams	Aztreonam				
		Penems	Imipenem				
		Penicillins	Ampicillin				
		Quinclones	Ciprofloxacin				
			Nalidixic acid				
			Cefoxitin				
		Cephems	Cephalothin				
			Sulfamethoxazole / Sulfisoxazole				
Ш	Highly important	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole				
		Lincosamides	Clindamycin				
		Phenicols	Chloramphenicol				
		Tetracyclines	Tetracycline				

* CLSI: Clinical and Laboratory Standards Institute

Appendix B. Criteria for Retesting of Isolates

Repeat testing of an isolate must be done when one or more of the following conditions occur:

- No growth on panel
- Growth in all wells
- Multiple skip patterns
- Apparent contamination in wells or isolate preparation
- Unlikely or discordant susceptibility results (Table B1)

If an isolate is retested, data for <u>all</u> antimicrobial agents should be replaced with the new test results. Categorical changes may require a third test (and may indicate a mixed culture). Uncommon test results (<u>Table B2</u>) may represent emerging resistance phenotypes. Retesting is encouraged.

Table B1.	Retest criteria	for unlikely	or discordant	resistance	phenotypes
					p

Organism(s)	Resistance phenotype (MIC values in µg/mL)	Comments			
Salmonella / E. coli O157 /	ceftiofur ^R (≥8) OR ceftriaxone ^R (≥4) AND ampicillin ^S (≤8)	The presence of an ESBL [*] or AmpC beta- lactamase should confer resistance to ampicillin			
Shigella	ceftiofur ^R (≥8) AND ceftriaxone ^S (≤1) OR ceftiofur ^S (≤2) AND ceftriaxone ^R (≥4)	Both antimicrobial agents are 3 ^{ra} generation β- lactams and should have equal susceptibility interpretations			
	ampicillin ^S (≤8) AND amoxicillin-clavulanic acid ^R (≥32/16)				
<i>Salmonella</i> and <i>E. coli</i> 0157	sulfisoxazole ^S (≤256) AND trimethoprim-sulfamethoxazole ^R (≥4/76)				
Salmonella	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥1)	The stepwise selection of mutations in the QRDR [†] does not support this phenotype, although it may occur with plasmid-mediated mechanisms			
<i>E. coli</i> O157 and Shigella	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥4)	The stepwise selection of mutations in the $QRDR^\dagger$ does not support this phenotype			
Campylobacter jejuni and coli	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥1)	In <i>Campylobacter</i> , one mutation is sufficient to			
	nalidixic acid ^R (≥32) AND ciprofloxacin ^S (≤0.5)	ciprofloxacin			
Campylobacter jejuni	erythromycin ^S (≤4) AND azithromycin ^R (≥0.5)				
	erythromycin ^R (≥8) AND azithromycin ^S (≤0.25)	Erythromycin is class representative for 14- and			
Campylobacter coli	erythromycin ^S (≤8) AND azithromycin ^R (≥1)	clarithromycin, roxithromycin, and dirithromycin)			
	erythromycin ^R (≥16) AND azithromycin ^S (≤0.5)				

* Extended-spectrum beta-lactamase

†Quinolone resistance-determining regions

Table B2.	Uncommon resistance	phenotypes	for which retestin	g is encouraged
-----------	---------------------	------------	--------------------	-----------------

Organism(s)	Resistance phenotype (MIC values in µg/mL)
Salmonella / E.	Pan-resistance
coli 0157 / Shigella	Resistance to azithromycin (>16)
Onigena	ceftriaxone and/or ceftiofur MIC ≥2 AND ciprofloxacin MIC ≥0.125 and/or nalidixic acid MIC ≥32
Campylobacter	Pan-resistance
<i>jejuni</i> and <i>coli</i>	Resistance to gentamicin (≥4)
	Resistance to florfenicol (≥8)
Vibrio	Resistance to ciprofloxacin (>2)
	Resistance to tetracycline (>8)
	Resistance to trimethoprim-sulfamethoxazole (>2)