

N A R M S

National Antimicrobial Resistance Monitoring System: Enteric Bacteria

2011

Human Isolates Final Report

Table of Contents

List of Tables	<u>2</u>
<u>List of Figures</u>	<u>5</u>
List of Abbreviations and Acronyms	<u>6</u>
NARMS Working Group	<u>7</u>
Introduction	<u>10</u>
What is New in the NARMS Report for 2011	<u>11</u>
Summary of NARMS 2011 Surveillance Data	<u>12</u>
<u>Highlights</u>	<u>14</u>
Changes in antimicrobial resistance: 2011 vs. 2003-07	<u>14</u>
Testing of Ceftriaxone/Ceftiofur resistant non-typhoidal Salmonella to additional broad-spectrum	
<u>β-lactams, 2011</u>	<u>15</u>
Emergence of ASSuT Resistance in Salmonella ser. I 4,[5],12;i:- in the United States	<u>16</u>
Surveillance and Laboratory Testing Methods	<u>17</u>
Results	<u>28</u>
1. Non-typhoidal Salmonella	<u>28</u>
A. Salmonella ser. Enteritidis	<u>32</u>
B. Salmonella ser. Typhimurium	<u>34</u>
C. Salmonella ser. Newport	<u>36</u>
D. Salmonella ser. Heidelberg	<u>38</u>
E. Salmonella ser. I 4,[5],12:i:-	<u>40</u>
2. Typhoidal <i>Salmonella</i>	<u>42</u>
A. Salmonella ser. Typhi	<u>42</u>
B. Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C	<u>44</u>
3. Shigella	<u>46</u>
4. Escherichia coli O157	<u>52</u>
5. Campylobacter	<u>54</u>
6. Vibrio species other than V.cholerae.	<u>58</u>
Antimicrobial Resistance: 1996–2011	<u>60</u>
References	<u>66</u>
NARMS Publications in 2011	<u>68</u>
Appendix A. WHO Categorization of Antimicrobial Agents	<u>69</u>
Appendix B. Criteria for Retesting of Isolates	<u>70</u>

Suggested Citation: CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2011. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2013.

Information Available Online: Previous reports and additional information about NARMS are posted on the CDC NARMS website: http://www.cdc.gov/narms

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement by the Centers for Disease Control and Prevention or the U.S. Department of Health and Human Services.

List of Tables

Table 1.	Population size and number of isolates received and tested, NARMS, 2011	. <u>18</u>
Table 2.	Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia coli O157 isolates, NARMS, 1996-2011	. <u>20</u>
Table 3.	Antimicrobial agents used for susceptibility testing of Campylobacter isolates, NARMS, 1997–2011	. <u>23</u>
Table 4.	Antimicrobial agents used for susceptibility testing of <i>Vibrio</i> species other than <i>V. cholerae</i> isolates, NARMS, 2009-2011	. <u>24</u>
Table 5.	Number of non-typhoidal Salmonella isolates among the 20 most common serotypes tested by NARMS with the number of resistant isolates by class and agent, 2011	. <u>28</u>
Table 6.	Percentage and number of non-typhoidal Salmonella isolates in NARMS with selected resistance patterns, by serotype, 2011	. <u>29</u>
Table 7.	Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2011 (N=2344)	. <u>30</u>
Table 8.	Percentage and number of non-typhoidal Salmonella isolates resistant to antimicrobial agents, 2002–2011	. <u>31</u>
Table 9.	Resistance patterns of non-typhoidal Salmonella isolates, 2002–2011	. <u>31</u>
Table 10.		. <u>32</u>
Table 11.	Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 2002–2011	. <u>33</u>
Table 12.	Resistance patterns of Salmonella ser. Enteritidis isolates, 2002–2011	. <u>33</u>
Table 13.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2011 (N=323)	. <u>34</u>
Table 14.	Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 2002–2011	. <u>35</u>
Table 15.	Resistance patterns of Salmonella ser. Typhimurium isolates, 2002–2011	. <u>35</u>
Table 16.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2011 (N=285)	. <u>36</u>
Table 17.	Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents, 2002–2011	. <u>37</u>
Table 18.	Resistance patterns of Salmonella ser. Newport isolates, 2002–2011	.37
Table 19.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2011 (N=70)	. <u>38</u>
Table 20.	Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 2002–2011	. <u>39</u>
Table 21.	Resistance patterns of Salmonella ser. Heidelberg isolates, 2002–2011	. <u>39</u>
Table 22.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2011 (N=82)	. <u>40</u>
Table 23.	Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents. 2002–2011	41

Table 24.	Resistance patterns of Salmonella ser. I 4,[5],12:1:- Isolates, 2002–2011	<u>41</u>
Table 25.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2011 (N=383)	<u>42</u>
Table 26.	Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 2002–2011	<u>43</u>
Table 27.	Resistance patterns of Salmonella ser. Typhi isolates, 2002–2011	<u>43</u>
Table 28.	Frequency of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C,	
	<u>2011</u>	<u>44</u>
Table 29.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2011 (N=146)	<u>44</u>
Table 30.	Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial agents, 2002–2011	<u>45</u>
Table 31.	Resistance patterns of Salmonella ser. Paratyphi A isolates, 2002–2011	<u>45</u>
Table 32.	Frequency of Shigella species, 2011	<u>46</u>
Table 33.	Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2011 (N=293)	<u>46</u>
Table 34.	Percentage and number of Shigella isolates resistant to antimicrobial agents, 2002–2011	<u>47</u>
Table 35.	Resistance patterns of Shigella isolates, 2002–2011	<u>47</u>
Table 36.	Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2011 (N=225)	<u>48</u>
Table 37.	Percentage and number of <i>Shigella sonnei</i> isolates resistant to antimicrobial agents, 2002–2011	<u>49</u>
Table 38.	Resistance patterns of Shigella sonnei isolates, 2002–2011	<u>49</u>
Table 39.	Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2011 (N=58)	<u>50</u>
Table 40.	Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2002–2011	<u>51</u>
Table 41.	Resistance patterns of Shigella flexneri isolates, 2002–2011	<u>51</u>
Table 42.	Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates	
	to antimicrobial agents, 2011 (N=162)	<u>52</u>
Table 43.	Percentage and number of Escherichia coli O157 isolates resistant to antimicrobial agents, 2002–2011	<u>53</u>
Table 44.	Resistance patterns of Escherichia coli O157 isolates, 2002-2011	<u>53</u>
Table 45.	Frequency of Campylobacter species, 2011	<u>54</u>
Table 46.	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter isolates to antimicrobial agents, 2011 (N=1478)	<u>54</u>
Table 47.	Percentage and number of <i>Campylobacter</i> isolates resistant to antimicrobial agents, 2002–2011	<u>55</u>
Table 48.	Resistance patterns of Campylobacter isolates, 2002–2011	<u>55</u>
Table 49.	Minimum inhibitory concentrations (MICs) and resistance of <i>Campylobacter jejuni</i> isolates to antimicrobial agents, 2011 (N=1275)	56

Table 50.	<u>Percentage and number of Campylobacter jejuni isolates resistant to antimicrobial agents.</u>	
	<u>2002–2011</u>	<u>56</u>
Table 51.	Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2011 (N=148)	. <u>57</u>
Table 52.	Percentage and number of <i>Campylobacter coli</i> isolates resistant to antimicrobial agents, 2002–2011	. <u>57</u>
Table 53.	Frequency of Vibrio species other than V. cholerae, 2009-2011	<u>58</u>
Table 54.	Minimum inhibitory concentrations (MICs) and resistance of isolates of <i>Vibrio</i> species other than <i>V. cholerae</i> to antimicrobial agents, 2009-2011	. <u>58</u>
Table 55.	Percentage and number of isolates of <i>Vibrio</i> species other than <i>V. cholerae</i> resistant to ampicillin, 2009-2011	. <u>59</u>
Appendix	A Table A1. WHO categorization of antimicrobials of critical importance to human medicine	<u>69</u>
Appendix	B Table B1. Retest criteria for unlikely or discordant resistance phenotypes	<u>70</u>
Appendix	B Table B2. <u>Uncommon resistance phenotypes for which retesting is encouraged</u>	<u>70</u>

List of Figures

Figure 1.	How to read a squashtogram	<u>26</u>
Figure 2.	Proportional chart, a categorical graph of a squashtogram	<u>27</u>
Figure 3.	Antimicrobial resistance pattern for non-typhoidal Salmonella, 2011	<u>30</u>
Figure 4.	Antimicrobial resistance pattern for Salmonella ser. Enteriditis, 2011	<u>32</u>
Figure 5.	Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2011	<u>34</u>
Figure 6.	Antimicrobial resistance pattern for Salmonella ser. Newport, 2011	<u>36</u>
Figure 7.	Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2011	<u>38</u>
Figure 8.	Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2011	<u>40</u>
Figure 9.	Antimicrobial resistance pattern for Salmonella ser. Typhi, 2011	<u>42</u>
Figure 10.	Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, 2011	<u>44</u>
Figure 11.	Antimicrobial resistance pattern for Shigella, 2011	<u>46</u>
Figure 12.	Antimicrobial resistance pattern for Shigella sonnei, 2011	<u>48</u>
Figure 13.	Antimicrobial resistance pattern for Shigella flexneri, 2011	<u>50</u>
Figure 14.	Antimicrobial resistance pattern for Escherichia coli O157, 2011	
Figure 15.	Antimicrobial resistance pattern for Campylobacter, 2011	<u>54</u>
Figure 16.	Antimicrobial resistance pattern for Campylobacter jejuni, 2011	<u>56</u>
Figure 17.	Antimicrobial resistance pattern for Campylobacter coli, 2011	<u>57</u>
Figure 18.	Percentage of non-typhoidal Salmonella isolates resistant to nalidixic acid, by year, 1996-2011	<u>60</u>
Figure 19.	Percentage of non-typhoidal Salmonella isolates resistant to ceftriaxone, by year, 1996-2011	<u>61</u>
Figure 20.	Percentage of Salmonella ser. Enteriditis isolates resistant to nalidixic acid, by year, 1996-2011	<u>61</u>
Figure 21.	Percentage of Salmonella ser. Heidelberg isolates resistant to ceftriaxone, by year, 1996-2011	<u>62</u>
Figure 22.	Percentage of Salmonella ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996-2011	<u>62</u>
Figure 23.	Percentage of Salmonella ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx), by year, 1996-2011	<u>63</u>
Figure 24.	Percentage of non-typhoidal Salmonella isolates resistant to 1 or more antimicrobial classes, by year, 1996-2011	<u>63</u>
Figure 25.	Percentage of non-typhoidal Salmonella isolates resistant to 3 or more antimicrobial classes, by year, 1996-2011	<u>64</u>
Figure 26.	Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999-2011	<u>64</u>
Figure 27.	Percentage of Campylobacter isolates resistant to ciprofloxacin, by year, 1997-2011	<u>65</u>
Figure 28.	Percentage of Shigella isolates resistant to nalidixic acid, by year, 1999-2011	65

List of Abbreviations and Acronyms

ACSSuT Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and

tetracycline

ACSSuTAuCx Resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole,

tetracycline, amoxicillin-clavulanic acid, and ceftriaxone

ACT/S Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole

ANT/S Resistance to at least ampicillin, nalidixic acid and trimethoprim-sulfamethoxazole

AT/S Resistance to at least ampicillin and trimethoprim-sulfamethoxazole

CDC Centers for Disease Control and Prevention

CI Confidence interval

CLSI Clinical and Laboratory Standards Institute

CxNal Resistance to at least ceftriaxone and nalidixic acid

EIP Emerging Infections Program

ELC Epidemiology and Laboratory Capacity

ESBL Extended-spectrum β-lactamase

FDA-CVM Food and Drug Administration-Center for Veterinary Medicine

FoodNet Foodborne Diseases Active Surveillance Network

MIC Minimum inhibitory concentration

NARMS National Antimicrobial Resistance Monitoring System for Enteric Bacteria

OR Odds ratio

USDA United States Department of Agriculture

WHO World Health Organization

NARMS Working Group

Centers for Disease Control and **Prevention**

National Center for Emerging and Zoonotic Infectious Diseases

Division of Foodborne, Waterborne and Environmental Diseases

Enteric Diseases Epidemiology Branch

Enteric Diseases Laboratory Branch

Christy Bennett Amelia Bicknese Allison Brown Amanda Conrad Jason Folster Peter Gerner-Smidt Julian Grass

Patricia Griffin

Robert Michael Hoekstra

Rebecca Howie Martha Iwamoto Kevin Joyce Maria Karlsson

Beth Karp Amy Krueger

Andre McCullough Felicita Medalla

Allison O'Donnell

Gary Pecic

Melissa Pitcher

Jared Reynolds Regan Rickert

Robert Tauxe

Julia Taylor

Lexie Vaughn Jean Whichard

U.S. Food and Drug Administration

Center for Veterinary Medicine

Heather Tate Claudine Kabera Patrick McDermott Emily Crarey

Participating State and Local Health Departments

Alabama Department of Public Health

Chris Caldwell
Sherri Davidson
Yolonda Gordon
Catrina Hollins
Sharon Massingale
Patricia Morrow
Tina Pippin
Joanna Roberson

Alaska Department of Health and Social Services

Shellie Smith Catherine Xavier

Arizona Department of Health Services

Shoana Anderson Aarikha D'Souza Sherry Gower Ken Komatsu William Slanta Victor Waddell

Arkansas Department of Health Rossina Stefanova

California Department of Health Services

Claudia Crandall Gillian Edwards

Colorado Department of Public Health and Environment

Alicia Cronquist Laura Gillim-Ross Joyce Knutsen Hugh Maguire

Connecticut Department of Public Health

Diane Barden George Goad Sharon Hurd Aristea Kinney Mona Mandour

Delaware Health and Social Services

Gaile McLaughlin Bela Patel Linda Popels Debra Rutledge

District of Columbia Department of Health

Reginald Blackwell Alpha A. Diallo Sosina Merid

Florida Department of Health

Ronald Baker Beth Burden Sonia Etheridge Robyn Kay

Georgia Division of Public Health

Jim Benson
Cherie Drenzek
Elizabeth Franko
Mahin Park
Lynett Poventud
Melissa Tobin-D'Angelo

Hawaii Department of Health

Rebecca Kanenaka Norman O'Connor

Houston Health and Human Services Department

Raouf Arafat
Adebowale Awosika-Olumo
Pamela Brown-Bywaters
Gregory Dufour
Vern Juchau
Sudha Pottumarthy
Joan Rogers

Idaho Department of Health and Welfare

Colleen Greenwalt Vivian Lockary Raemi Nolevanko

Illinois Department of Public Health

Nancy Barstead
Robert Cox
Rebecca Hambelton
Stephen Hendren
Steve Hopkins
Patricia Kloppenburg
Mary Konczyk
Patrick Miller
Mohammad Nasir
Kiran Patel
Tricia Patterson
Guinevere Reserva
Andrea Stadsholt

Indiana State Department of Health

Brent Barrett Sarah Popovich Jon Radosevic

Iowa Department of Public Health, University Hygienic Laboratory

Mary DeMartino Randy Groepper

Kansas Department of Health and Environment

Sheri Anderson Jamie DeMent Carissa Robertson

Kentucky Department of Public Health

Robin Cotton Karim George William Grooms Darrin Sevier Jack Wiedo

Los Angeles County Department of Health Services

Sheena Chu Mary Beth Duke J. Michael Janda Laurene Mascola Roshan Reporter Michael Stephens Joan Sturgeon

Louisiana Department of Health and Hospitals

Gary Balsamo
Erin Delaune
Wayne Dupree
Lori Kravet
Steven Martin
Raoult Ratard
Theresa Sokol

Susanne Straif-Bourgeois

Maine Department of Human Services

Geoff Beckett
Kathleen Gensheimer
Jeff Randolph
Vicki Rea
Lori Webber
Donna Wrigley
Anthony Yartel

Maryland Department of Health and Mental Hygiene

David Blythe Carrianne Jung Celere Leonard Amanda Palmer Jafar Razeq Pat Ryan

Massachusetts Department of Public Health

Catherine Brown
Larry Connolly
Alfred DeMaria
Emily Harvey
Patricia Kludt
Tracy Stiles

Michigan Department of Community Health

Carrie Anglewicz Jennifer Beggs Frances Downes Jennie Finks James Rudrik Kelly Scott Sandip Shah

Minnesota Department of Health

Billie Juni Fe Leano Stephanie Meyer Kirk Smith Charlotte Taylor Theresa Weber

Mississippi Department of Health

Jannifer Anderson Jane Campbell Sheryl Hand Cathie Hoover Lucersia Nichols Alice Singley Daphne Ware

Missouri Department of Health

David Byrd Russ Drury Steve Gladbach Jason Herstein Harvey Marx Katy Morgan JoAnn Rudroff

Montana Department of Public Health and Human Services

Allison Bishop Debbie Gibson Karl Milhon Susanne Zanto

Nebraska Health and Human Services and the Nebraska Public Heatlh Laboratory

Amy Armbrust Paul Fey Peter Iwen Manjiri Joshi Tom Safranek Robin Williams

Nevada Department of Health and Human Services

Vince Abitria
Patricia Armour
Jaime Frank
Paul Hug
Bradford Lee
Mary Owens
Susanne Quianzon
Lisa Southern
Stephanie Van Hooser

New Hampshire Department of Health and Human Services

Christine Adamski Christine Bean Elizabeth Daly Wendy Lamothe Nancy Taylor Daniel Tullo

New Jersey Department of Health

Ruth Besco Michelle Malavet Sylvia Matiuck Paul Seitz

New Mexico Department of Health

Lisa Butler Sarah Khanlian Robert Mansman Cynthia Nicholson Lisa Onischuk Erica Pierce Paul Torres

New York City Department of Health

Sharon Balter
Ludwin Chicaiza
Heather Hanson
Lillian Lee
Jennifer Rakeman
Vasudha Reddy

New York State Department of Health

Leanna Armstrong Nellie Dumas Dale Morse Tim Root Shelley Zansky

North Carolina Department of Health and Human Services

Denise Griffin Debra Springer

North Dakota Department of Health

Julie Wagendorf Eric Hieb Laura Mastel Tracy Miller Lisa Well

Ohio Department of Health

Tammy Bannerman Rick Bokanyi Rebekah Carman Jane Carmean Larry King Marika Mohr Scott Nowicki Kim Quinn Ellen Salehi Mindy Schwartz

Oklahoma State Department of Health

Rebekah Berry Sherry Hearon Mike Lytle Mike McDermot

Oregon Public Health Division

Debbie Berquist
Hillary Booth
Marianna Cavanaugh
Cathy Ciaffoni
Paul Cieslak
Dawn Daly
Emilio Debess
Julie Hatch
Beletsachew Shiferaw
Janie Tierheimer
Robert Vega
Veronica Williams

Pennsylvania Department of Human Service

Lisa Dettinger James Lute Nkuchia M'ikanatha Carol Sandt James Tait

Rhode Island Department of Health

Tara Cooper Deanna Simmons Cindy Vanner

South Carolina Department of Health and Environmental Control

Sandra J. Bandstra Dana Giurgiutiu Jennifer Meredith

South Dakota Department of Health

Christopher Carlson Laurie Gregg Lon Kightlinger

Tennessee Department of Health

Parvin Arjmandi John Dunn Samir Hanna Henrietta Hardin Tim Jones Sheri Roberts Amy Woron

Texas Department of State Health Services

Tamara Baldwin
Elizabeth Delamater
Linda Gaul
Grace Kubin
Tori Ponson
Chun Wang

Utah Department of Health

Kim Christensen Jana Coombs David Jackson Barbara Jepson Susan Mottice

Vermont Department of Health

Erica Berl Mary CelottiValerie Cook Christine LaBarre Bradley Tompkins

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health

Ellen Bassinger Sherry Giese Jody Lowman Mary Mismas Denise Toney

Washington Department of Health

Romesh Gautom Brian Hiatt Yolanda Houze Kathryn MacDonald Sandra Moon Nusrat Syed Mike Tran Maryann Watkins

West Virginia Department of Health and Human Resources

Danae Bixler Christi Clark Maria del Rosario Loretta Haddy Andrea Labik Suzanne Wilson Megan Young

Wisconsin Department of Health and Family Services

John Archer
Susan Ahrabi-Fard
Charles Brokopp
Jeffrey Davis
Rick Hefferman
Rachel Klos
Tim Monson
Dave Warshauer

Wyoming Department of Health

Richard Harris John Harrison Clay Van Houten Tracy Murphy Jim Walford

Introduction

The primary purpose of the National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention (CDC) is to monitor antimicrobial resistance among enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in enteric bacteria isolated from foods, conducted by the U.S. Food and Drug Administration's Center for Veterinary Medicine (FDA-CVM)

(http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm), and for resistance in enteric bacteria isolated from animals, conducted by the U.S. Department of Agriculture's Agricultural Research Service (USDA-ARS) (http://www.ars.usda.gov/main/site_main.htm?modecode=66-12-05-08).

Many NARMS activities are conducted within the framework of the Foodborne Diseases Active Surveillance Network (FoodNet), which is part of CDC's Emerging Infections Program (EIP), and also with CDC's Epidemiology and Laboratory Capacity (ELC) Program. In addition to surveillance of resistance in enteric pathogens, the NARMS program at CDC also conducts research into the mechanisms of resistance and performs susceptibility testing of isolates that caused outbreaks.

Before NARMS was established, CDC monitored antimicrobial resistance in *Salmonella*, *Shigella*, and *Campylobacter* through periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with prospective monitoring of antimicrobial resistance among clinical non-Typhi *Salmonella* (refers to all serotypes other than Typhi, which causes typhoid fever) and *Escherichia coli* O157 isolates in 14 sites. In 1997, testing of clinical *Campylobacter* isolates was initiated in the five sites participating in FoodNet. Testing of clinical *Salmonella enterica* serotype Typhi and *Shigella* isolates was added in 1999. Since 2003, all 50 states have been forwarding all *Salmonella* ser. Typhi isolates and a representative sample of non-Typhi *Salmonella*, *Shigella*, and *E. coli* O157 isolates to NARMS for antimicrobial susceptibility testing, and 10 FoodNet states have been participating in *Campylobacter* surveillance. Since 2008, all 50 states have been forwarding every *Salmonella* Paratyphi A and C to NARMS for antimicrobial susceptibility testing. Beginning in 2009, NARMS also performed susceptibility testing on isolates of *Vibrio* species other than *V. cholerae*. NARMS participating public health laboratories were asked to forward every isolate of *Vibrio* species other than *V. cholerae* that they received to CDC for antimicrobial susceptibility testing.

This annual report includes CDC's surveillance data for 2011 for non-typhoidal *Salmonella*, typhoidal *Salmonella*, *Shigella*, *Campylobacter*, *E. coli* O157, and *Vibrio* species other than *V. cholerae*. Surveillance data include the number of isolates tested by NARMS for each pathogen, and the number and percentage of isolates that were resistant to each of the antimicrobial agents tested. Data for earlier years are presented in tables and graphs when appropriate. Antimicrobial classes defined by the Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis.

This report uses the World Health Organization's categorization of antimicrobials of critical importance to human medicine (Appendix A) in the tables that present minimum inhibitory concentration (MIC) and percent resistant tables.

Additional NARMS data and more information about NARMS activities are available at http://www.cdc.gov/narms/.

What is New in the NARMS Report for 2011

Azithromycin Susceptibility Data for E. coli O157, Salmonella and Shigella

For the first time, we present azithromycin susceptibility data for *Escherichia coli* O157, *Shigella*, and *Salmonella*. Currently, azithromycin is recommended for the treatment of both shigellosis and invasive salmonellosis by the World Health Organization and The American Academy of Pediatrics, and this drug is increasingly being used for the management of uncomplicated enteric fever (World Health Organization, 2005; American Academy of Pediatrics, 2012) At present, no CLSI clinical azithromycin breakpoints have been defined for *Enterobacteriaceae*, including *Salmonella* and *Shigella*. The azithromycin breakpoints used in this report are based on epidemiological cut-offs determined from NARMS MIC distributions of *Salmonella* and *Shigella* (Sjölund-Karlsson et al, 2011; Howie at al 2010). It should be noted that these NARMS-developed breakpoints cannot be used to predict clinical efficacy. Azithromycin replaced the aminoglycoside amikacin on the panel of drugs being tested, so only historical susceptibility data are provided for amikacin.

Fluoroquinolone Breakpoints for Enterobacteriaceae

In 2012, CLSI revised the fluoroquinolone interpretive criteria for invasive *Salmonella*. In our 2010 report, fluoroquinolone susceptibility data using both the outgoing and new breakpoints were reported. In this report, all interpretations are based on the new breakpoints published in the January 2012 CLSI M100 document. For public health surveillance purposes, the new breakpoints were applied to all *Salmonella* isolates (not just those from sterile sites) because all *Salmonella* serotypes have the potential to cause invasive infection.

Testing of Ceftriaxone/Ceftiofur-Resistant Non-Typhoidal *Salmonella* for Resistance to Additional Broad-Spectrum β-lactams

Starting in 2011, all non-typhoidal *Salmonella* isolates displaying resistance to the third-generation cephalosporins ceftriaxone (MIC \geq 4 µg/mL) or ceftiofur (MIC \geq 8 µg/mL) were subjected to additional testing. Results for six broad-spectrum β -lactam drugs, including aztreonam, cefepime, cefotaxime, ceftazidime, imipenem, and piperacillintazobactam are reported. The results are presented on page 15.

Summary of NARMS 2011 Surveillance Data

Population

In 2011, all 50 states and the District of Columbia participated in NARMS, representing the entire U.S. population of approximately 312 million persons (Table 1). Surveillance was conducted in all states for *Salmonella* (typhoidal and non-typhoidal), *Shigella*, *Escherichia coli* O157, and *Vibrio* species other than *V. cholerae*. For *Campylobacter*, surveillance was conducted in 10 states that comprise the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 48 million persons (15% of the U.S. population).

Clinically Important Antimicrobial Resistance Patterns

In the United States, fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are commonly used to treat severe *Salmonella* infections, including those caused by *Salmonella* ser. Typhi, the organism that causes typhoid fever. In *Enterobacteriaceae*, resistance to nalidixic acid, an elementary quinolone, correlates with decreased susceptibility to ciprofloxacin (MIC≥0.12 µg/mL) and possible fluoroquinolone treatment failure. Macrolides (e.g., azithromycin) are also of clinical importance. A substantial proportion of *Enterobacteriaceae* isolates tested in 2011 demonstrated clinically important resistance.

Among *Salmonella* isolates, antimicrobial resistance varies by serotype. Changes in resistance among all non-typhoidal *Salmonella* may reflect changes in resistance within serotypes, changes in serotype distribution, or both.

- 2.4% (57/2344) of non-typhoidal *Salmonella* isolates were resistant to nalidixic acid. Enteriditis was the most common serotype among nalidixic acid-resistant non-typhoidal *Salmonella* isolates.
 - 49% (28/57) of nalidixic acid-resistant isolates were ser. Enteriditis
 - o 7.2% (28/391) of ser. Enteriditis isolates were resistant to nalidixic acid
- 2.5% (58/2344) of non-typhoidal Salmonella isolates were resistant to ceftriaxone. The most common serotypes among the 58 ceftriaxone-resistant isolates were Typhimurium, Newport, and Heidelberg. Resistance was detected in
 - o 6.8% (22/323) of ser. Typhimurium isolates
 - o 3.9% (11/285) of ser. Newport isolates
 - o 8.6% (6/70) of ser. Heidelberg isolates
- 0.2% (5/2344) of non-typhoidal *Salmonella* isolates were resistant to azithromycin.
- 71% (271/383) of *Salmonella* ser. Typhi isolates were resistant to nalidixic acid and 7.3% (28/383) were resistant to ciprofloxacin.
- 97% (141/146) of Salmonella ser. Paratyphi A isolates were resistant to nalidixic acid and 2.1% (3/146) were resistant to ciprofloxacin.

In Shigella, fluoroquinolones and macrolides (e.g., azithromycin) are important agents in the treatment of severe infections.

- 2.4% (7/293) of Shigella isolates were resistant to ciprofloxacin, including
 - o 6.9% (4/58) of Shigella flexneri isolates
- 6.1% (18/293) of Shigella isolates were resistant to nalidixic acid, including
 - o 12% (7/58) of Shigella flexneri isolates
- 3.1% (9/293) of Shigella isolates were resistant to azithromycin, including
 - o 10% (6/58) of Shigella flexneri isolates
 - o 0.9% (2/225) of Shigella sonnei isolates

In *Campylobacter*, fluoroquinolones and macrolides (e.g., erythromycin) are important agents in the treatment of severe infections. Gentamicin is less commonly used for treatment.

- 24% (357/1478) of Campylobacter isolates were resistant to ciprofloxacin, including
 - 24% (299/1275) of Campylobacter jejuni isolates
 - 36% (53/148) of Campylobacter coli isolates
- 1.8% (27/1478) of Campylobacter isolates were resistant to erythromycin, including
 - o 1.7% (22/1275) of Campylobacter jejuni isolates
 - o 2.7% (4/148) of Campylobacter coli isolates
- 2.0% (30/1478) of Campylobacter isolates were resistant to gentamicin, including
 - o 12% (18/148) of Campylobacter coli isolates

Multidrug Resistance

Multidrug resistance is reported in NARMS in different ways, including resistance to multiple classes of antimicrobial agents and also by specific co-resistance phenotypes.

For non-typhoidal *Salmonella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole/sulfisoxazole), and tetracycline (ACSSuT); these agents encompass five CLSI classes. Another important phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCX); these agents encompass seven CLSI classes.

- 9.1% (213/2344) of non-typhoidal Salmonella isolates were resistant to three or more CLSI classes. The most common serotypes with this resistance pattern were Typhimurium, I,4,[5],12:i:, Heidelberg, Newport, Enteritidis, and Dublin. Resistance to three or more classes occurred in
 - o 26% (85/323) ser. Typhimurium isolates
 - o 27% (22/82) ser. I,4,[5],12:i:- isolates
 - 30% (21/70) ser. Heidelberg isolates
 - o 3.9% (11/285) ser. Newport isolates
 - o 2.3% (9/391) ser. Enteriditis isolates
 - o 60% (6/10) ser. Dublin isolates
- 1.5% (36/2344) of non-typhoidal Salmonella isolates were at least ACSSuTAuCx resistant. The most common serotypes were Typhimurium, Newport, and Dublin. ACSSuTAuCx resistance occurred in
 - o 5.3% (17/323) ser. Typhimurium isolates
 - o 3.5% (10/285) ser. Newport isolates
 - o 40.0% (4/10) ser. Dublin isolates

For *Salmonella* ser. Typhi, an important multidrug-resistance phenotype includes resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (ACT/S).

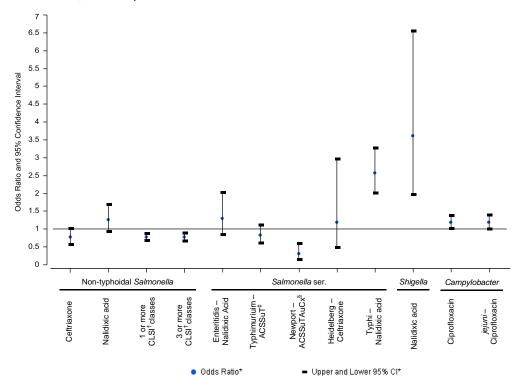
 10.4% (40/383) of ser. Typhi isolates were resistant to at least ACT/S and 12.3% (47/383) were resistant to three or more classes

For *Shigella*, an important multidrug-resistance phenotype includes resistance to at least ampicillin and trimethoprim-sulfamethoxazole (AT/S).

 26% (76/293) of Shigella isolates were resistant to at least AT/S and 51% (150/293) were resistant to three or more classes

Changes in Antimicrobial Resistance: 2011 vs. 2003-2007

To understand changes in the prevalence of antimicrobial resistance among Salmonella, Shigella, and Campylobacter over time, we used logistic regression to compare the prevalence of specific resistance patterns among isolates tested in 2011 with the average prevalence of resistance in 2003-2007. The prevalence of resistance was defined as the percentage of resistant isolates among total isolates tested. The methods are described in more detail in Surveillance and Laboratory Testing Methods. Changes in the prevalence of resistance do not provide information about changes in the incidence of resistant infections. The incidence and relative changes in the incidence of Salmonella, Shigella, and Campylobacter infections are reported annually from surveillance in FoodNet sites (CDC, 2012). Since 2003, all 50 states have participated in NARMS Salmonella and Shigella surveillance and all 10 FoodNet sites in Campylobacter surveillance.


The differences between the prevalence of resistance in 2011 and the average prevalence of resistance in 2003–2007 (Figure 1) were statistically significant for the following:

- Among non-typhoidal Salmonella
 - Resistance to one or more CLSI classes was lower in 2011 than in 2003-2007 (15.4% vs. 19.9%; odds ratio [OR]=0.78, 95% confidence interval [CI] 0.69-0.88)
 - Resistance to three or more CLSI classes was lower in 2011 than in 2003-2007 (9.1% vs. 12.1%; OR=0.77, 95% CI 0.66-0.90)
- Among Salmonella of particular serotypes
 - ACSSuTAuCx resistance in ser. Newport was lower in 2011 than in 2003-2007 (3.5% vs. 13.4%; OR=0.30, 95% CI 0.15-0.59)
- Nalidixic acid resistance in ser. Typhi was higher in 2011 than in 2003-2007 (70.8% vs. 48.9%; OR=2.56, 95% CI 2.01-3.27)
- Among Shigella spp.
 - Nalidixic acid resistance was higher in 2011 than in 2003–2007 (6.1% vs. 1.9%; OR=3.61, 95% CI 1.98–6.55)
- Among Campylobacter spp.
 - Ciprofloxacin resistance was higher in 2011 than in 2003-2007 (24.2% vs. 20.8%; OR=1.19, 95% CI 1.02-1.39)

The differences between the prevalence of resistance in 2011 and the average prevalence of resistance in 2003–2007 (Figure 1) were not statistically significant for the following:

- Among non-typhoidal Salmonella
 - Ceftriaxone resistance (2.5% vs. 3.5%; OR=0.78, 95% CI 0.58-1.03)
 - Nalidixic acid resistance (2.4% vs. 2.1%; OR=1.25, 95% CI 0.93-1.69)
- Among Salmonella of particular serotypes
 - Nalidixic acid resistance in ser. Enteritidis (7.2% vs. 5.8%; OR=1.30, 95% CI 0.84-2.03) 0
 - ACSSuT resistance in ser. Typhimurium (19.5% vs. 22.9%; OR=0.83, 95% CI 0.61-1.11) 0
 - Ceftriaxone resistance in ser. Heidelberg (8.6% vs. 7.9%; OR=1.19, 95% CI 0.48-2.96)
 - Among Campylobacter jejuni, ciprofloxacin resistance (23.5% vs. 20.4%; OR=1.18, 95% CI 1.00-1.40)

Figure H1. Summary of trend analysis of the prevalence of specific resistance patterns among Salmonella, Shigella, and Campylobacter isolates, 2011 compared with 2003-2007*

The reference is the average prevalence of resistance in 2003–2007. Logistic regression models adjusted for site. The odds ratios (ORs) and 95% confidence intervals (CIs) for 2011 compared with the reference were calculated using unconditional maximum likelihood estimation. ORs that do not include 1.00 in the 95% CIs are reported as statistically significant. California may have submitted more than 1 in 20 non-typhoidal Salmonella isolates from 3 counties during 2008–09; however, analysis excluding isolates from those counties showed equivalent results

Antimicrobial classes of agents defined by the Clinical and Laboratory Standards Institute (CLSI) are used

ACSSuT:resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline ACSSuTAuCx: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone

Testing of Ceftriaxone/Ceftiofur Resistant Non-Typhoidal Salmonella to Additional Broad-Spectrum β-Lactams, 2011

Among 2,344 isolates of non-typhoidal *Salmonella* collected by NARMS in 2011, 58 displayed resistance to the third-generation cephalosporins ceftriaxone (MIC \geq 4 μ g/mL) or ceftiofur (MIC \geq 8 μ g/mL). The antimicrobial susceptibility patterns of these isolates were further investigated by determining the MICs to additional β -lactam drugs. Results are reported for six additional β -lactam drugs (aztreonam, cefepime, ceftazidime, cefotaxime, piperacillin-tazobactam, and imipenem). Susceptibility testing was performed using broth microdilution (Sensititre[®], Trek Diagnostics, Cleveland, OH) according to the manufacturer's instructions.

Among the 58 isolates tested, 6 (10.3%) showed resistance to the β -lactam/ β -lactamase inhibitor combination piperacillin-tazobactam. In the cephem class, 1 (1.7%) was resistant to cefipime, all 58 to cefotaxime, and 56 (97%) ceftazidime. Twenty-four (41%) were resistant to the monobactam aztreonam and 1 (1.7%) to the penem imipenem.

A single isolate, ser. Senftenberg, displayed resistance to the carbapenem imipenem (MIC 4 μ g/mL). The same isolate also displayed elevated MICs to the other drugs tested (aztreonam MIC >32 μ g/mL, cefepime MIC >32 μ g/mL, ceftazidime MIC >128 μ g/mL, cefotaxime >128 μ g/mL, and piperacillin-tazobactam MIC >128 μ g/mL). Molecular characterization of this isolate revealed the presence of a gene encoding a New Delhi metallo- β -lactamase (NDM) carbapenemase, as well as two additional β -lactamase genes (bla_{TEM} and bla_{CMY} classes of genes). A NDM carbapenemase was first described by Yong et al. in 2009 and has been detected in other clinical isolates of *Enterobacteriaceae* in the United States. The present isolate represents the first NDM-positive *Salmonella* identified in the United States and has been described in a previous report. The detection of a NDM carbapenemase in *Salmonella* highlights the continued need for and importance of performing additional testing against broad-spectrum β -lactam drugs.

Table H1. Broad-spectrum β-lactam resistance among all ceftriaxone/ceftiofur-resistant non-typhoidal Salmonella isolates, 2011 (N=58)

Rank*	CLSI [†] Antimicrobial	Antimicrobial	Perc	entage	of isolates					Pei	rcenta	ge of a	II isola	tes wi	th MIC	(µg/m	L)**				
Rank	Class	Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	β-lactam / β-lactamase inhibitor combinations	Piperacillin- tazobactam	15.5	10.3	[3.9 - 21.2]							1.7	5.2	15.5	39.7	12.1	5.2	10.3	3.4	6.9	
	Cephems	Cefepime	0.0	1.7	[0.0 - 9.2]				3.4	32.8	41.4	13.8	5.2		1.7			1.7			
١.		Cefotaxime	0.0	100	[93.8 - 100]									1.7	10.3	37.9	34.5	10.3	3.4	1.7	
'		Ceftazidime	3.4	96.6	[88.1 - 99.6]									•	3.4	22.4	53.4	12.1	6.9	1.7	
	Monobactams	Aztreonam	43.1	41.4	[28.6 - 55.1]								6.9	8.6	43.1	27.6	8.6	5.2			
	Penems	Imipenem	0.0	1.7	[0.0 - 9.2]				1.7	77.6	19.0			1.7							

- * Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important
- † CLSI: Clinical and Laboratory Standards Institute
- Percentage of isolates with intermediate susceptibility
- § Percentage of isolates with intermediate so § Percentage of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

^{**} The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

¹ Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009 Dec;53(12):5046-54.

² Savard P, Gopinath R, Zhu W, Kitchel BJ, Rasheed K, Tekle T, Roberts A, Ross T, Razeq J, B. Landrum BM, Wilson LE, Limbago B, Perl TM, and Carroll KC. First NDM-Positive Salmonella sp. Strain Identified in the United States. Antimicrob Agents Chemother. 2011 Dec; 55(12): 5957–5958.

³ Mochon AB, Garner OB, Hindler JA, Krogstad P, Ward KW, Lewinski MA, Rasheed JK, Anderson KF, Limbago BM, and Humphries RM. New Delhi Metallo-β-Lactamase (NDM-1)-Producing Klebsiella pneumoniae: Case Report and Laboratory Detection Strategies. J Clin Microbiol. 2011 April; 49(4): 1667–1670.

Emergence of ASSuT Resistance in Salmonella ser. I 4,[5],12:i:- in the United States

Over the last 10 years, a notable increase of Salmonella ser. I 4,[5],12:i:- infections with resistance to ampicillin, streptomycin, sulfonamide, and tetracycline (ASSuT) but not chloramphenicol, has been observed throughout Europe. Serotype I 4,[5],12:i:- is related to serotype Typhimurium (I 4,[5],12:i:1,2). Resistance is conferred by *bla_{TEM}*, *strA/B*, *sul2*, and *tet*(B) genes on the chromosome. In the United States, ASSuT resistance among human Salmonella ser. I 4,[5],12:i:- isolates emerged in 2010; thirteen (17%) of 78 isolates in NARMS had this resistance pattern in 2010 compared with 1 (1.4%) of 72 in 2009 (Figure H2 and Table H2). Resistance to ampicillin, streptomycin, sulfonamide, and tetracycline has also been observed among NARMS isolates of Salmonella ser. Typhimurium; however, the majority of Typhimurium isolates resistant to these four agents showed additional resistance to chloramphenicol (ACSSuT) (Table H2), a pattern which is associated with the presence of a chromosomal resistance region called Salmonella Genomic Island 1 (SGI1). In Europe, infections with ASSuT-resistant Salmonella ser. I 4,[5],12:i:- have frequently been reported among persons exposed to pigs or pork products, and the organism has been isolated from pigs. Investigations are underway to determine the source(s) and molecular mechanisms responsible for ASSuT-resistant Salmonella ser. I 4,[5],12:i:- infections in the United States.

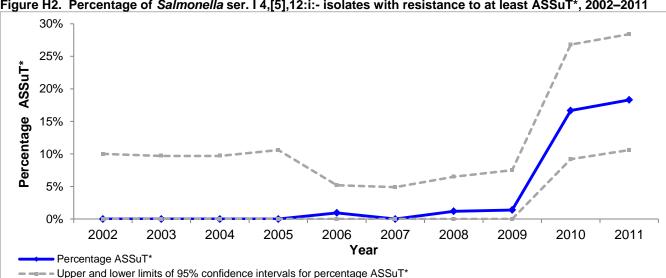


Figure H2. Percentage of Salmonella ser. I 4,[5],12:i:- isolates with resistance to at least ASSuT*, 2002–2011

Table H2. Percentage and number of Salmonella ser. I 4,[5],12;i:- and ser. Typhimurium isolates with selected resistance patterns, 2002-2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
I 4,[5],12:i:- isolates	35	36	36	33	105	73	84	72	78	82
At least ASSuT* and not resistant to	0.0%	0.0%	0.0%	0.0%	1.0%	0.0%	1.2%	1.4%	16.7%	18.3%
chloramphenicol	0	0	0	0	1	0	1	1	13	15
A4 I4 ACCC.T	2.9%	0.0%	2.8%	0.0%	1.9%	1.4%	3.6%	6.9%	1.3%	1.2%
At least ACSSuT [†]	1	0	1	0	2	1	3	5	1	1
Typhimurium isolates	394	408	382	438	408	405	397	370	359	323
At least ASSuT* and not resistant to	4.3%	2.7%	2.4%	2.3%	3.2%	3.7%	0.3%	1.6%	3.6%	1.2%
chloramphenicol	17	11	9	10	13	15	1	6	13	4
At least ACSSuT [†]	21.6%	26.5%	23.6%	22.4%	19.6%	22.7%	23.2%	19.5%	18.7%	19.5%
	85	108	90	98	80	92	92	72	67	63

^{*} ASSuT: resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

Resistance to ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline, and no resistance to chloramphenicol

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

¹ Hopkins KL, Kirchner M, Guerra B. Granier SA, Lucarelli C, Porrero MC, Jakubczak A, Threlfall EJ, Mevius DJ. Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain?. Euro Surveill. 2010; 15(22):pij=19580. Available online: http://www.eurosurveillance.org/images/dynamic/EE/V15N22/art19580.pdf

² Lucarelli C, Dionisi AM, Filetici E, Owczarek S, Luzzi I, Villa L. Nucleotide sequence of the chromosomal region conferring multidrug resistance (R-type ASSuT) in Salmonella Typhimurium and monophasic Salmonella Typhimurium strains. JAC 2012;67(1):pp111-4. Available online: http://jac.oxfordjournals.org/content/67/1/111.full.pdf+html

Surveillance and Laboratory Testing Methods

Surveillance Sites and Isolate Submissions

In 2011, NARMS conducted nationwide surveillance among approximately 312 million persons (2011 estimates published in the 2012 U.S. Census Bureau report). Public health laboratories systematically selected every 20th non-typhoidal *Salmonella*, *Shigella*, and *Escherichia coli* O157 isolate and every *Salmonella* ser. Typhi, *Salmonella* ser. Paratyphi A, and *Salmonella* ser. Paratyphi C isolate received at their laboratories and forwarded these isolates to CDC for antimicrobial susceptibility testing. *Salmonella* ser. Paratyphi B was included in the every 20th sampling for non-typhoidal *Salmonella* because available laboratory methods do not always allow for consistent distinction between serotype Paratyphi B (which typically causes typhoidal illness) and serotype Paratyphi B var. L(+) tartrate+ (which does not typically cause typhoidal illness). Because the number of serotype Paratyphi B (tartrate negative) and serotype Paratyphi C isolates is small, this report includes susceptibility results only for serotype Paratyphi A. Beginning in 2009, NARMS also performed susceptibility testing on isolates of *Vibrio* species other than *V. cholerae* submitted by the NARMS participating public health laboratories. Participants were asked to forward every isolate of *Vibrio* species other than *V. cholerae* that they received to CDC for antimicrobial susceptibility testing by NARMS and confirmation by CDC's National Enteric Reference Laboratory.

Since 2005, public health laboratories of the 10 state health departments that participate in CDC's Foodborne Diseases Active Surveillance Network (FoodNet) have forwarded a sample of *Campylobacter* isolates received to CDC for susceptibility testing. The FoodNet sites, representing approximately 48 million persons (2011 estimates published in 2012 U.S. Census Bureau report), include Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York. Depending on the burden of *Campylobacter* in each FoodNet site, one of the following four methods was used to obtain and test a sample of *Campylobacter* isolates: all isolates received by Oregon and Tennessee; every other isolate from California, Colorado, Connecticut, Georgia, Maryland, and New York; every third isolate from New Mexico; and every fifth isolate from Minnesota. Isolates received from 2005 to 2009 had the same methods except all isolates were sent from Georgia, Maryland, and New Mexico. From 1997 to 2004, one *Campylobacter* isolate was submitted each week from participating FoodNet sites.

Table 1. Population size and number of isolates received and tested, NARMS, 2011

Table 1. Popu	liation Siz	e and					anu	testea	NAKI	113, 20	<u> </u>			
State/Site	Populatio	n Size [*]	_	phoidal onella		oidal [⊺] onella	Shig	gella	E. col	i 0157	Campyl	obacter [‡]	Vil	brio
	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Alabama	4,803,689	(1.5)	55	(2.3)	4	(8.0)	9	(3.1)	0	(0)			0	(0)
Alaska	723,860	(0.2)	4	(0.2)	0	(0)	1	(0.3)	1	(0.6)			0	(0)
Arizona	6,467,315	(2.1)	46	(2.0)	1	(0.2)	13	(4.4)	2	(1.2)			6	(1.5)
Arkansas	2,938,582	(0.9)	35	(1.5)	1	(0.2)	1	(0.3)	0	(0)			0	(0)
California [§]	27,794,877	(8.9)	161	(6.9)	81	(15.2)	1	(0.3)	3	(1.9)	146	(9.9)	0	(0)
Colorado	5,116,302	(1.6)	27	(1.2)	7	(1.3)	4	(1.4)	3	(1.9)	37	(2.5)	6	(1.5)
Connecticut	3,586,717	(1.2)	28	(1.2)	5	(0.9)	1	(0.3)	3	(1.9)	168	(11.4)	11	(2.8)
Delaw are	908,137	(0.3)	9	(0.4)	6	(1.1)	0	(0)	0	(0)			3	(8.0)
District of Columbia	619,020	(0.2)	8	(0.3)	0	(0)	0	(0)	0	(0)			0	(0)
Florida	19,082,262	(6.1)	68	(2.9)	15	(2.8)	0	(0)	1	(0.6)			93	(23.3)
Georgia	9,812,460	(3.1)	147	(6.3)	15	(2.8)	30	(10.2)	16	(9.9)	273	(18.5)	17	(4.3)
Haw aii	1,378,129	(0.4)	18	(0.8)	2	(0.4)	6	(2.0)	1	(0.6)			16	(4.0)
Houston, Texas [¶]	2,145,146	(0.7)	52	(2.2)	11	(2.1)	7	(2.4)	1	(0.6)			5	(1.3)
ldaho	1,583,744	(0.5)	6	(0.3)	0	(0)	1	(0.3)	1	(0.6)			0	(0)
Illinois	12,859,752	(4.1)	86	(3.7)	44	(8.3)	13	(4.4)	8	(4.9)			1	(0.3)
Indiana	6,516,353	(2.1)	32	(1.4)	11	(2.1)	3	(1.0)	3	(1.9)			0	(0)
low a	3,064,097	(1.0)	20	(0.9)	7	(1.3)	0	(0)	5	(3.1)			0	(0)
Kansas	2,870,386	(0.9)	17	(0.7)	1	(0.2)	2	(0.7)	2	(1.2)			0	(0)
Kentucky	4,366,814	(1.4)	27	(1.2)	0	(0)	0	(0)	0	(0)			0	(0)
Los Angeles**	9,889,056	(3.2)	56	(2.4)	21	(3.9)	3	(1.0)	1	(0.6)			0	(0)
Louisiana	4,574,766	(1.5)	57	(2.4)	1	(0.2)	13	(4.4)	0	(0)			30	(7.5)
Maine	1,328,544	(0.4)	1	(< 0.1)	0	(0)	0	(0)	1	(0.6)			1	(0.3)
Maryland	5,839,572	(1.9)	57	(2.4)	21	(3.9)	5	(1.7)	2	(1.2)	183	(12.4)	19	(4.8)
Massachusetts	6,607,003	(2.1)	51	(2.2)	30	(5.6)	9	(3.1)	3	(1.9)		(/	24	(6.0)
Michigan	9,876,801	(3.2)	37	(1.6)	6	(1.1)	5	(1.7)	0	(0)			2	(0.5)
Minnesota	5,347,299	(1.7)	35	(1.5)	6	(1.1)	5	(1.7)	7	(4.3)	180	(12.2)	7	(1.8)
Mississippi	2,977,457	(1.0)	60	(2.6)	1	(0.2)	10	(3.4)	2	(1.2)	100	(12.2)	10	(2.5)
Missouri	6,008,984	(1.9)	60	(2.6)	3	(0.6)	13	(4.4)	10	(6.2)			1	(0.3)
Montana	997,667	(0.3)	5	(0.2)	1	(0.2)	5	(1.7)	3	(1.9)			0	(0)
Nebraska	1,842,234	(0.6)	12	(0.5)	1	(0.2)	5	(1.7)	4	(2.5)			0	(0)
Nevada	2,720,028	(0.9)	8	(0.3)	6	(1.1)	2	(0.7)	1	(0.6)			1	(0.3)
New Hampshire	1,317,807	(0.4)	16	(0.7)	0	(0)	1	(0.7)	0	(0.0)			0	(0.5)
New Jersey	8,834,773	(2.8)	34	(1.5)	49	(9.2)	8	(2.7)	5	(3.1)			0	(0)
New Mexico	2,078,674	(0.7)	18	(0.8)	1	(0.2)	6	(2.7)	0	(0)	87	(5.9)	0	(0)
New York ^{††}	11,256,706	` ′	73	(3.1)	22	· '	6	(2.0)	6	(3.7)	205	(13.9)	29	· '
New York City ^{‡‡}	8,244,910	(3.6)	68	(2.9)	45	(4.1)	23	(7.8)	3	(1.9)	203	(13.9)	13	(7.3)
North Carolina	9,651,103	(3.1)	115	(4.9)	10	(1.9)	3	(1.0)	3	(1.9)			1	(0.3)
	684,740		3	(0.1)	0	(0)	1	(0.3)	1	 			0	· '
North Dakota		(0.2)	64	(2.7)	6	` '	6	(2.0)	6	(0.6)			1	(0)
Ohio	11,541,007	(3.7)	0	(0)	2	(1.1)	1		1				0	(0.3)
Oklahoma	3,784,163	(1.2)				(0.4)		(0.3)		(0.6)	400	(40.0)		(0)
Oregon	3,868,229 12.743.948	(1.2)	20 84	(0.9)	5 24	(0.9)	3 5	(1.0)	4	(2.5)	160	(10.8)	6	(1.5)
Pennsylvania	, -,	\ /		(/		(-/		\ /	4	(-/			0	(-/
Rhode Island	1,050,646	(0.3)	9	(0.4)	0	(0)	0	(0)	0	(0)			2	(0.5)
South Carolina	4,673,348	(1.5)	75	(3.2)	3	(0.6)	4	(1.4)	2	(1.2)	-		10	(2.5)
South Dakota	823,593	(0.3)	9	(0.4)	0	(0)	1	(0.3)	3	(1.9)		(0.0)	0	(0)
Tennessee	6,399,787	(2.1)	54	(2.3)	1	(0.2)	10	(3.4)	4	(2.5)	39	(2.6)	5	(1.3)
Texas ^{§§}	23,486,632	(7.5)	245	(10.5)	32	(6.0)	28	(9.6)	5	(3.1)	<u> </u>		36	(9.0)
Utah	2,814,347	(0.9)	11	(0.5)	1	(0.2)	3	(1.0)	2	(1.2)	1		0	(0)
Vermont	626,592	(0.2)	6	(0.3)	0	(0)	1	(0.3)	1	(0.6)	-		0	(0)
Virginia	8,104,384	(2.6)	39	(1.7)	7	(1.3)	1	(0.3)	3	(1.9)	ļ		6	(1.5)
Washington	6,823,267	(2.2)	35	(1.5)	13	(2.4)	6	(2.0)	8	(4.9)	ļ		33	(8.3)
West Virginia	1,854,908	(0.6)	35	(1.5)	0	(0)	4	(1.4)	3	(1.9)	ļ		0	(0)
Wisconsin	5,709,843	(1.8)	39	(1.7)	4	(8.0)	3	(1.0)	11	(6.8)	<u> </u>		4	(1.0)
Wyoming	567,356	(0.2)	7	(0.3)	0	(0)	2	(0.7)	3	(1.9)			1	(0.3)
Total	311,587,816	(100)	2344	(100)	533	(100)	293	(100)	162	(100)	1478	(100)	400	(100)

^{* 2011} state estimates published in 2012 U.S. Census Bureau population estimates; county and city estimates published in 2011 population estimates

[†] Typhoidal Salmonella includes Typhi, Paratyphi A, Paratyphi B (isolates negative for tartrate fermentation), and Paratyphi C

^{**}Campylobacter** isolates are submitted only from FoodNet sites which include Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York. Of the clinical laboratories in each site that perform on-site testing for Campylobacter* (range, 18 to 94 per site in 2011), the number submitting isolates to the state public health laboratory ranged from one to all.

§ Excluding Los Angeles County

[¶] Houston City

** Los Angeles County

^{††} Excluding New York City

[#]Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

^{§§} Excluding Houston, Texas

Testing of Salmonella, Shigella, and Escherichia coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and E. coli O157 isolates were tested using broth microdilution (Sensititre®, Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) according to manufacturer's instructions to determine the MICs for each of 15 antimicrobial agents: ampicillin, amoxicillin-clavulanic acid, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole (Table 2). Before 2004, sulfamethoxazole was used instead of sulfisoxazole to represent the sulfonamides. Interpretive criteria defined by CLSI were used when available. In 2011, azithromycin replaced amikacin on the panel of drugs being tested for Salmonella, Shigella, and E. coli O157, so only historical susceptibility data are provided for amikacin.

In January 2010, CLSI published revised interpretive criteria for ceftriaxone and *Enterobacteriaceae*; the revised resistance breakpoint for ceftriaxone is MIC \geq 4 µg/mL. Since the 2009 report, NARMS has applied the revised CLSI breakpoint for ceftriaxone resistance to data from all years. In January 2012, CLSI published revised ciprofloxacin breakpoints for invasive *Salmonella* infections. For those infections, ciprofloxacin susceptibility is defined as \leq 0.06 µg/mL; the intermediate category is defined as 0.12 to 0.5 µg/mL; and resistance is defined as \geq 1 µg/mL. For public health surveillance purposes, the new breakpoints were applied to all *Salmonella* isolates because all serotypes have the potential to cause invasive infection.

Repeat testing of isolates was done based on criteria in Appendix B

Table 2. Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia

coli O157 isolates, NARMS, 1996-2011

CLSI Class Aminoglycosides	Antimicrobial Agent	Antimicrobial Agent Concentration Range	MIC Inter	pretive Standar	d (µg/mL)
CLSI Class	Antimicrobial Agent	(μg/mL)	Susceptible	Intermediate*	Resistant
	Amikacin [†]	0.5–64	≤16	32	≥64
A series en al reseriales	Gentamicin	0.25–16	≤4	8	≥16
Aminoglycosides	Kanamycin	8–64	≤16	32	≥64
	Streptomycin [‡]	32–64	≤32	N/A	≥64
β–lactam / β–lactamase	Amoxicillin-clavulanic acid	1/0.5–32/16	≤8/4	16/8	≥32/16
inhibitor combinations	Piperacillin-tazobactam§	0.5–128	≤16	32–64	≥128
	Cefepime [§]	0.06–32	≤8	16	≥32
	Cefotaxime [§]	0.06–128	≤1	2	≥4
	Cefoxitin	0.5–32	≤8	16	≥32
Cephems	Ceftazidime [§]	0.06–128	≤4	8	≥16
	Ceftiofur	0.12–8	≤2	4	≥8
	Ceftriaxone [¶]	0.25–64	≤1	2	≥4
	Cephalothin**	2–32	≤8	16	≥32
	Sulfamethoxazole ^{††}	16–512	≤256	N/A	≥512
Folate pathway inhibitors	Sulfisoxazole	16–256	≤256	N/A	≥512
	Trimethoprim- sulfamethoxazole	0.12/2.38–4/76	≤2/38	N/A	≥4/76
Macrolides	Azithromycin ^{‡‡}	0.12-16	≤16	N/A	≥32
Monobactams	Aztreonam [§]	0.06–32	≤4	8	≥16
Penems	Imipenem [§]	0.06–16	≤1	2	≥4
Penicillins	Ampicillin	1–32	≤8	16	≥32
Phenicols	Chloramphenicol	2–32	≤8	16	≥32
Outral	Ciprofloxacin ^{§§}	0.015–4	≤1	2	≥4
Quinolones	Nalidixic acid	0.5–32	≤16	N/A	≥32
Tetracyclines	Tetracycline	4–32	≤4	8	≥16

^{*} N/A indicates that no MIC range of intermediate susceptibility exists

[†] Amikacin was tested from 1997 to 2010 for Salmonella, Shigella, and E. coli O157

[‡] No CLSI breakpoints; resistance breakpoint used in NARMS is ≥64 µg/mL

[§] Broad-spectrum β-lactam antimicrobial agent only tested for 2011 non-typhoidal *Salmonella* isolates displaying ceftriaxone and/or ceftiofur resistance

[¶] CLSI updated the ceftriaxone interpretive standards in January, 2010. NARMS Human Isolate reports for 1996 through 2008 used susceptible ≤8 μg/mL, intermediate 16-32 μg/mL, and resistant ≥64 μg/mL.

^{**} Cephalothin was tested from 1996 to 2003 for Salmonella, Shigella, and E. coli O157

^{††} Sulfamethoxazole, which was tested during 1996–2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

^{‡‡} CLSI breakpoints are not established for azithromycin. The azithromycin breakpoints used in this report are NARMS-established breakpoints for resistance monitoring and should not be used to predict clinical efficacy.

^{§§} CLSI breakpoints for invasive Salmonella infections were updated, effective January 2012. For Salmonella, ciprofloxacin susceptibility is defined as ≤0.06 μg/mL; the intermediate category is defined as 0.12 to 0.5 μg/mL; and resistance is defined as ≥1 μg/mL.

Additional Testing of Salmonella Strains

β-lactam Panel Testing

Isolates displaying resistance to either ceftriaxone (MIC \geq 4 µg/mL) or ceftiofur (MIC \geq 8 µg/mL) on the Trek Sensititre® gram-negative panel (described above) were subsequently tested using broth microdilution on a Sensititre® β -lactam panel (Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) according to manufacturer's instruction. The panel contained additional broad-spectrum β -lactam drugs: aztreonam, cefepime, cefotaxime, ceftazidime, imipenem, and piperacillin-tazobactam (Table 2). Briefly, a suspension of each isolate was made in water to a McFarland standard equivalency of 0.5, 10uL of this suspension was then used to inoculate a 10mL tube of Muller-Hinton broth, 50uL of this inoculated broth was dosed into each well of the 96-well β -lactam panel plate, and results were read manually after 18-20 hours of incubation at 35°C. Quality control isolates for this testing were *E. coli* ATCC 25922, *K. pneumoniae* ATCC 700603, *P. aeruginosa* ATCC 27853, and *S. aureus* ATCC 29213.

Cephalosporin Retesting of Isolates from 1996-1998

Salmonella isolates tested in NARMS during 1996 to 1998 had conflicting cephalosporin susceptibility results. In particular, some isolates previously reported in NARMS as ceftiofur-resistant exhibited a low ceftriaxone MIC and some did not exhibit an elevated MIC to other β-lactams. Because these findings suggested that some previously reported results were inaccurate, we retested using the 2003 NARMS Sensititre[®] plate, isolates of *Salmonella* tested in NARMS during 1996 to 1998 that exhibited an MIC $\ge 2 \mu g/mL$ to ceftiofur or ceftriaxone. The retest results have been included in the NARMS annual reports since 2003.

Serotype Confirmation/Categorization

Salmonella serotype reported by the submitting laboratory was used for reporting with few exceptions. Serotype was confirmed by CDC for isolates that underwent subsequent molecular analysis for publication. Because of challenges associated with interpretation of tartrate fermentation assays, ability to ferment tartrate was confirmed for isolates reported as Salmonella ser. Paratyphi B by the submitting laboratory (serotype Paratyphi B is by definition unable to ferment L(+) tartrate). To distinguish Salmonella serotypes Paratyphi B and Paratyphi B var. L(+) tartrate+ (formerly serotype Java), CDC performed Jordan's tartrate test or Kauffmann's tartrate test or both tests on all Salmonella ser. Paratyphi B isolates from 1996 to 2011 for which the tartrate result was not reported or was reported to be negative. Isolates negative for tartrate fermentation by both assays were categorized as serotype Paratyphi B. Isolates that were positive for tartrate fermentation by either assay were categorized as serotype Paratyphi B var. L(+) tartrate+. CDC did not confirm other biochemical reactions or somatic and flagellar antigens.

Because of increased submissions of *Salmonella* ser. I 4,[5],12:i:- noted in previous years, and recognition of the possibility that this serotype may have been underreported in previous years, isolates reported as serogroup B and tested in NARMS during 1996 to 2011 were reviewed for additional information; isolates that could be clearly identified as serogroup B, first-phase flagellar antigen "i" second phase flagellar antigen absent were categorized in this report as *Salmonella* ser. I 4,[5],12:i:-.

Testing of Campylobacter

Changes in Sampling Scheme in 2010

The number of isolates received from Georgia, Maryland, and New Mexico increased over time. To avoid oversampling from these sites, instead of testing all isolates that had been received for 2010, the scheme for testing isolates was changed to every other isolate from Georgia and Maryland and every third from New Mexico.

Changes in Testing Methods in 2005

Starting in 2005, there were four changes in the methodology used for *Campylobacter*. First, a surveillance scheme for selecting a more representative sample of *Campylobacter* isolates for submission by FoodNet sites was implemented. State public health laboratories within FoodNet sites receive *Campylobacter* isolates from reference and clinical laboratories within their state. In 2005, FoodNet sites changed from submitting the first isolate received each week to submitting every isolate (Georgia, Maryland, New Mexico, Oregon, and Tennessee), every other isolate (California, Colorado, Connecticut, and New York), or every fifth isolate received (Minnesota). Of the clinical laboratories in each site that perform on-site testing for *Campylobacter* (range,18 to 94 per site in 2011), the number submitting isolates to the state public health laboratory ranged from one to all. Second, the method of species identification was updated to parallel what is used by the CDC National *Campylobacter* Laboratory. Third, the susceptibility testing method changed from Etest® (AB bioMerieux, Solna, Sweden) to broth microdilution. Fourth, there were changes in the antimicrobial agents tested. Florfenicol replaced chloramphenicol as the phenicol class representative drug, and telithromycin was added to the panel of agents tested. These changes in methods began in 2005 and continue through this report except for noted changes to submissions from Georgia, Maryland, and New Mexico beginning in 2010.

Identification/Speciation and Antimicrobial Susceptibility Testing

All 2011 isolates were confirmed as *Campylobacter* using a genus polymerase chain reaction (PCR) (Linton *et al.* 1996) and run on a multiplex PCR assay (Vandamme *et al.* 1997) to identify *C. jejuni* and *C. coli.* Isolates needing further characterization were tested using a short set of biochemical and other species-specific PCR assays, if necessary. From 2005 to 2010, isolates were confirmed as *Campylobacter* by determination of typical morphology and motility using dark-field microscopy and a positive oxidase test reaction. Identification of *C. jejuni* was performed using the hippurate hydrolysis test. Hippurate-positive isolates were identified as *C. jejuni*. Hippurate-negative isolates were further characterized with PCR assays with specific targets for *C. jejuni* (*mapA* or *hipO* gene), *C. coli*-specific *ceuE* gene (Linton *et al.* 1997, Gonzales *et al.* 1997, Pruckler *et al.* 2006), or other species-specific primers. In 2010, all *jejuni* and suspected *coli* isolates were also confirmed through a multiplex PCR (Vandamme *et al.* 1997). Additionally the *ceuE* PCR was not used in 2010. From 2003 to 2004, putative *Campylobacter* isolates were identified as *C. jejuni* or *C. coli* using BAX® System PCR Assay according to the manufacturer's instructions (DuPont Qualicon, Wilmington, DE). Isolates not identified as *C. jejuni* or *C. coli* were further characterized by other PCR assays (Linton *et al.* 1996) or were characterized by the CDC National *Campylobacter* Reference Laboratory. From 1997 to 2002, methodology similar to that used from 2005 to 2009 was used.

The methods for susceptibility testing of *Campylobacter* and criteria for interpreting the results have changed during the course of NARMS surveillance. Beginning in 2005, broth microdilution using the Sensititre® system (Trek Diagnostics, part of Thermo Fisher Scientific, Cleveland, OH) was performed according to manufacturer's instructions to determine the MICs for nine antimicrobial agents: azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline (<u>Table 3</u>). CLSI recommendations for quality control were followed. From 1997 to 2004, Etest® (AB bioMerieux, Solna, Sweden) was used for susceptibility testing of *Campylobacter* isolates. *Campylobacter*-specific CLSI interpretive criteria were used for erythromycin, ciprofloxacin, and tetracycline beginning with the 2004 NARMS annual report. NARMS breakpoints were used for agents for which CLSI breakpoints were not available. Beginning in 2004, NARMS breakpoints were established based on the MIC distributions of NARMS isolates and the presence of known resistance genes or mutations. In pre-2004 annual reports, NARMS breakpoints used had been based on those available for other organisms. Establishment of breakpoints based on MIC distributions resulted in higher MIC breakpoints for azithromycin and erythromycin resistance compared with those reported in pre-2004 annual reports. The breakpoints listed in Table 3 have been applied to MIC data collected for all years so that resistance prevalence is comparable over time. Repeat testing of isolates was done based on criteria in Appendix B.

Table 3. Antimicrobial agents used for susceptibility testing of *Campylobacter* isolates, NARMS, 1997–2011

CI CI CIoco	Antimicrobial	Antimicrobial Agent	MIC Interpr	etive Standar	d (µg/mL)
CLSI Class	Agent	Concentration Range (µg/mL)	Susceptible	Intermediate	Resistant
Aminoglycosides	Gentamicin	0.12–32 0.016–256*	≤2	4	≥8
Ketolides	Telithromycin [†]	0.015–8	≤4	8	≥16
Lincosamides	Clindamycin	0.03–16 0.016–256*	≤2	4	≥8
Macrolides	Azithromycin	0.015–64 0.016–256*	≤2	4	≥8
Macrondes	Erythromycin	0.03–64 0.016–256*	≤8	16	≥32
Phenicols	Chloramphenicol [‡]	0.016–256*	≤8	16	≥32
Frieriicois	Florfenicol [§]	0.03–64	≤4	N/A	N/A
Quinolones	Ciprofloxacin	0.015–64 0.002–32*	≤1	2	≥4
Quinolones	Nalidixic acid	4–64 0.016–256*	≤16	32	≥64
Tetracyclines	Tetracycline	0.06–64 0.016–256*	≤4	8	≥16

N/A indicates that no MIC range of either intermediate or resistant susceptibility exists

^{*} Etest dilution range used from 1997–2004

[†] Telithromycin added to NARMS panel in 2005

[‡] Chloramphenicol, tested from 1997–2004, was replaced by florfenicol in 2005

[§] Only a susceptible breakpoint (≤4 μg/mL) has been established by CLSI. In this report isolates with a MIC ≥8 μg/mL are categorized as resistant.

Testing of Vibrio species other than V. cholerae

NARMS participating public health laboratories were asked to forward every isolate of *Vibrio* species other than *V. cholerae* they received to CDC for antimicrobial susceptibility testing by the NARMS laboratory and confirmation of identity by CDC's National Enteric Reference Laboratory. Minimum inhibitory concentrations were determined by Etest® (AB bioMerieux, Solna, Sweden) according to manufacturer's instructions for nine antimicrobial agents: ampicillin, cephalothin, chloramphenicol, ciprofloxacin, kanamycin, nalidixic acid, streptomycin, tetracycline, and trimethoprim-sulfamethoxazole (<u>Table 4</u>). CLSI breakpoints specific for *Vibrio* species other than *V. cholerae* were available for ampicillin, ciprofloxacin, tetracycline, and trimethoprim-sulfamethoxazole. Frequency of isolates susceptible, intermediate, and resistant to those agents is shown in this report (<u>Table 54</u>). MIC distributions are shown for all agents tested.

Table 4. Antimicrobial agents used for susceptibility testing of *Vibrio* species other than *V. cholerae* isolates, NARMS, 2009–2011

CLSI Class	Antimicrobial	Antimicrobial Agent Concentration Range	MIC Interp	retive Standard	d (µg/mL)
CLSI Class	Agent	(μg/mL)	Susceptible	Intermediate*	Resistant
Aminoglycosides	Kanamycin [†]	0.016-256			
Aminogrycosides	Streptomycin [†]	0.064-1024			
Cephems	Cephalothin [†]	0.016-256			
Folate pathway inhibitors	Trimethoprim- sulfamethoxazole	0.002-32	≤2/38	N/A	≥4/76
Penicillins	Ampicillin	0.016-256	≤8	16	≥32
Phenicols	Chloramphenicol [†]	0.016-256			
Quinolones	Ciprofloxacin	0.002-32	≤1	2	≥4
Quinolones	Nalidixic acid [†]	0.016-256			
Tetracyclines	Tetracycline	0.016-256	≤4	8	≥16

^{*} N/A indicates that no MIC range of intermediate susceptibility exists

Testing of Representative Bacteria from Outbreaks

To aid in outbreak investigations and food source attribution, CDC NARMS performs antimicrobial susceptibility testing on isolates from outbreaks submitted by state and local health departments to determine their resistance patterns. In the 2010 NARMS Annual Report, CDC published an analysis of antimicrobial susceptibility data from non-typhoidal *Salmonella* outbreaks in the United States from 2004 through 2008. CDC is currently updating and reanalyzing these data. A summary report of updated non-typhoidal *Salmonella* outbreak data will be published in the future.

Data Analysis

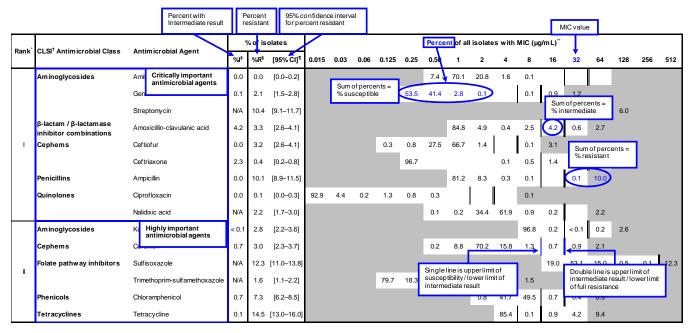
For all pathogens, isolates were categorized as resistant, intermediate (if applicable), or susceptible. Analysis was restricted to the first isolate received (per serotype for *Salmonella*, per species for *Shigella* and *Campylobacter*) per patient in the calendar year. If two or more *Salmonella* ser. Typhi isolates were received for the same patient, the first blood isolate collected was included in the analysis; if no blood isolates were submitted, the first isolate collected was included in analysis. The 95% confidence intervals (CIs) for the percentage resistant, which were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method, are included in the MIC distribution tables.

In the analysis of antimicrobial class resistance among *Salmonella, Shigella,* and *E. coli* O157, nine CLSI classes (<u>Table 2</u>) were represented by the following 15 agents: amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic

[†] No CLSI or NARMS breakpoints established

acid, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole. Isolates that were not resistant to any of these 15 agents were considered to have no resistance detected. In the analysis of antimicrobial class resistance among *Campylobacter*, six CLSI classes were represented by azithromycin, ciprofloxacin, chloramphenicol/florfenicol, clindamycin, erythromycin, gentamicin, nalidixic acid, and tetracycline (<u>Table 3</u>). *Campylobacter* isolates that were not resistant to any of these agents were considered to have no resistance detected.

Logistic regression was used to compare the prevalence of antimicrobial resistance among *Salmonella*, *Shigella*, and *Campylobacter* isolates tested in 2011 with the average prevalence of resistance in the first five years that NARMS surveillance was nationwide (2003–2007). The prevalence of resistance was defined as the percentage of resistant isolates among total isolates tested. Changes in the prevalence of resistance do not provide information about changes in the incidence of resistant infections. The incidence and relative changes in the incidence of *Salmonella*, *Shigella*, and *Campylobacter* infections are reported annually from surveillance in FoodNet sites (CDC, 2012). Comparisons were made for the following:


- Non-typhoidal Salmonella: resistance to nalidixic acid, ceftriaxone, one or more CLSI classes, three or more CLSI classes
- Salmonella of particular serotypes
 - o Salmonella ser. Enteritidis: resistance to nalidixic acid
 - Salmonella ser. Typhimurium: resistance to at least ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline)
 - Salmonella ser. Newport: resistance to at least ACSSuTAuCx (ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone)
 - o Salmonella ser. Typhi: resistance to nalidixic acid
- Shigella: resistance to nalidixic acid
- Campylobacter species: resistance to ciprofloxacin
 - Campylobacter jejuni: resistance to ciprofloxacin

To account for site-to-site variation in the prevalence of antimicrobial resistance, we included main effects adjustments for site in the analysis. The final regression models for *Salmonella* and *Shigella* adjusted for the submitting site using the nine geographic regions described by the <u>U.S. Census Bureau</u>: East North Central, East South Central, Mid-Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. For *Campylobacter*, the final regression models adjusted for the submitting FoodNet site. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation. The adequacy of model fit was assessed in several ways (Fleiss et al., 2004; Kleinbaum et al., 2008). The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. Having assessed that the main effect of year was significant, we reported ORs with 95% CIs (for 2011 compared with 2003-2007) that did not include 1.0 as statistically significant.

MIC Distribution Tables and Proportional Figures

An explanation on "how to read a squashtogram" has been provided to assist the reader with the different parts of the table (Figure 1). A squashtogram shows the distribution of MICs for antimicrobial agents tested. Proportional figures visually display data from squashtograms for an immediate comparative summary of resistance in specific pathogens and serotypes. These figures are a categorical visual aid for the interpretation of MIC values. For most antimicrobial agents tested, three categories (susceptible, intermediate, and resistant) are used to interpret MICs. The proportion representing each category is shown in a horizontal proportional bar chart (Figure 2).

Figure 1. How to read a squashtogram

Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates						Percen	tage of	all isola	ites wit	h MIC (μg/m L	.)"				
Naiik	CLSI Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	<0.1	1.7	[1.2 - 2.3]					8.3	76.4	13.1	0.5		<0.1	0.2	1.5	_			
		Kanamycin	<0.1	1.7	[1.2 - 2.3]										98.2	0.1	<0.1	<0.1	1.6		
		Streptomycin	N/A	9.8	[8.6 - 11.1]												90.2	2.3	7.5		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.0	2.6	[2.0 - 3.3]							89.2	1.7	0.6	3.9	2.0	0.8	1.8			
	Cephems	Ceftiofur	<0.1	2.5	[1.9 - 3.2]				0.3	0.8	37.7	57.7	1.0	<0.1	0.2	2.3					
•		Ceftriaxone	<0.1	2.5	[1.9 - 3.2]					97.5			<0.1	0.1	0.3	1.0	0.8	0.3	0.1		
	Macrolide	Azithromycin	N/A	0.2	[0.1 - 0.5]						0.2	0.4	11.2	80.4	7.3	0.2	0.2				
	Penicillins	Ampicillin	0.1	9.1	[8.0 - 10.3]			_				86.9	3.5	0.3	0.1	0.1	0.2	8.9			
	Quinolones	Ciprofloxacin	2.8	0.2	[0.0 - 0.4]	91.9	4.9	0.2	1.0	0.9	0.9	0.1			0.1						
		Nalidixic acid	N/A	2.4	[1.8 - 3.1]		\top	_			0.2	0.6	47.4	48.1	0	0.4	0.1	2.3			
	Cephems	Cefoxitin	0.2	2.6	[2.0 - 3.3]						0.4	31.1	53.7	10.7	.3	0.2	1.1	1.5			_
	Folate pathway inhibitors	Sulfisoxazole	N/A	8.6	[7.5 - 9.8]		1								/	5.9	46.1	37.8	1.5		8.6
II		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.8 - 1.7]		1		96.8	1.7	0.2		<0.1	<0.1	1.2						
		Chloramphenicol	0.6	4.4	[3.6 - 5.3]								0.9	51.0	43.1	0.6	0.1	4.3			
	Phenicols	Chloramphenicol														_					
† CLSI ‡ Perc § Perc ¶ The !	Tetracyclines of antimicrobial agents is base i: Clinical and Laboratory Standa entage of isolates with intermee entage of isolates that were res 95% confidence intervals (CI) fo	Tetracycline Ind on World Health Organization's ca ards Institute diate susceptibility; WA if no MIC ran sistant or percent resistant (%R) were calc	0.2 tegorizat ge of inte	ermediate	e susceptibility Paulson-Camp-	exists Pratt app	oximatio	on to the	Clopper-	Pearson	n exact n	nethod				0.3	\mathcal{T}	8.2	ance. Nu	mbers in	the
† CLSI ‡ Perc § Perc ¶ The ! ** The ! shad or le:	Tetracyclines c of antimicrobial agents is base c Clinical and Laboratory Stande entage of isolates with interme- entage of isolates that were res 55% confidence intervals (Ch fe unshaded areas indicate the dili led areas indicate the precentag ss than the lowest tested conce	Tetracycline Id on World Health Organization's ca ards Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ges of isolates with MCs greater the entration. CLSI breakpoints were us	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI ‡ Perc § Perc ¶ The ! ** The i shad or le:	Tetracyclines c of antimicrobial agents is base c Clinical and Laboratory Standa entage of isolates with interme- strage of isolates that were res 95% confidence intervals (O) for unshaded areas indicate the ded areas indicate the percentage ss than the low est tested conce imicrobial Ager	Tetracycline Id on World Health Organization's ca ards Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ges of isolates with MCs greater the entration. CLSI breakpoints were us	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Campates. Single ver	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI ‡ Perc § Perc ¶ The ! ** The or shad or le:	Tetracyclines c of antimicrobial agents is base c Cinical and Laboratory Standa entage of isolates with interme- stratege of isolates that were re- stratege of its original intermediate of its original intermediate of its original intermediate or interm	Tetracycline Id on World Health Organization's ca ards Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ges of isolates with MCs greater the entration. CLSI breakpoints were us	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI ‡ Perc § Perc ¶ The ! ** The i shad or le:	Tetracyclines cof antimicrobial agents is base c Cinical and Laboratory Standa entage of isolates with interme- entage of isolates that were res 95% confidence intervals (O) for unshaded areas indicate the ided areas indicate the percentage ss than the lowest tested conce immicrobial Agen ntamicin namycin	Tetracycline Id on World Health Organization's ca ards Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ges of isolates with MCs greater the entration. CLSI breakpoints were us	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI ‡ Perc § Perc ¶ The s ** The s shad or les Ant Ger Kan	Tetracyclines cof antimicrobial agents is base c Cinical and Laboratory Standa entage of isolates with interme- entage of isolates that were res 95% confidence intervals (Ch for unshaded areas indicate the ided areas indicate the percentages is than the lowest tested conce immicrobial Agen ntamicin namycin eptomycin	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI ‡ Perc § Perc ¶ The ! ** The ! shad or le!	Tetracyclines of antimicrobial agents is base c Clinical and Laboratory Stande entage of isolates with interme entage of isolates with interme entage of isolates that were re- 95% confidence intervals (CI) fo unshaded areas indicate the clid led areas indicate the percentag ss than the low est tested conce imicrobial Agen ntamicin namycin eptomycin oxicillin-clavulani	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI ‡ Perc § Perc ¶ Thee; shad or les Ant Ger Kan Stre Am Cef	Tetracyclines cof antimicrobial agents is base it Clinical and Laboratory Standa entage of isolates with interme entage of isolates what were resisted confidence intervals (CI) founshaded areas indicate the diffed areas indicate the percentages that the lowest tested concentration of the confidence intervals (CI) founshaded areas indicate the percentages when the lowest tested concentration of the confidence in the confid	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
+ CLSI # Perce Perce The The Shad or less than Street Amic Cef	Tetracyclines cof antimicrobial agents is base c Clinical and Laboratory Standa entage of isolates with interme- entage of isolates with interme- gest confidence intervals (CI) fo- unshaded areas indicate the dif- ed areas indicate the percentag- st than the low est tested conce- cimicrobial Agen- ntamicin namycin eptomycin oxicillin-clavulani tiofur triaxone	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI # Perc S Per	Tetracyclines cof antimicrobial agents is base. Clinical and Laboratory Stande entage of isolates with interme entage of isolates that were respectively entaged in the process stand the lowest tested concess than the low	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI # Perc # Perc # Perc # Perc # The # The # Shac or let Ant Ger Kan Stree Am Ceff Ceff Azit Am	Tetracyclines of antimicrobial agents is base c Cinical and Laboratory Stande entage of isolates with interme- entage of isolates with interme- growth of the control of the control entage of isolates with interme- specific confidence intervals (Cf) for unshaded areas indicate the planted areas indicate the dilu- ted areas indicate the percentages than the lowest tested concentration. Immicrobial Agent ntamicin namycin eptomycin expromycin existing a control exist	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
† CLSI ‡ Percross § Percross § Percross ¶ The services or lest Ant Ger Kan Stree Am Cefr Azit Am Cipi	Tetracyclines of antimicrobial agents is base it Clinical and Laboratory Stande entage of isolates with interme- strategy of includes that were rea 15% confidence intervals (Ch founshaded areas indicate the dili- ided areas indicate the percentages is than the lowest tested concentration of the concen	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
+ CLSI + Percer Percer The tree shador let Ant Ger Kan Stre Am Cef Azit Am Cipi Nali	Tetracyclines cof antimicrobial agents is base it Clinical and Laboratory Stande entage of isolates with interme- strategy of includes that were resident of includes that were resident of isolates that were resident of includes the distribution of the control	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			
# CLSI Perce And Ceff Azit Am Cipi Nali Ceff	Tetracyclines of antimicrobial agents is base it Clinical and Laboratory Stande entage of isolates with interme- strategy of includes that were rea 15% confidence intervals (Ch founshaded areas indicate the dili- ided areas indicate the percentages is than the lowest tested concentration of the concen	Tetracycline Ind on World Health Organization's ca and Institute diate susceptibility; NA if no MIC ran sistant or percent resistant (%R) were calc ution range of the Sensitire® plates ges of isolates with MICs greater the entration. CLSI breakpoints were us-	0.2 tegorizatinge of interval and used to an the higher when	tion of cr ermediate sing the l test isola ghest cor available	e susceptibility Paulson-Camp- ates. Single ver ncentrations or e.	exists Pratt apprint tical bars In the Series	oximatio indicate sititre® p	on to the the brea late. Nur	Clopper- akpoints : mbers lis:	Pearson for susc ted for th	n exact n eptibility, he low es	nethod w hile d at tested	louble ve	ighly imp	ortant	ate brea	alpoints f	or resista			

Chloramphenicol Tetracycline

1. Non-typhoidal Salmonella

Table 5. Number of non-typhoidal *Salmonella* isolates among the 20 most common serotypes tested by NARMS with the number of resistant isolates by class and agent, 2011

	Number of Isolates												Number	r of Re	sistant	Isolate	s by CL	SI* Antimicrol	oial Class and	Agent [†]			
	Iso	lates			to whi		microk lates a		Amin	oglyco	sides	β-lactam/β- lactamase inhibitor combinations	C	ephen	ns	pati	late nway pitors	Macrolides	Penicillins	Phenicols	Quine	olones	Tetracyclines
Rank Serotype	N	(%)	0	1	2-3	4-5	6–7	8–9	GEN	KAN	STR	AMC	FOX	TIO	AXO	FIS	СОТ	AZI	AMP	CHL	CIP	NAL	TET
1 Enteritidis	391	(16.7)	344	37	5	5	0	0	2	1	7	1	1	1	1	8	2	0	20	0	0	28	7
2 Typhimurium	323	(13.8)	223	7	23	50	20	0	7	13	83	22	22	22	22	88	6	0	83	63	0	1	88
3 Newport	285	(12.2)	269	3	2	1	9	1	2	1	12	11	11	11	11	13	0	0	11	10	0	1	13
4 Javiana	170	(7.3)	168	1	1	0	0	0	0	0	0	1	1	1	1	0	0	0	2	0	0	0	0
5 14,[5],12:I:-	82	(3.5)	54	5	6	16	1	0	1	0	20	4	4	3	3	19	1	0	22	2	0	0	21
6 Heidelberg	70	(3.0)	39	0	28	0	3	0	14	15	26	7	6	6	6	5	1	0	21	3	0	0	24
7 Montevideo	65	(2.8)	61	1	2	0	1	0	0	0	2	1	1	1	1	2	1	0	1	1	0	1	4
8 Infantis	63	(2.7)	59	0	2	2	0	0	1	0	3	1	1	1	1	3	1	0	1	1	0	1	3
9 Muenchen	49	(2.1)	48	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
10 Braenderup	48	(2.0)	45	1	1	1	0	0	1	0	2	0	0	0	0	2	1	1	1	0	0	0	3
11 Oranienburg	48	(2.0)	46	0	0	1	1	0	0	0	2	0	0	0	0	2	1	1	2	1	0	1	2
12 Paratyphi B var. L(+) tartrate+	42	(1.8)	38	2	1	1	0	0	0	0	2	0	1	0	0	2	0	0	1	1	0	1	1
13 Saintpaul	36	(1.5)	28	2	5	1	0	0	2	0	2	1	0	1	1	3	0	0	4	1	0	2	4
14 Agona	30	(1.3)	17	8	2	1	2	0	1	1	12	2	2	2	2	5	0	0	3	1	0	0	6
15 Poona	25	(1.1)	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16 Mississippi	22	(0.9)	21	0	0	1	0	0	0	0	1	0	0	0	0	1	1	1	1	0	0	0	1
17 Rubislaw	22	(0.9)	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18 Thompson	22	(0.9)	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19 Berta	21	(0.9)	15	2	4	0	0	0	3	0	2	1	1	1	1	2	0	0	4	0	0	0	2
20 Bareilly	20	(0.9)	18	0	2	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	2
Subtotal	1834	(78.2)	1562	70	84	80	37	1	34	32	176	52	51	50	50	157	17	3	177	84	0	36	181
All other serotypes	411	(17.5)	353	17	22	9	9	1	5	5	37	8	8	8	8	28	9	2	20	14	4	7	46
Unknown serotype	54	(2.3)	34	10	2	6	2	0	1	1	10	0	1	0	0	10	1	0	8	4	0	13	9
Partially serotyped	24	(1.0)	22	1	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	2
Rough/Nonmotile isolates	21	(0.9)	12	3	0	6	0	0	0	1	6	0	0	0	0	6	1	0	7	11	0	1	7
Total	2344	(100)	1983	101	108	102	48	2	40	39	230	60	60	58	58	202	28	5	213	103	4	57	245

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] Antimicrobial agent abbreviations: GEN, gentamicin; KAN, kanamycin; STR, streptomycin; AMC, amoxicillin-clavulanic acid; FOX, cefoxitin; TIO, ceftiofur; AXO, ceftriaxone; FIS, sulfisoxazole; COT, trimethoprim-sulfamethoxazole; AZI, azithromycin; AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; NAL, nalidixic acid; TET, tetracycline

Table 6. Percentage and number of non-typhoidal Salmonella isolates in NARMS with selected resistance

patterns, by serotype, 2011

patte	erns, by serotype, 2011		AC	SSuT*	-	ACT/S [†]	ACSS	SuTAuCx [‡]	Nalio	dixic Acid	Cef	triaxone		xNal [§]
		N	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	n	(%)
Twent	ty most common serotypes													
1	Enteritidis	391	0	(0)	0	(0)	0	(0)	28	(49.1)	1	(1.7)	0	(0)
2	Typhimurium	323	63	(69.2)	2	(22.2)	17	(47.2)	1	(1.8)	22	(37.9)	0	(0)
3	Newport	285	10	(11.0)	0	(0)	10	(27.8)	1	(1.8)	11	(19.0)	1	(50.0)
4	Javiana	170	0	(0)	0	(0)	0	(0)	0	(0)	1	(1.7)	0	(0)
5	I 4,[5],12:i:-	82	1	(1.1)	0	(0)	0	(0)	0	(0)	3	(5.2)	0	(0)
6	Heidelberg	70	1	(1.1)	1	(11.1)	1	(2.8)	0	(0)	6	(10.3)	0	(0)
7	Montevideo	65	1	(1.1)	0	(0)	1	(2.8)	1	(1.8)	1	(1.7)	0	(0)
8	Infantis	63	0	(0)	0	(0)	0	(0)	1	(1.8)	1	(1.7)	0	(0)
9	Muenchen	49	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
10	Braenderup	48	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
11	Oranienburg	48	1	(1.1)	1	(11.1)	0	(0)	1	(1.8)	0	(0)	0	(0)
12	Paratyphi B var. L(+) tartrate+	42	1	(1.1)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
13	Saintpaul	36	0	(0)	0	(0)	0	(0)	2	(3.5)	1	(1.7)	0	(0)
14	Agona	30	1	(1.1)	0	(0)	1	(2.8)	0	(0)	2	(3.4)	0	(0)
15	Poona	25	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
16	Mississippi	22	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
17	Rubislaw	22	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
18	Thompson	22	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
19	Berta	21	0	(0)	0	(0)	0	(0)	0	(0)	1	(1.7)	0	(0)
20	Bareilly	20	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
Additi	onal serotypes [¶]													
	Panama	16	1	(1.1)	2	(22.2)	0	(0)	0	(0)	0	(0)	0	(0)
	Hadar	14	0	(0)	0	(0)	0	(0)	2	(3.5)	0	(0)	0	(0)
	Senftenberg	12	0	(0)	0	(0)	0	(0)	1	(1.8)	2	(3.4)	1	(50.0)
	Dublin	10	4	(4.4)	0	(0)	4	(11.1)	1	(1.8)	4	(6.9)	0	(0)
	Kentucky	4	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
	Virchow	4	0	(0)	0	(0)	0	(0)	1	(1.8)	0	(0)	0	(0)
	Muenster	3	1	(1.1)	0	(0)	1	(2.8)	0	(0)	1	(1.7)	0	(0)
	Reading	3	1	(1.1)	0	(0)	1	(2.8)	0	(0)	1	(1.7)	0	(0)
	Choleraesuis	1	0	(0)	1	(11.1)	0	(0)	1	(1.8)	0	(0)	0	(0)
Subto		1901	86	(94.5)	7	(77.8)	36	(100)	43	(75.4)	58	(100)	2	(100)
	All other serotypes	344	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Unknown serotype	54	4	(4.4)	1	(11.1)	0	(0)	13	(22.8)	0	(0)	0	(0)
	Partially serotyped	24	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Rough/Nonmotile isolates	21	1	(1.1)	1	(11.1)	0	(0)	1	(1.8)	0	(0)	0	(0)
Total		2344	91	(100)	9	(100)	36	(100)	57	(100)	58	(100)	2	(100)

 $^{^{\}star} \ \text{ACSSuT: at least resistant to ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline}$

[†] ACT/S: at least resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[‡] ACSSuTAuCx: at least resistant to ACSSuT, amoxicillin-clavulanic acid, and ceftriaxone

[§] CxNal: at least resistant to ceftriaxone and nalidixic acid

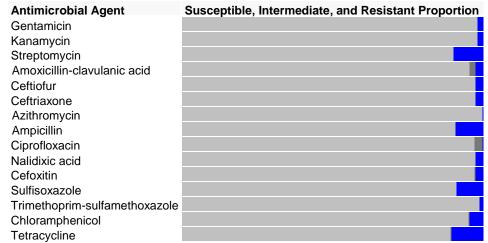

¶ Additional serotypes that displayed resistance to at least one of the selected patterns

Table 7. Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2011 (N=2344)

D	or out Austin to a bit of our		Perd	entage	of isolates						Percent	tage of	all isola	tes wit	h MIC (ug/m L)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	<0.1	1.7	[1.2 - 2.3]					8.3	76.4	13.1	0.5		<0.1	0.2	1.5				
		Kanamycin	<0.1	1.7	[1.2 - 2.3]										98.2	0.1	<0.1	<0.1	1.6		
		Streptomycin	N/A	9.8	[8.6 - 11.1]												90.2	2.3	7.5		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	2.0	2.6	[2.0 - 3.3]							89.2	1.7	0.6	3.9	2.0	0.8	1.8			
١.	Cephems	Ceftiofur	<0.1	2.5	[1.9 - 3.2]				0.3	0.8	37.7	57.7	1.0	<0.1	0.2	2.3	-				
'		Ceftriaxone	<0.1	2.5	[1.9 - 3.2]					97.5			<0.1	0.1	0.3	1.0	0.8	0.3	0.1		
	Macrolide	Azithromycin	N/A	0.2	[0.1 - 0.5]						0.2	0.4	11.2	80.4	7.3	0.2	0.2				
	Penicillins	Ampicillin	0.1	9.1	[8.0 - 10.3]							86.9	3.5	0.3	0.1	0.1	0.2	8.9			
	Quinolones	Ciprofloxacin	2.8	0.2	[0.0 - 0.4]	91.9	4.9	0.2	1.0	0.9	0.9	0.1			0.1	•	-				
		Nalidixic acid	N/A	2.4	[1.8 - 3.1]						0.2	0.6	47.4	48.1	0.9	0.4	0.1	2.3			
	Cephems	Cefoxitin	0.2	2.6	[2.0 - 3.3]						0.4	31.1	53.7	10.7	1.3	0.2	1.1	1.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	8.6	[7.5 - 9.8]											5.9	46.1	37.8	1.5		8.6
II		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.8 - 1.7]				96.8	1.7	0.2		<0.1	<0.1	1.2						
	Phenicols	Chloramphenicol	0.6	4.4	[3.6 - 5.3]								0.9	51.0	43.1	0.6	0.1	4.3			
	Tetracyclines	Tetracycline	0.2	10.5	[9.2 - 11.8]									89.4	0.2	0.3	1.9	8.2			

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Figure 3. Antimicrobial resistance pattern for non-typhoidal Salmonella, 2011

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Frecentage of isolates that were resistant.

Percentage of isolates that were resistant.

The 95% confidence intervals (O) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method.

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of solates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available

Table 8. Percentage and number of non-typhoidal Salmonella isolates resistant to antimicrobial agents,

Year			2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
	solates		1998	1855	1782	2036	2171	2145	2384	2193	2449	2344
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0%	0.0%	< 0.1% 1	0.0%	0.0% 0	0.0%	0.0%	0.0%	Not Tested
		Gentamicin (MIC ≥ 16)	1.4% 27	1.4% 26	1.3% 24	2.2% 44	2.0% 44	2.1% 45	1.5% 35	1.3% 28	1.0% 24	1.7% 40
		Kanamycin (MIC ≥ 64)	3.8% 76	3.5% 64	2.8% 50	3.4% 70	2.9% 63	2.8% 61	2.1% 50	2.5% 54	2.2% 54	1.7% 39
		Streptomycin (MIC ≥ 64)	13.2% 264	15.0% 279	12.0% 213	11.1% 225	10.7% 233	10.3% 222	10.0% 238	8.9% 196	8.6% 210	9.8% 230
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	5.3% 106	4.6% 86	3.7% 66	3.2% 65	3.7% 81	3.3% 70	3.1% 73	3.4% 75	2.9% 70	2.6% 60
1	Cephems	Ceftiofur (MIC ≥ 8)	4.4% 87	4.5% 83	3.4% 60	2.9% 60	3.6% 79	3.3% 70	3.1% 73	3.4% 75	2.8% 69	2.5% 58
		Ceftriaxone (MIC ≥ 4)	4.4% 87	4.4% 81	3.3% 59	2.9% 59	3.7% 80	3.3% 70	3.1% 73	3.4% 75	2.9% 70	2.5% 58
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.2% 5								
	Penicillins	Ampicillin (MIC ≥ 32)	13.0% 259	13.6% 253	12.1% 216	11.4% 232	10.9% 237	10.1% 217	9.7% 232	9.8% 216	9.1% 223	9.1% 213
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.1% 1	0.2% 4	0.3% 5	0.1% 2	0.1% 3	0.1% 2	0.2% 5	0.3% 7	0.2% 6	0.2% 4
		Nalidixic Acid (MIC ≥ 32)	1.6% 32	1.9% 36	2.2% 39	1.9% 38	2.4% 52	2.2% 48	2.1% 49	1.8% 39	2.0% 48	2.4% 57
	Cephems	Cefoxitin (MIC ≥ 32)	4.3% 86	4.3% 79	3.4% 61	3.0% 62	3.5% 77	2.9% 63	3.0% 72	3.2% 71	2.6% 63	2.6% 60
		Cephalothin (MIC ≥ 32)	5.1% 101	5.3% 99	Not Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	12.9% 258	15.1% 280	13.3% 237	12.6% 256	12.1% 263	12.3% 264	10.1% 240	9.9% 217	9.0% 221	8.6% 202
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	1.4% 28	1.9% 36	1.7% 31	1.7% 34	1.7% 36	1.5% 33	1.6% 37	1.7% 38	1.6% 38	1.2% 28
	Phenicols	Chloramphenicol (MIC ≥ 32)	8.6% 172	10.1% 187	7.6% 136	7.8% 159	6.4% 139	7.3% 156	6.1% 146	5.7% 125	5.0% 122	4.4% 103
	Tetracyclines	Tetracycline (MIC ≥ 16)	14.9% 298	16.3% 302	13.6% 242	13.9% 282	13.5% 293	14.5% 310	11.5% 275	11.9% 261	11.0% 270	10.5% 245

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Table 9. Resistance patterns of non-typhoidal Salmonella isolates, 2002-2011

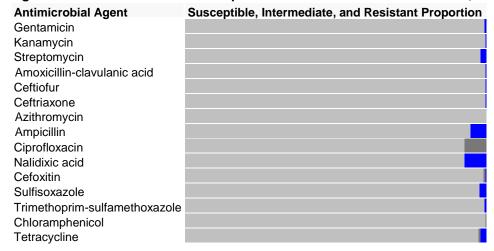
Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	1998	1855	1782	2036	2171	2145	2384	2193	2449	2344
Resistance Pattern										
No resistance detected	79.1%	78.0%	79.9%	80.9%	80.5%	81.1%	83.9%	83.2%	84.6%	84.6%
	1580	1447	1424	1648	1748	1739	2000	1824	2073	1983
Resistance ≥ 1 CLSI class*	20.9%	22.0%	20.1%	19.1%	19.5%	18.9%	16.1%	16.8%	15.4%	15.4%
	418	408	358	388	423	406	384	369	376	361
Resistance ≥ 2 CLSI classes*	15.8%	17.6%	15.0%	14.8%	14.7%	14.2%	12.5%	13.0%	11.3%	11.1%
	315	326	267	302	320	305	298	284	276	260
Resistance ≥ 3 CLSI classes*	12.3%	14.2%	11.4%	12.0%	11.8%	11.1%	9.6%	9.6%	9.2%	9.1%
	245	263	204	244	256	239	228	211	225	213
Resistance ≥ 4 CLSI classes*	9.8%	11.4%	9.3%	9.1%	8.2%	8.2%	7.4%	7.3%	6.8%	6.5%
	195	211	165	185	177	176	177	159	166	152
Resistance ≥ 5 CLSI classes*	8.2%	9.8%	8.0%	7.2%	6.3%	6.9%	6.6%	6.2%	5.2%	4.6%
	164	182	142	146	137	149	157	137	128	108
At least ACSSuT [†]	7.8%	9.3%	7.2%	6.9%	5.6%	6.3%	5.8%	5.1%	4.4%	3.9%
	156	173	129	141	121	136	138	112	107	91
At least ACT/S [‡]	1.1%	1.2%	0.6%	0.9%	0.7%	0.7%	0.5%	0.7%	0.4%	0.4%
	21	23	10	18	15	16	11	15	11	9
At least ACSSuTAuCx§	3.4%	3.2%	2.4%	2.0%	2.0%	2.1%	1.8%	1.4%	1.3%	1.5%
	67	60	42	41	43	46	44	30	33	36
At least ceftriaxone and nalidixic acid	0.2%	0.1%	0.1%	0.0%	0.2%	0.2%	0.0%	0.2%	0.1%	0.1%
resistant	4	1	2	1	4	5	1	4	2	2

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole


[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

Salmonella ser. Enteritidis

Table 10. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2011 (N=391)

Percentage of isolates Percentage of all isolates with MIC (µg/mL) CLSI[†] Antimicrobial Class Antimicrobial Agent [95% CI][¶] 0.015 0.03 0.06 0.125 0.50 128 256 512 0.25 Aminoglycosides 0.0 0.5 [0.1 - 1.8] 24.6 70.3 4.3 0.3 0.3 Gentamicin 0.3 99.7 0.0 0.3 [0.0 - 1.4] N/A 1.8 [0.7 - 3.7] 98.2 0.5 1.3 β-lactam / β-lactamase inhibitor combinations Amoxicillin-clavulanic acid 0.0 0.3 [0.0 - 1.4] 91.8 3.1 4.9 0.3 0.0 0.3 [0.0 - 1.4] 0.3 0.3 1.3 0.3 Ceftiofur 10.2 87.7 Cephems 0.0 0.3 99.7 Ceftriaxone [0.0 - 1.4] 0.3 0.0 Macrolide Azithromycin N/A [0.0 - 0.9] 0.3 0.3 15.6 81.3 2.3 0.3 Penicillins 0.0 5.1 [3.2 - 7.8] 87.0 0.8 0.0 [0.0 - 0.9] 4.1 [4.8 - 10.2] 0.5 70.1 0.3 20.7 1.3 0.5 Cephems Cefoxitin 0.3 [0.0 - 1.4] 24.6 69.1 4.6 0.8 0.5 0.3 Folate pathway inhibitors Sulfisoxazole N/A 2.0 [0.9 - 4.0] 5.1 47.6 45.0 0.3 2.0 N/A 0.5 [0.1 - 1.8] 99.0 0.5 0.5 0.3 0.0 0.5 0.3 40.9 0.8

Figure 4. Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2011

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important CLSt Clinical and Laboratory Standards Institute

[‡] Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

[§] Percentage of isolates that were resistant

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method to the Paulson exact me

Table 11. Percentage and number of *Salmonella ser.* Enteritidis isolates resistant to antimicrobial agents, 2002–2011

Year	L-Z011		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total I	Isolates		337	257	271	384	412	385	441	410	513	391
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested								
		Gentamicin (MIC ≥ 16)	0.3% 1	0.4% 1	0.4% 1	0.8% 3	0.2% 1	0.0% 0	0.2% 1	0.0% 0	0.2% 1	0.5% 2
		Kanamycin (MIC ≥ 64)	0.3% 1	0.0% 0	0.7% 2	0.3% 1	0.2% 1	0.5% 2	0.0% 0	0.2% 1	0.2% 1	0.3% 1
		Streptomycin (MIC ≥ 64)	1.5% 5	1.2% 3	2.2% 6	1.0% 4	1.2% 5	0.5% 2	0.5% 2	1.2% 5	0.6% 3	1.8% 7
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.6% 2	0.0% 0	0.0% 0	0.8% 3	0.5% 2	0.5% 2	0.0% 0	0.0% 0	0.4% 2	0.3% 1
- 1	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	0.0%	0.0%	0.5% 2	0.5% 2	0.3% 1	0.2% 1	0.0%	0.0%	0.3% 1
		Ceftriaxone (MIC ≥ 4)	0.0%	0.0%	0.0%	0.3% 1	0.5% 2	0.3% 1	0.2% 1	0.0%	0.0%	0.3% 1
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0%								
	Penicillins	Ampicillin (MIC ≥ 32)	6.8% 23	2.3% 6	4.1% 11	2.9% 11	4.1% 17	2.1% 8	3.9% 17	3.9% 16	2.3% 12	5.1% 20
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0%	0.0% 0	0.4% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.2% 1	0.0%
		Nalidixic Acid (MIC ≥ 32)	3.9% 13	4.7% 12	6.6% 18	4.7% 18	7.0% 29	5.7% 22	7.0% 31	3.7% 15	5.3% 27	7.2% 28
	Cephems	Cefoxitin (MIC ≥ 32)	0.0%	0.0%	0.0%	1.0% 4	0.5% 2	0.3% 1	0.0% 0	0.0%	0.0%	0.3% 1
		Cephalothin (MIC ≥ 32)	0.6% 2	1.2% 3	Not Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	1.5% 5	1.2% 3	1.8% 5	1.6% 6	1.5% 6	1.6% 6	1.1% 5	1.7% 7	1.9% 10	2.0% 8
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.6% 2	0.8% 2	0.0% 0	0.5% 2	0.5% 2	1.0% 4	0.9% 4	0.7% 3	1.0% 5	0.5% 2
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.3% 1	0.4% 1	0.4% 1	0.5% 2	0.0%	0.5% 2	0.5% 2	0.0%	0.6%	0.0%
	Tetracyclines	Tetracycline (MIC ≥ 16)	4.2% 14	1.6% 4	3.3% 9	2.3% 9	1.7% 7	3.9% 15	1.8% 8	1.2%	2.1% 11	1.8%

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important + CLSI: Clinical and Laboratory Standards Institute

Table 12. Resistance patterns of Salmonella ser. Enteritidis isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	337	257	271	384	412	385	441	410	513	391
Resistance Pattern										
No resistance detected	87.5%	91.8%	86.7%	91.4%	88.8%	90.4%	87.5%	92.0%	92.0%	88.0%
	295	236	235	351	366	348	386	377	472	344
Resistance ≥ 1 CLSI class*	12.5%	8.2%	13.3%	8.6%	11.2%	9.6%	12.5%	8.0%	8.0%	12.0%
	42	21	36	33	46	37	55	33	41	47
Resistance ≥ 2 CLSI classes*	3.9%	2.3%	3.0%	3.6%	2.9%	3.4%	2.0%	2.4%	2.9%	2.6%
	13	6	8	14	12	13	9	10	15	10
Resistance ≥ 3 CLSI classes*	2.1%	0.4%	1.1%	1.6%	1.7%	1.0%	0.5%	1.0%	2.1%	2.3%
	7	1	3	6	7	4	2	4	11	9
Resistance ≥ 4 CLSI classes*	0.6%	0.4%	0.7%	1.0%	0.7%	0.3%	0.0%	0.5%	0.4%	1.3%
	2	1	2	4	3	1	0	2	2	5
Resistance ≥ 5 CLSI classes*	0.0%	0.4%	0.7%	0.5%	0.2%	0.3%	0.0%	0.2%	0.0%	0.5%
	0	1	2	2	1	1	0	1	0	2
At least ACSSuT [†]	0.0%	0.4%	0.4%	0.5%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%
	0	1	1	2	0	1	0	0	0	0
At least ACT/S [‡]	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	1	0	0	0	0	0	0	0	0
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%
	0	0	0	1	0	1	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.2%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	1	1	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

 $^{\ \ \, \}uparrow \text{ ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline}$

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

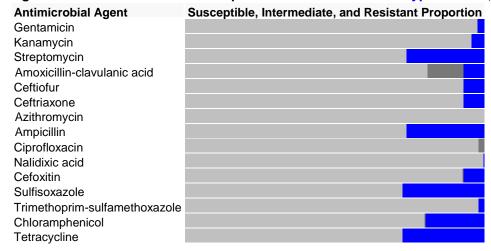

B. Salmonella ser. Typhimurium

Table 13. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2011 (N=323)

		Jobiai agents, z		•																	
Rank *	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates						Percent	tage of	ali isola	tes wit	h MIC (µg/m L)					
		·	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	2.2	[0.9 - 4.4]					3.1	78.3	16.1	0.3				2.2				
		Kanamycin	0.0	4.0	[2.2 - 6.8]										96.0				4.0		
		Streptomycin	N/A	25.7	[21.0 - 30.8]												74.3	5.0	20.7		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	12.1	6.8	[4.3 - 10.1]							73.4	0.6	1.2	5.9	12.1	1.5	5.3			
	Cephems	Ceftiofur	0.0	6.8	[4.3 - 10.1]					0.3	30.0	62.2	0.6		0.6	6.2					
·		Ceftriaxone	0.0	6.8	[4.3 - 10.1]					93.2				0.3	0.9	3.7	1.5	0.3			
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.1]								11.8	83.0	5.0						
	Penicillins	Ampicillin	0.0	25.7	[21.0 - 30.8]							71.8	2.2		0.3		0.3	25.4			
	Quinolones	Ciprofloxacin	1.9	0.0	[0.0 - 1.1]	96.0	2.2		0.3		1.5						_				
		Nalidixic acid	N/A	0.3	[0.0 - 1.7]								55.1	42.4	1.5	0.6		0.3			
	Cephems	Cefoxitin	0.3	6.8	[4.3 - 10.1]						0.3	30.7	54.2	6.2	1.5	0.3	3.4	3.4			
	Folate pathway inhibitors	Sulfisoxazole	N/A	27.2	[22.5 - 32.4]									_		1.5	59.1	11.8	0.3		27.2
II		Trimethoprim-sulfamethoxazole	N/A	1.9	[0.7 - 4.0]				92.6	4.6	0.9				1.9						
	Phenicols	Chloramphenicol	0.3	19.5	[15.3 - 24.3]								0.9	42.7	36.5	0.3		19.5			
	Tetracyclines	Tetracycline	0.0	27.2	[22.5 - 32.4]									72.8		0.9	10.5	15.8			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Figure 5. Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2011

[§] Percentage of isolates that were resistant

The 95% confidence intervals (Ci) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

"The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentration. CLSI breakpoints were used when available.

Table 14. Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial

agents, 2002-2011

Year	Isolates		2002 394	2003 408	2004 382	2005 438	2006 408	2007 405	2008 397	2009 370	2010 359	2011 323
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0% 0	0.0% 0	0.0% 0	0.0%	0.0%	0.0% 0	0.0%	0.0%	Not Tested
		Gentamicin (MIC ≥ 16)	2.3% 9	2.0% 8	2.1% 8	1.8% 8	2.7% 11	2.5% 10	1.5% 6	1.9% 7	0.8% 3	2.2% 7
		Kanamycin (MIC ≥ 64)	7.6% 30	7.1% 29	5.8% 22	5.7% 25	5.1% 21	5.9% 24	2.5% 10	4.9% 18	7.2% 26	4.0% 13
		Streptomycin (MIC ≥ 64)	32.0% 126	35.5% 145	31.9% 122	28.1% 123	29.4% 120	32.3% 131	28.7% 114	25.9% 96	25.6% 92	25.7% 83
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	7.6% 30	5.6% 23	4.7% 18	3.2% 14	4.4% 18	6.7% 27	3.5% 14	6.2% 23	4.2% 15	6.8% 22
1	Cephems	Ceftiofur (MIC ≥ 8)	4.3% 17	4.9% 20	4.5% 17	2.5% 11	4.2% 17	6.4% 26	3.5% 14	6.5% 24	4.7% 17	6.8% 22
		Ceftriaxone (MIC ≥ 4)	4.3% 17	4.9% 20	4.5% 17	2.5% 11	4.2% 17	6.4% 26	3.5% 14	6.5% 24	4.7% 17	6.8% 22
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0								
	Penicillins	Ampicillin (MIC ≥ 32)	33.8% 133	36.3% 148	32.2% 123	29.0% 127	28.2% 115	31.6% 128	26.4% 105	28.1% 104	26.2% 94	25.7% 83
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0% 0	0.0% 0	0.2% 1	0.2% 1	0.0% 0	0.0% 0	0.8% 3	0.0% 0	0.0% 0
		Nalidixic Acid (MIC ≥ 32)	1.3% 5	1.2% 5	0.5% 2	0.9% 4	0.7% 3	1.5% 6	1.3% 5	2.2% 8	1.4% 5	0.3% 1
	Cephems	Cefoxitin (MIC ≥ 32)	4.3% 17	4.4% 18	4.7% 18	2.5% 11	3.9% 16	5.7% 23	3.5% 14	5.4% 20	3.3% 12	6.8% 22
		Cephalothin (MIC ≥ 32)	5.6% 22	6.1% 25	Not Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	32.2% 127	38.7% 158	36.1% 138	32.0% 140	33.3% 136	37.3% 151	30.5% 121	30.0% 111	28.7% 103	27.2% 88
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	2.3% 9	3.4% 14	2.6% 10	2.7% 12	2.2% 9	2.5% 10	1.8% 7	3.0% 11	1.9% 7	1.9% 6
	Phenicols	Chloramphenicol (MIC ≥ 32)	23.4% 92	28.2% 115	24.3% 93	24.4% 107	22.1% 90	25.4% 103	23.4% 93	20.5% 76	20.3% 73	19.5% 63
	Tetracyclines	Tetracycline (MIC ≥ 16)	32.0% 126	38.0% 155	30.4% 116	30.4% 133	31.6% 129	36.8% 149	27.7% 110	28.9% 107	29.0% 104	27.2% 88

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Table 15. Resistance patterns of Salmonella ser, Typhimurium isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	394	408	382	438	408	405	397	370	359	323
Resistance Pattern										
No resistance detected	59.9%	54.7%	60.5%	65.1%	62.5%	57.5%	67.8%	63.5%	66.9%	69.0%
	236	223	231	285	255	233	269	235	240	223
Resistance ≥ 1 CLSI class*	40.1%	45.3%	39.5%	34.9%	37.5%	42.5%	32.2%	36.5%	33.1%	31.0%
	158	185	151	153	153	172	128	135	119	100
Resistance ≥ 2 CLSI classes*	36.3%	41.4%	37.2%	33.3%	34.1%	39.3%	31.5%	33.2%	30.4%	28.8%
	143	169	142	146	139	159	125	123	109	93
Resistance ≥ 3 CLSI classes*	32.5%	37.3%	31.7%	30.1%	30.4%	34.3%	28.0%	28.1%	27.3%	26.3%
	128	152	121	132	124	139	111	104	98	85
Resistance ≥ 4 CLSI classes*	28.4%	32.4%	27.7%	27.4%	27.0%	29.9%	24.9%	24.1%	24.2%	21.7%
	112	132	106	120	110	121	99	89	87	70
Resistance ≥ 5 CLSI classes*	23.1%	27.7%	24.3%	22.8%	20.8%	24.9%	23.9%	22.2%	20.9%	20.7%
	91	113	93	100	85	101	95	82	75	67
At least ACSSuT [†]	21.6%	26.5%	23.6%	22.4%	19.6%	22.7%	23.2%	19.5%	18.7%	19.5%
	85	108	90	98	80	92	92	72	67	63
At least ACT/S [‡]	2.0%	3.2%	1.6%	2.1%	0.7%	2.0%	0.5%	2.2%	1.1%	0.6%
	8	13	6	9	3	8	2	8	4	2
At least ACSSuTAuCx§	1.8%	2.2%	2.6%	1.8%	2.9%	3.7%	2.3%	1.6%	1.7%	5.3%
	7	9	10	8	12	15	9	6	6	17
At least ceftriaxone and nalidixic acid	0.5%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.5%	0.3%	0.0%
resistant	2	0	0	0	0	1	0	2	1	0

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

C. Salmonella ser. Newport

Table 16. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2011 (N=285)

-	i	genis, zum (N=2									_										
Rank *	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (μg/m L)					
		.	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.7	[0.1 - 2.5]					2.5	86.3	10.2	0.4				0.7				
		Kanamycin	0.0	0.4	[0.0 - 1.9]										99.6				0.4		
		Streptomycin	N/A	4.2	[2.2 - 7.2]												95.8	0.4	3.9		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	3.9	[1.9 - 6.8]							95.4	0.7		_		1.4	2.5			
١.	Cephems	Ceftiofur	0.0	3.9	[1.9 - 6.8]				0.4		31.6	63.2	1.1			3.9					
'		Ceftriaxone	0.0	3.9	[1.9 - 6.8]					96.1					0.4	0.7	2.5		0.4		
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.3]						0.4	0.4	18.2	78.6	2.5						
	Penicillins	Ampicillin	0.4	3.9	[1.9 - 6.8]				_			93.3	2.5			0.4		3.9			
	Quinolones	Ciprofloxacin	0.4	0.0	[0.0 - 1.3]	99.3	0.4				0.4						_				
		Nalidixic acid	N/A	0.4	[0.0 - 1.9]						0.4	0.4	50.2	48.8			0.4				
	Cephems	Cefoxitin	0.4	3.9	[1.9 - 6.8]						0.7	30.5	60.7	3.9		0.4	0.4	3.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	4.6	[2.4 - 7.7]									_		0.7	26.7	63.9	4.2		4.6
II		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 1.3]				99.6	0.4							_				
	Phenicols	Chloramphenicol	0.0	3.5	[1.7 - 6.4]								0.7	83.2	12.6			3.5			
	Tetracyclines	Tetracycline	0.0	4.6	[2.4 - 7.7]									95.4			-	4.6			

Figure 6. Antimicrobial resistance pattern for Salmonella ser. Newport, 2011

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Gentamicin	
Kanamycin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Azithromycin	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important
† CLSt Clinical and Laboratory Standards Institute
‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists
§ Percentage of isolates with were resistant
¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

* The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations. CLSI breakpoints were used when available.

Table 17. Percentage and number of *Salmonella* ser. Newport isolates resistant to antimicrobial agents, 2002–2011

Year	L-2011		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total I	solates		244	226	191	207	218	222	258	238	305	285
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested								
		Gentamicin (MIC ≥ 16)	3.3% 8	3.1% 7	0.5% 1	1.0% 2	0.9% 2	0.9% 2	0.4% 1	0.4% 1	0.3% 1	0.7% 2
		Kanamycin (MIC ≥ 64)	9.8% 24	4.4% 10	2.6% 5	1.9% 4	2.3% 5	0.9% 2	3.5% 9	1.7% 4	0.7% 2	0.4% 1
		Streptomycin (MIC ≥ 64)	25.0% 61	24.3% 55	15.7% 30	14.0% 29	13.8% 30	10.4% 23	13.6% 35	8.4% 20	8.2% 25	4.2% 12
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	22.5% 55	21.7% 49	15.2% 29	12.6% 26	12.4% 27	8.1% 18	12.4% 32	7.6% 18	7.5% 23	3.9% 11
I	Cephems	Ceftiofur (MIC ≥ 8)	22.5% 55	22.1% 50	15.2% 29	12.6% 26	12.4% 27	8.1% 18	12.4% 32	7.1% 17	7.2% 22	3.9% 11
		Ceftriaxone (MIC ≥ 4)	22.5% 55	21.7% 49	14.7% 28	12.6% 26	12.8% 28	8.1% 18	12.4% 32	7.1% 17	7.2% 22	3.9% 11
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0								
	Penicillins	Ampicillin (MIC ≥ 32)	24.6% 60	23.0% 52	15.7% 30	14.0% 29	15.1% 33	9.9% 22	14.3% 37	8.4% 20	7.5% 23	3.9% 11
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	0.0%	0.0%	0.0% 0	0.0%
		Nalidixic Acid (MIC ≥ 32)	0.8% 2	0.4% 1	0.5% 1	0.0% 0	0.9% 2	0.0%	0.4% 1	0.0%	0.3% 1	0.4% 1
	Cephems	Cefoxitin (MIC ≥ 32)	22.1% 54	21.7% 49	15.2% 29	12.6% 26	12.8% 28	8.1% 18	12.4% 32	6.7% 16	7.2% 22	3.9% 11
		Cephalothin (MIC ≥ 32)	22.5% 55	22.6% 51	Not Tested							
п	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	25.4% 62	24.8% 56	16.8% 32	15.5% 32	15.1% 33	10.4% 23	13.2% 34	8.8% 21	7.5% 23	4.6% 13
"		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	4.1% 10	1.3% 3	2.1% 4	1.9% 4	3.2% 7	1.8% 4	3.1% 8	1.3% 3	1.3% 4	0.0%
	Phenicols	Chloramphenicol (MIC ≥ 32)	25.0% 61	22.6% 51	15.2% 29	13.5% 28	12.4% 27	9.5% 21	12.0% 31	7.6% 18	7.2% 22	3.5% 10
	Tetracyclines	Tetracycline (MIC ≥ 16)	25.4% 62	24.3% 55	16.8% 32	14.5% 30	14.2% 31	9.9% 22	14.0% 36	8.8% 21	8.2% 25	4.6% 13

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important + CLCI: Clinical and Laboratory Standards Institute

Table 18. Resistance patterns of Salmonella ser. Newport isolates, 2002-2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	244	226	191	207	218	222	258	238	305	285
Resistance Pattern										
No resistance detected	72.5%	73.5%	82.2%	84.1%	82.6%	89.2%	85.3%	89.1%	90.8%	94.4%
	177	166	157	174	180	198	220	212	277	269
Resistance ≥ 1 CLSI class*	27.5%	26.5%	17.8%	15.9%	17.4%	10.8%	14.7%	10.9%	9.2%	5.6%
	67	60	34	33	38	24	38	26	28	16
Resistance ≥ 2 CLSI classes*	25.0%	25.2%	17.3%	15.0%	16.5%	10.8%	13.6%	9.2%	7.9%	4.6%
	61	57	33	31	36	24	35	22	24	13
Resistance ≥ 3 CLSI classes*	25.0%	23.5%	16.2%	14.5%	15.1%	10.8%	13.6%	8.4%	7.5%	3.9%
	61	53	31	30	33	24	35	20	23	11
Resistance ≥ 4 CLSI classes*	25.0%	23.0%	15.7%	14.0%	13.3%	9.5%	13.6%	7.6%	7.5%	3.9%
	61	52	30	29	29	21	35	18	23	11
Resistance ≥ 5 CLSI classes*	23.4%	22.6%	14.7%	12.6%	12.8%	8.6%	12.8%	7.1%	7.2%	3.5%
	57	51	28	26	28	19	33	17	22	10
At least ACSSuT [†]	23.4%	22.1%	14.7%	12.6%	11.9%	8.6%	11.6%	7.1%	7.2%	3.5%
	57	50	28	26	26	19	30	17	22	10
At least ACT/S [‡]	3.7%	1.3%	1.0%	1.9%	2.3%	0.5%	2.7%	1.3%	1.3%	0.0%
	9	3	2	4	5	1	7	3	4	0
At least ACSSuTAuCx§	22.5%	21.2%	14.7%	12.6%	10.6%	8.1%	11.6%	7.1%	7.2%	3.5%
	55	48	28	26	23	18	30	17	22	10
At least ceftriaxone and nalidixic acid	0.4%	0.0%	0.5%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.4%
resistant	1	0	1	0	1	0	0	0	0	1

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

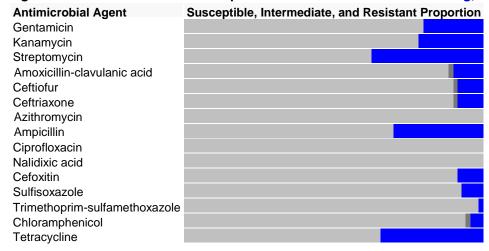

D. Salmonella ser. Heidelberg

Table 19. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2011 (N=70)

	utoo to antiini	nobiai agenis, z	<u> </u>	/	-, 0,																
Rank*	CLSI [†] Antimicrobial Class	Antimicrobial Agent	Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (µg/m L)					
Italik	OLOF Antimicrobial Glass	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	20.0	[11.4 - 31.3]					8.6	48.6	22.9					20.0				
		Kanamycin	0.0	21.4	[12.5 - 32.9]										75.7	2.9		1.4	20.0		
		Streptomycin	N/A	37.1	[25.9 - 49.5]												62.9	12.9	24.3		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	1.4	10.0	[4.1 - 19.5]							68.6	1.4		18.6	1.4	2.9	7.1			
١.	Cephems	Ceftiofur	1.4	8.6	[3.2 - 17.7]					1.4	51.4	34.3	2.9	1.4		8.6					
'		Ceftriaxone	1.4	8.6	[3.2 - 17.7]					90.0			1.4			5.7	1.4	1.4			
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 5.1]							1.4	1.4	90.0	7.1						
	Penicillins	Ampicillin	0.0	30.0	[19.6 - 42.1]				_			68.6	1.4				1.4	28.6			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 5.1]	98.6		1.4													
		Nalidixic acid	N/A	0.0	[0.0 - 5.1]						1.4		44.3	52.9	1.4	_					
	Cephems	Cefoxitin	0	8.6	[3.2 - 17.7]						1.4	54.3	31.4	1.4	2.9		4.3	4.3			
	Folate pathway inhibitors	Sulfisoxazole	N/A	7.1	[2.3 - 15.9]											21.4	61.4	10.0			7.1
II		Trimethoprim-sulfamethoxazole	N/A	1.4	[0.0 - 7.7]				98.6						1.4		_				
	Phenicols	Chloramphenicol	1.4	4.3	[0.9 - 12.0]								1.4	27.1	65.7	1.4	1.4	2.9			
	Tetracyclines	Tetracycline	0.0	34.3	[23.3 - 46.6]									65.7				34.3			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Figure 7. Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2011

[§] Percentage of isolates that were resistant

The 95% confidence intervals (Ci) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

"The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentration. CLSI breakpoints were used when available.

Table 20. Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial

agents, 2002-2011

Year	,		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total I	solates		105	96	92	125	102	98	75	86	62	70
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	Tested
		Gentamicin	3.8%	5.2%	4.3%	6.4%	4.9%	16.3%	14.7%	2.3%	8.1%	20.0%
		(MIC ≥ 16)	4	5	4	8	5	16	11	2	5	14
		Kanamycin	10.5%	8.3%	8.7%	12.8%	8.8%	11.2%	26.7%	20.9%	21.0%	21.4%
		(MIC ≥ 64)	11	8	8	16	9	11	20	18	13	15
		Streptomycin	17.1%	12.5%	15.2%	13.6%	11.8%	12.2%	30.7%	23.3%	25.8%	37.1%
		(MIC ≥ 64)	18	12	14	17	12	12	23	20	16	26
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	9.5%	5.2%	9.8%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	10.0%
	combinations	(MIC ≥ 32/16)	10	5	9	11	10	7	6	18	15	7
	Cephems	Ceftiofur	7.6%	5.2%	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	8.6%
		(MIC ≥ 8)	8	5	8	11	10	7	6	18	15	6
		Ceftriaxone	7.6%	5.2%	8.7%	8.8%	9.8%	7.1%	8.0%	20.9%	24.2%	8.6%
		(MIC ≥ 4)	8	5	8	11	10	7	6	18	15	6
	Macrolides	Azithromycin	Not	0.0%								
		(MIC ≥ 32)	Tested	0								
	Penicillins	Ampicillin	12.4%	10.4%	25.0%	20.0%	18.6%	18.4%	28.0%	27.9%	38.7%	30.0%
		(MIC ≥ 32)	13	10	23	25	19	18	21	24	24	21
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 1)	0	0	0	0	0	0	0	0	0	0
		Nalidixic Acid	0.0%	1.0%	0.0%	0.8%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	0	1	0	1	0	0	0	0	0	0
	Cephems	Cefoxitin	8.6%	5.2%	7.6%	8.8%	8.8%	7.1%	8.0%	19.8%	24.2%	8.6%
		(MIC ≥ 32)	9	5	7	11	9	7	6	17	15	6
		Cephalothin	10.5%	7.3%	Not							
		(MIC ≥ 32)	11	7	Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	6.7%	7.3%	7.6%	8.0%	4.9%	18.4%	12.0%	7.0%	11.3%	7.1%
l II		(MIC ≥ 512)	7	7	7	10	5	18	9	6	7	5
		Trimethoprim-sulfamethoxazole	1.0%	2.1%	0.0%	0.8%	0.0%	0.0%	2.7%	3.5%	0.0%	1.4%
		(MIC ≥ 4/76)	1	2	0	1	0	0	2	3	0	1
	Phenicols	Chloramphenicol	1.0%	0.0%	1.1%	0.8%	0.0%	3.1%	1.3%	4.7%	1.6%	4.3%
		(MIC ≥ 32)	1	0	1	1	0	3	1	4	1	3
	Tetracyclines	Tetracycline	19.0%	16.7%	19.6%	18.4%	13.7%	22.4%	36.0%	27.9%	22.6%	34.3%
		(MIC ≥ 16)	20	16	18	23	14	22	27	24	14	24

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Table 21. Resistance patterns of Salmonella ser. Heidelberg isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	105	96	92	125	102	98	75	86	62	70
Resistance Pattern										
No resistance detected	67.6%	68.8%	56.5%	62.4%	67.6%	58.2%	57.3%	60.5%	53.2%	55.7%
	71	66	52	78	69	57	43	52	33	39
Resistance ≥ 1 CLSI class*	32.4%	31.3%	43.5%	37.6%	32.4%	41.8%	42.7%	39.5%	46.8%	44.3%
	34	30	40	47	33	41	32	34	29	31
Resistance ≥ 2 CLSI classes*	25.7%	17.7%	22.8%	24.8%	23.5%	28.6%	40.0%	34.9%	41.9%	44.3%
	27	17	21	31	24	28	30	30	26	31
Resistance ≥ 3 CLSI classes*	12.4%	10.4%	13.0%	15.2%	12.7%	17.3%	28.0%	25.6%	33.9%	30.0%
	13	10	12	19	13	17	21	22	21	21
Resistance ≥ 4 CLSI classes*	1.9%	0.0%	4.3%	4.8%	2.0%	5.1%	13.3%	17.4%	11.3%	4.3%
	2	0	4	6	2	5	10	15	7	3
Resistance ≥ 5 CLSI classes*	1.9%	0.0%	3.3%	1.6%	2.0%	4.1%	6.7%	15.1%	9.7%	4.3%
	2	0	3	2	2	4	5	13	6	3
At least ACSSuT [†]	1.0%	0.0%	1.1%	0.0%	0.0%	3.1%	1.3%	3.5%	1.6%	1.4%
	1	0	1	0	0	3	1	3	1	1
At least ACT/S [‡]	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	3.5%	0.0%	1.4%
	1	0	0	0	0	0	0	3	0	1
At least ACSSuTAuCx§	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%	1.4%
	1	0	0	0	0	0	0	1	0	1
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

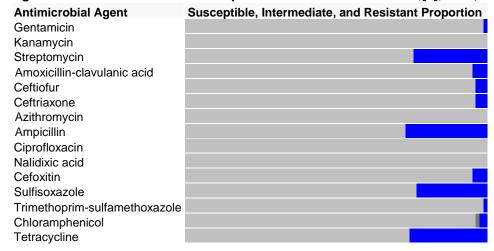

E. Salmonella ser. I 4,[5],12:i:-

Table 22. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:isolates to antimicrobial agents, 2011 (N=82)

D	OLOUT A CHICAGO COLO	A (Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (µg/m L)	•				
Kank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.2	[0.0 - 6.6]					2.4	85.4	11.0				1.2					
		Kanamycin	0.0	0.0	[0.0 - 4.4]										100.0						
		Streptomycin	N/A	24.4	[15.6 - 35.1]												75.6	1.2	23.2		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	4.9	[1.3 - 12.0]							69.5	2.4	4.9	18.3		1.2	3.7			
	Cephems	Ceftiofur	0.0	3.7	[0.7 - 10.3]					2.4	37.8	54.9	1.2			3.7	-				
•		Ceftriaxone	0.0	3.7	[0.7 - 10.3]					96.3					=	2.4		1.2			
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 4.4]								8.5	84.1	6.1	1.2					
	Penicillins	Ampicillin	0.0	26.8	[17.6 - 37.8]							69.5	1.2	2.4				26.8			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 4.4]	97.6	2.4														
		Nalidixic acid	N/A	0.0	[0.0 - 4.4]							='	59.8	39.0	1.2						
	Cephems	Cefoxitin	0.0	4.9	[1.3 - 12.0]						1.2	39.0	51.2	2.4	1.2		3.7	1.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	23.2	[14.6 - 33.8]											2.4	50.0	24.4			23.2
II		Trimethoprim-sulfamethoxazole	N/A	1.2	[0.0 - 6.6]				98.8						1.2		_				
	Phenicols	Chloramphenicol	1.2	2.4	[0.3 - 8.5]								1.2	56.1	39.0	1.2		2.4			
	Tetracyclines	Tetracycline	0.0	25.6	[16.6 - 36.4]									74.4			-	25.6			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Figure 8. Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2011

[§] Percentage of isolates that were resistant

The 95% confidence intervals (Ci) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

"The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentration. CLSI breakpoints were used when available.

Table 23. Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial

agents, 2002-2011

Year			2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
	solates		35	36	36	33	105	73	84	72	78	82
Rank	CLSI [†] Antimicrobial	Antibiotic										
	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	Tested
		Gentamicin	0.0%	5.6%	5.6%	0.0%	4.8%	1.4%	3.6%	2.8%	1.3%	1.2%
		(MIC ≥ 16)	0	2	2	0	5	1	3	2	1	1
		Kanamycin	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	1.2%	0.0%	1.3%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	1	1	0	1	0
		Streptomycin	2.9%	8.3%	5.6%	3.0%	3.8%	8.2%	10.7%	12.5%	19.2%	24.4%
		(MIC ≥ 64)	1	3	2	1	4	6	9	9	15	20
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.9%	5.6%	2.8%	3.0%	3.8%	1.4%	4.8%	4.2%	3.8%	4.9%
	combinations	(MIC ≥ 32/16)	1	2	1	1	4	1	4	3	3	4
	Cephems	Ceftiofur	2.9%	5.6%	2.8%	3.0%	3.8%	2.7%	4.8%	2.8%	2.6%	3.7%
		(MIC ≥ 8)	1	2	1	1	4	2	4	2	2	3
		Ceftriaxone	2.9%	5.6%	2.8%	3.0%	3.8%	2.7%	4.8%	2.8%	2.6%	3.7%
		(MIC ≥ 4)	1	2	1	1	4	2	4	2	2	3
	Macrolides	Azithromycin	Not	0.0%								
		(MIC ≥ 32)	Tested	0								
	Penicillins	Ampicillin	8.6%	8.3%	5.6%	6.1%	6.7%	5.5%	9.5%	11.1%	21.8%	26.8%
		(MIC ≥ 32)	3	3	2	2	7	4	8	8	17	22
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%	0.0%
		(MIC ≥ 1)	0	0	0	0	0	0	0	0	1	0
		Nalidixic Acid	0.0%	2.8%	2.8%	0.0%	1.0%	1.4%	1.2%	0.0%	2.6%	0.0%
		(MIC ≥ 32)	0	1	1	0	1	1	1	0	2	0
	Cephems	Cefoxitin	2.9%	5.6%	2.8%	3.0%	3.8%	1.4%	4.8%	2.8%	2.6%	4.9%
		(MIC ≥ 32)	1	2	1	1	4	1	4	2	2	4
		Cephalothin	2.9%	5.6%	Not							
		(MIC ≥ 32)	1	2	Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	2.9%	5.6%	11.1%	0.0%	8.6%	4.1%	13.1%	13.9%	19.2%	23.2%
		(MIC ≥ 512)	1	2	4	0	9	3	11	10	15	19
II		Trimethoprim-sulfamethoxazole	2.9%	0.0%	2.8%	0.0%	0.0%	1.4%	4.8%	1.4%	1.3%	1.2%
		(MIC ≥ 4/76)	1	0	1	0	0	1	4	1	1	1
	Phenicols	Chloramphenicol	2.9%	0.0%	2.8%	0.0%	1.9%	1.4%	6.0%	8.3%	1.3%	2.4%
		(MIC ≥ 32)	1	0	1	0	2	1	5	6	1	2
	Tetracyclines	Tetracycline	5.7%	0.0%	11.1%	3.0%	8.6%	9.6%	16.7%	16.7%	28.2%	25.6%
		(MIC ≥ 16)	2	0	4	1	9	7	14	12	22	21

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important + CLCI: Clinical and Laboratory Standards Institute

Table 24. Resistance patterns* of Salmonella ser. 14,[5],12:i:- isolates, 2002-2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	35	36	36	33	105	73	84	72	78	82
Resistance Pattern										
No resistance detected	91.4%	77.8%	80.6%	87.9%	85.7%	82.2%	76.2%	76.4%	66.7%	65.9%
	32	28	29	29	90	60	64	55	52	54
Resistance ≥ 1 CLSI class [†]	8.6%	22.2%	19.4%	12.1%	14.3%	17.8%	23.8%	23.6%	33.3%	34.1%
	3	8	7	4	15	13	20	17	26	28
Resistance ≥ 2 CLSI classes [†]	8.6%	11.1%	13.9%	3.0%	11.4%	6.8%	17.9%	16.7%	21.8%	28.0%
	3	4	5	1	12	5	15	12	17	23
Resistance ≥ 3 CLSI classes [†]	5.7%	5.6%	8.3%	3.0%	9.5%	5.5%	10.7%	12.5%	21.8%	26.8%
	2	2	3	1	10	4	9	9	17	22
Resistance ≥ 4 CLSI classes [†]	2.9%	0.0%	2.8%	0.0%	3.8%	2.7%	7.1%	9.7%	19.2%	20.7%
	1	0	1	0	4	2	6	7	15	17
Resistance ≥ 5 CLSI classes [†]	2.9%	0.0%	2.8%	0.0%	2.9%	1.4%	4.8%	6.9%	3.8%	1.2%
	1	0	1	0	3	1	4	5	3	1
At least ACSSuT [‡]	2.9%	0.0%	2.8%	0.0%	1.9%	1.4%	3.6%	6.9%	1.3%	1.2%
	1	0	1	0	2	1	3	5	1	1
At least ACT/S§	2.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	1	0	0	0	0	0	0	0	0	0
At least ACSSuTAuCx [¶]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.4%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	2	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0

^{*} Emerging resistance to ASSuT (ampicillin, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline, but not chloramphenicol) in Salmonella ser. I 4,[5],12:i:- is described on page 16 of this report

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] CLSI: Clinical and Laboratory Standards Institute

[‡] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[§] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

 $[\]P \ \mathsf{ACSSuTAuCx} \colon \mathsf{resistance} \ \mathsf{to} \ \mathsf{ACSSuT}, \ \mathsf{amoxicillin\text{-}clavulanic} \ \mathsf{acid}, \ \mathsf{ceftriaxone}$

2. Typhoidal Salmonella

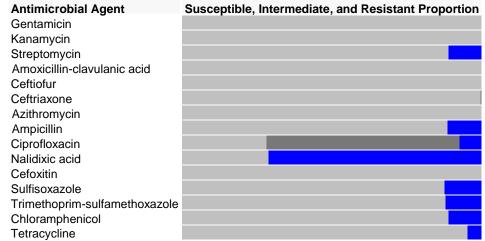

A. Salmonella ser. Typhi

Table 25. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2011 (N=383)

D1.*	OLOUT A	A (Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (µg/m L) ¯	•				
Kank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 1.0]					55.1	43.3	1.6									
		Kanamycin	0.0	0.0	[0.0 - 1.0]										100.0	-					
		Streptomycin	N/A	10.7	[7.8 - 14.2]												89.3	0.3	10.4		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.0	[0.0 - 1.0]							88.3	0.5	3.1	8.1						
	Cephems	Ceftiofur	0.0	0.0	[0.0 - 1.0]				0.5	2.1	81.5	15.9									
•		Ceftriaxone	0.3	0.0	[0.0 - 1.0]					99.7			0.3								
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 1.0]				0.3			2.9	43.3	52.2	1.3						
	Penicillins	Ampicillin	0.0	11.2	[8.2 - 14.8]							88.5	0.3					11.2			
	Quinolones	Ciprofloxacin	64.2	7.3	[4.9 - 10.4]	26.1	0.3	2.1	12.0	42.3	9.9		0.5		6.8		_				
		Nalidixic acid	N/A	70.8	[65.9 - 75.3]							6.5	17.5	4.2	1.0		1.8	68.9			
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 1.0]						3.7	27.2	12.3	52.0	5.0						
	Folate pathway inhibitors	Sulfisoxazole	N/A	12.0	[8.9 - 15.7]									_		19.8	50.4	12.5	5.0	0.3	12.0
II		Trimethoprim-sulfamethoxazole	N/A	11.7	[8.7 - 15.4]				88.0		0.3				11.7		_				
	Phenicols	Chloramphenicol	0.3	10.7	[7.8 - 14.2]								3.7	68.4	17.0	0.3		10.7			
	Tetracyclines	Tetracycline	0.0	4.4	[2.6 - 7.0]									95.6		0.3	-	4.2			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Figure 9. Antimicrobial resistance pattern for Salmonella ser. Typhi, 2011

[†] CLSt Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

§ Percentage of isolates that were resistant

[¶] The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Table 26. Percentage and number of *Salmonella* ser. Typhi isolates resistant to antimicrobial agents, 2002–2011

Year	L-2011		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total I	solates		195	332	304	318	323	400	407	363	446	383
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested								
		Gentamicin (MIC ≥ 16)	0.0% 0									
		Kanamycin (MIC ≥ 64)	0.0% 0	0.2% 1	0.0% 0							
		Streptomycin (MIC ≥ 64)	7.2% 14	14.5% 48	11.8% 36	13.2% 42	18.9% 61	15.8% 63	11.5% 47	10.7% 39	10.1% 45	10.7% 41
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.3% 1	0.3% 1	0.0% 0	0.3% 1	0.0% 0	0.0% 0
I	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0									
		Ceftriaxone (MIC ≥ 4)	0.0%	0.0% 0	0.0%							
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0%								
	Penicillins	Ampicillin (MIC ≥ 32)	5.6% 11	16.0% 53	11.8% 36	13.2% 42	20.4% 66	17.0% 68	13.0% 53	12.7% 46	12.3% 55	11.2% 43
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0% 0	0.3% 1	0.0% 0	0.3% 1	0.9% 3	2.0% 8	0.7% 3	3.9% 14	4.3% 19	7.3% 28
		Nalidixic Acid (MIC ≥ 32)	23.6% 46	37.7% 125	41.8% 127	48.4% 154	54.5% 176	62.0% 248	59.0% 240	59.8% 217	69.3% 309	70.8% 271
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0	0.3% 1	0.0% 0	0.0% 0	0.3% 1	0.5% 2	0.0% 0	0.0%	0.0%	0.0%
		Cephalothin (MIC ≥ 32)	1.5% 3	0.0% 0	Not Tested							
п	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	6.2% 12	16.9% 56	11.8% 36	14.2% 45	20.7% 67	17.5% 70	13.0% 53	13.8% 50	12.3% 55	12.0% 46
"		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	6.7% 13	16.9% 56	13.2% 40	14.5% 46	20.7% 67	16.3% 65	12.5% 51	12.7% 46	11.9% 53	11.7% 45
	Phenicols	Chloramphenicol (MIC ≥ 32)	6.2% 12	16.6% 55	13.2% 40	13.2% 42	19.5% 63	15.8% 63	12.8% 52	11.8% 43	11.7% 52	10.7% 41
	Tetracyclines	Tetracycline (MIC ≥ 16)	6.7% 13	15.4% 51	8.9% 27	10.1% 32	8.4% 27	6.3% 25	4.4% 18	6.1% 22	3.6% 16	4.4% 17

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important + CLCI: Clinical and Laboratory Standards Institute

Table 27. Resistance patterns of Salmonella ser. Typhi isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	195	332	304	318	323	400	407	363	446	383
Resistance Pattern										
No resistance detected	74.4%	56.6%	56.6%	48.1%	40.2%	35.5%	38.3%	37.5%	29.4%	27.9%
	145	188	172	153	130	142	156	136	131	107
Resistance ≥ 1 CLSI class*	25.6%	43.4%	43.4%	51.9%	59.8%	64.5%	61.7%	62.5%	70.6%	72.1%
	50	144	132	165	193	258	251	227	315	276
Resistance ≥ 2 CLSI classes*	7.2%	17.5%	13.2%	14.5%	21.7%	18.0%	14.3%	14.6%	13.7%	12.5%
	14	58	40	46	70	72	58	53	61	48
Resistance ≥ 3 CLSI classes*	6.7%	16.6%	12.8%	13.8%	20.7%	17.5%	13.3%	13.2%	13.7%	12.3%
	13	55	39	44	67	70	54	48	61	47
Resistance ≥ 4 CLSI classes*	6.2%	16.3%	12.5%	12.9%	19.2%	17.0%	12.8%	12.7%	11.7%	11.2%
	12	54	38	41	62	68	52	46	52	43
Resistance ≥ 5 CLSI classes*	5.6%	14.2%	11.8%	11.9%	16.7%	14.8%	10.8%	10.2%	9.6%	9.9%
	11	47	36	38	54	59	44	37	43	38
At least ACSSuT [†]	5.6%	12.7%	7.9%	9.1%	5.9%	3.8%	2.5%	2.8%	1.6%	2.3%
	11	42	24	29	19	15	10	10	7	9
At least ACT/S [‡]	5.6%	15.7%	11.8%	12.9%	18.6%	15.3%	12.0%	11.0%	10.5%	10.4%
	11	52	36	41	60	61	49	40	47	40
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

B. Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C

Table 28. Frequency of Salmonella ser. Paratyphi A, Paratyphi B (tartrate negative), and Paratyphi C, 2011 (see Methods for varying sampling method by serotype)

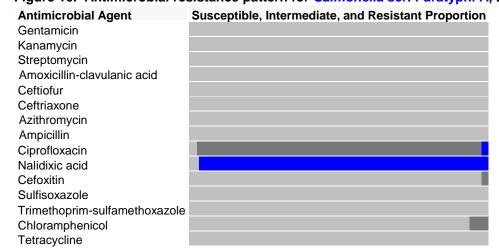

Serotype	20	11
	n	(%)
Paratyphi A	146	(97.3)
Paratyphi B	2	(1.3)
Paratyphi C	2	(1.3)
Total	150	(100)

Table 29. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A isolates to antimicrobial agents, 2011 (N=146)

D	CLSI [†] Antimicrobial Class		Perc	entage	of isolates						Percent	age of	all isola	tes wit	h MIC (ug/m L)					
Kank	CLSI Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 2.5]					98.6	0.7	0.7									
		Kanamycin	0.0	0.0	[0.0 - 2.5]										100.0						
		Streptomycin	N/A	0.0	[0.0 - 2.5]												100.0				
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.0	[0.0 - 2.5]							63.0	34.2	2.7				•			
	Cephems	Ceftiofur	0.0	0.0	[0.0 - 2.5]					0.7	2.7	93.2	3.4								
•		Ceftriaxone	0.0	0.0	[0.0 - 2.5]					100.0					=						
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 2.5]								3.4	51.4	41.1	4.1					
	Penicillins	Ampicillin	0.0	0.0	[0.0 - 2.5]							4.1	89.0	6.2	0.7						
	Quinolones	Ciprofloxacin	95.2	2.1	[0.4 - 5.9]	2.1	0.7		1.4	2.1	91.8	2.1					_				
		Nalidixic acid	N/A	96.6	[92.2 - 98.9]				•				0.7	2.1	0.7	_		96.6			
	Cephems	Cefoxitin	2.1	0.0	[0.0 - 2.5]								7.5	74.0	16.4	2.1					
	Folate pathway inhibitors	Sulfisoxazole	N/A	0.0	[0.0 - 2.5]											9.6	67.1	23.3			
II		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 2.5]				97.3	2.7						_	_				
	Phenicols	Chloramphenicol	6.2	0.0	[0.0 - 2.5]									4.8	89.0	6.2					
	Tetracyclines	Tetracycline	0.0	0.0	[0.0 - 2.5]									100.0			-				

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically important; Rank II, Highly Important

Figure 10. Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, 2011

⁺ CLSt Clinical and Laboratory Standards Institute

<sup>The recentage of isolates with intermediate susceptibility, N/A if no MIC range of intermediate susceptibility exists

Percentage of isolates that were resistant

The 95% confidence intervals (O) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unphediated areas inclined the diffusion peace of the Specific of the Computer Specific Computer Speci</sup>

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Table 30. Percentage and number of Salmonella ser. Paratyphi A isolates resistant to antimicrobial

agents, 2002-2011

Year	Isolates		2002 9	2003 6	2004 8	2005 13	2006 10	2007 16	2008 116	2009 99	2010 145	2011 146
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0%	0.0%	0.0% 0	0.0% 0	0.0% 0	0.0%	0.0%	0.0%	Not Tested
		Gentamicin (MIC ≥ 16)	0.0%	0.0%	0.0%	0.0%	0.0% 0	0.0% 0	0.0%	0.0%	0.7% 1	0.0%
		Kanamycin (MIC ≥ 64)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.7%	0.0%
		Streptomycin (MIC ≥ 64)	11.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	2.1%	0.0%
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ı	Cephems	Ceftiofur (MIC ≥ 8)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		Ceftriaxone (MIC ≥ 4)	0.0%	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	0.0%	0.0%	0.0%	0.0%
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0%								
	Penicillins	Ampicillin (MIC ≥ 32)	0.0%	0.0%	0.0%	0.0% 0	0.0% 0	0.0%	0.0%	1.0%	1.4% 2	0.0%
	Quinolones	Ciprofloxacin (MIC ≥ 1)	0.0%	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	0.9% 1	0.0%	2.8%	2.1%
		Nalidixic Acid (MIC ≥ 32)	44.4% 4	100.0% 6	100.0% 8	92.3% 12	80.0% 8	93.8% 15	88.8% 103	86.9% 86	92.4% 134	96.6% 141
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0									
		Cephalothin (MIC ≥ 32)	0.0%	0.0%	Not Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	0.0%	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0% 0	0.0%	1.0%	1.4% 2	0.0%
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.0%	0.0%	0.0%	0.0%	0.0% 0	0.0%	0.0%	1.0% 1	2.1%	0.0%
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%
	Tetracyclines	Tetracycline (MIC ≥ 16)	11.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.9%	1.0%	1.4%	0.0%

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important + CLCI: Clinical and Laboratory Standards Institute

Table 31. Resistance patterns of Salmonella ser. Paratyphi A isolates, 2002-2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	9	6	8	13	10	16	116	99	145	146
Resistance Pattern										
No resistance detected	44.4%	0.0%	0.0%	7.7%	20.0%	6.3%	10.3%	12.1%	5.5%	3.4%
	4	0	0	1	2	1	12	12	8	5
Resistance ≥ 1 CLSI class*	55.6%	100.0%	100.0%	92.3%	80.0%	93.8%	89.7%	87.9%	94.5%	96.6%
	5	6	8	12	8	15	104	87	137	141
Resistance ≥ 2 CLSI classes*	11.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	2.8%	0.0%
	1	0	0	0	0	0	0	1	4	0
Resistance ≥ 3 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%
	0	0	0	0	0	0	0	1	2	0
Resistance ≥ 4 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.0%
	0	0	0	0	0	0	0	1	2	0
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%
	0	0	0	0	0	0	0	1	1	0
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%
	0	0	0	0	0	0	0	1	1	0
At least ACT/S [‡]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.7%	0.0%
	0	0	0	0	0	0	0	1	1	0
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	0	0	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

 $^{\ \, \}uparrow \, ACSSuT: \, resistance \, to \, ampicillin, \, chloramphenicol, \, streptomycin, \, sulfamethoxazole/sulfisoxazole, \, tetracycline$

 $^{{\}tt \ddagger ACT/S: resistance \ to \ ampicillin, \ chloramphenicol, \ trimethoprim-sulfamethoxazole}$

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

3. Shigella

Table 32. Frequency of Shigella species, 2011

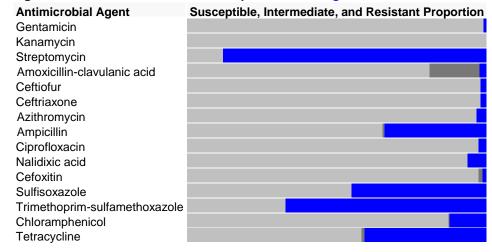

Species	20	11
	n	(%)
Shigella sonnei	225	(76.8)
Shigella flexneri	58	(19.8)
Shigella boydii	9	(3.1)
Other	1	(0.3)
Total	293	(100)

Table 33. Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2011 (N=293)

			Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (ug/m L)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.7	[0.1 - 2.4]					0.7	12.6	80.5	5.5				0.7				
		Kanamycin	0.0	0.0	[0.0 - 1.3]										100.0						
		Streptomycin	N/A	87.7	[83.4 - 91.2]												12.3	38.6	49.1		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	16.7	2.0	[0.8 - 4.4]							2.0	5.8	53.2	20.1	16.7	1.7	0.3			
١.	Cephems	Ceftiofur	0.0	1.7	[0.6 - 3.9]				11.6	74.7	7.8	4.1			0.3	1.4	-				
•		Ceftriaxone	0.0	1.7	[0.6 - 3.9]					97.6	0.7					0.3		0.3	1.0		
	Macrolide	Azithromycin	N/A	3.1	[1.4 - 5.8]				0.3	1.7	1.7	7.8	11.6	68.3	5.1	0.3	3.1				
	Penicillins	Ampicillin	0.7	33.8	[28.4 - 39.5]							6.8	47.8	9.9	1.0	0.7	0.3	33.4			
	Quinolones	Ciprofloxacin	0.0	2.4	[1.0 - 4.9]	91.5	0.7	1.4	2.4	1.4	0.3			1.7	0.7	-	_				
		Nalidixic acid	N/A	6.1	[3.7 - 9.5]						3.4	75.1	11.6	2.7	1.0	_	2.7	3.4			
	Cephems	Cefoxitin	1.4	1.0	[0.2 - 3.0]							3.1	75.4	18.8	0.3	1.4	0.7	0.3			
	Folate pathway inhibitors	Sulfisoxazole	N/A	44.7	[38.9 - 50.6]											31.1	16.4	6.1	1.0	0.7	44.7
II		Trimethoprim-sulfamethoxazole	N/A	66.9	[61.2 - 72.3]				7.5	1.7	1.7	10.2	11.9	15.4	51.5						
	Phenicols	Chloramphenicol	0.3	12.3	[8.8 - 16.6]								16.4	66.2	4.8	0.3	2.4	9.9			
	Tetracyclines	Tetracycline	1.0	40.6	[34.9 - 46.5]									58.4	1.0		10.2	30.4			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute

Figure 11. Antimicrobial resistance pattern for Shigella, 2011

[‡] Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Forcentage of isolates that were resistant.

The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitirte® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available

Table 34. Percentage and number of Shigella isolates resistant to antimicrobial agents, 2002–2011

Year Total I	solates		2002 620	2003 495	2004 316	2005 396	2006 402	2007 480	2008 551	2009 475	2010 411	2011 293
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0% 0	0.0%	0.0% 0	0.0% 0	0.0%	0.0%	0.0%	0.0%	Not Tested
		Gentamicin (MIC ≥ 16)	0.2% 1	0.0% 0	0.0% 0	1.0% 4	0.2% 1	0.8% 4	0.4% 2	0.6% 3	0.5% 2	0.7% 2
		Kanamycin (MIC ≥ 64)	0.8% 5	0.4% 2	0.0% 0	0.8% 3	0.0% 0	0.2% 1	0.5% 3	0.4% 2	0.0%	0.0%
		Streptomycin (MIC ≥ 64)	54.4% 337	57.0% 282	59.8% 189	68.7% 272	60.7% 244	73.3% 352	80.6% 444	89.1% 423	91.0% 374	87.7% 257
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	2.6% 16	1.4% 7	1.6% 5	1.0% 4	1.5% 6	0.4% 2	3.3% 18	2.1% 10	0.0% 0	2.0% 6
- 1	Cephems	Ceftiofur (MIC ≥ 8)	0.2% 1	0.2% 1	0.3% 1	0.5% 2	0.2% 1	0.0%	0.0% 0	0.6% 3	0.2% 1	1.7% 5
		Ceftriaxone (MIC ≥ 4)	0.2% 1	0.2% 1	0.3% 1	0.5% 2	0.2% 1	0.0%	0.0% 0	0.6% 3	0.2% 1	1.7% 5
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	3.1% 9								
	Penicillins	Ampicillin (MIC ≥ 32)	76.6% 475	79.4% 393	77.5% 245	70.7% 280	62.4% 251	63.8% 306	62.4% 344	46.3% 220	40.9% 168	33.8% 99
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0%	0.0% 0	0.0% 0	0.0% 0	0.2% 1	0.2% 1	0.7% 4	0.6% 3	1.7% 7	2.4% 7
		Nalidixic Acid (MIC ≥ 32)	1.6% 10	1.0% 5	1.6% 5	1.5% 6	3.5% 14	1.7% 8	1.6% 9	2.1% 10	4.4% 18	6.1% 18
	Cephems	Cefoxitin (MIC ≥ 32)	0.3% 2	0.0% 0	0.3% 1	0.3% 1	0.0% 0	0.0%	0.0% 0	0.6% 3	0.0%	1.0%
		Cephalothin (MIC ≥ 32)	6.6% 41	9.3% 46	Not Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	31.8% 197	33.9% 168	52.5% 166	57.6% 228	40.3% 162	25.8% 124	28.5% 157	30.5% 145	29.9% 123	44.7% 131
"		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	37.3% 231	38.6% 191	46.8% 148	53.3% 211	46.0% 185	25.8% 124	31.2% 172	40.4% 192	47.7% 196	66.9% 196
	Phenicols	Chloramphenicol (MIC ≥ 32)	7.6% 47	8.5% 42	15.2% 48	10.9% 43	10.9% 44	8.3% 40	6.9% 38	9.3% 44	10.0% 41	12.3% 36
	Tetracyclines	Tetracycline (MIC ≥ 16)	30.6% 190	29.1% 144	49.4% 156	38.4% 152	34.6% 139	25.6% 123	24.3% 134	29.5% 140	31.4% 129	40.6% 119

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Table 35. Resistance patterns of Shigella isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	620	495	316	396	402	480	551	475	411	293
Resistance Pattern										
No resistance detected	8.2%	8.5%	4.7%	4.5%	6.5%	7.1%	4.5%	4.0%	3.6%	4.4%
No resistance detected	51	42	15	18	26	34	25	19	15	13
Resistance ≥ 1 CLSI class*	91.8%	91.5%	95.3%	95.5%	93.5%	92.9%	95.5%	96.0%	96.4%	95.6%
. 100.014	569	453	301	378	376	446	526	456	396	280
Resistance ≥ 2 CLSI classes*	55.2%	57.8%	64.2%	72.0%	64.7%	65.4%	68.2%	68.0%	69.8%	74.4%
	342	286	203	285	260	314	376	323	287	218
Resistance ≥ 3 CLSI classes*	41.6%	40.2%	59.5%	58.6%	43.8%	27.7%	35.2%	36.4%	39.7%	51.2%
	258	199	188	232	176	133	194	173	163	150
Resistance ≥ 4 CLSI classes*	24.4%	24.8%	32.9%	19.4%	15.4%	11.7%	10.3%	13.3%	14.1%	22.2%
	151	123	104	77	62	56	57	63	58	65
Resistance ≥ 5 CLSI classes*	2.9%	3.6%	7.0%	4.8%	5.2%	4.6%	2.7%	6.5%	4.6%	9.9%
	18	18	22	19	21	22	15	31	19	29
At least ACSSuT [†]	1.8%	3.2%	6.0%	4.0%	5.0%	3.8%	2.2%	5.9%	4.4%	6.1%
	11	16	19	16	20	18	12	28	18	18
At least ACT/S [‡]	2.7%	3.6%	6.6%	6.3%	6.0%	4.0%	2.9%	6.7%	4.9%	7.8%
	17	18	21	25	24	19	16	32	20	23
At least AT/S§	29.8%	33.7%	34.5%	35.6%	26.6%	12.9%	16.0%	17.5%	17.8%	25.9%
	185	167	109	141	107	62	88	83	73	76
At least ANT/S [¶]	0.3%	0.8%	0.6%	0.5%	0.5%	0.8%	0.0%	0.2%	1.2%	2.4%
	2	4	2	2	2	4	0	1	5	7
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.2%	0.3%	0.3%	0.2%	0.0%	0.0%	0.0%	0.2%	1.4%
resistant	0	1	1	1	1	0	0	0	1	4

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

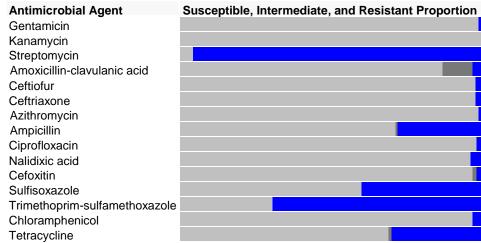
[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

[¶] ANT/S: resistance to AT/S, nalidixic acid

** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone


Table 36. Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to

antimicrobial agents, 2011 (N=225)

D1.*	or out and the land		Perc	entage	of isolates					-	Percen	tage of	all isola	tes wit	h MIC (µ	ıg/m L)¨					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.9	[0.1 - 3.2]						6.7	87.1	5.3				0.9				
		Kanamycin	0.0	0.0	[0.0 - 1.6]										100.0						
		Streptomycin	N/A	95.6	[92.0 - 97.9]												4.4	44.4	51.1		
	β-lactam / β-lactam ase inhibitor combinations	Amoxicillin-clavulanic acid	10.2	2.7	[1.0 - 5.7]							0.9	0.9	63.6	21.8	10.2	2.2	0.4			
١.	Cephems	Ceftiofur	0.0	1.8	[0.5 - 4.5]				2.7	82.7	8.4	4.4	_		0.4	1.3	-				
'		Ceftriaxone	0.0	1.8	[0.5 - 4.5]					97.3	0.9				-	0.4		0.4	0.9		
	Macrolide	Azithromycin	N/A	0.9	[0.1 - 3.2]							1.3	5.8	85.3	6.7		0.9				
	Penicillins	Ampicillin	0.9	27.6	[21.8 - 33.9]							0.9	57.3	12.4	0.9	0.9	0.4	27.1			
	Quinolones	Ciprofloxacin	0.0	1.3	[0.3 - 3.8]	95.1	0.4	1.3	0.9	0.9				1.3			-				
		Nalidixic acid	N/A	3.6	[1.5 - 6.9]						3.6	81.8	8.4	2.2	0.4		1.8	1.8			
	Cephems	Cefoxitin	1.3	1.3	[0.3 - 3.8]							3.1	81.3	12.9		1.3	0.9	0.4			
	Folate pathway inhibitors	Sulfisoxazole	N/A	39.6	[33.1 - 46.3]									_		30.7	20.4	7.6	1.3	0.4	39.6
II		Trimethoprim-sulfamethoxazole	N/A	68.9	[62.4 - 74.9]				1.3	0.4	0.9	12.9	15.6	20.0	48.9						
	Phenicols	Chloramphenicol	0.0	2.7	[1.0 - 5.7]								8.9	83.6	4.9		0.4	2.2			
	Tetracyclines	Tetracycline	0.9	29.8	[23.9 - 36.2]									69.3	0.9		11.1	18.7			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute

Figure 12. Antimicrobial resistance pattern for Shigella sonnei, 2011

[‡] Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Frecentage of isolates that were resistant.

Percentage of isolates that were resistant.

The 95% confidence intervals (O) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method.

The unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of solates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available

Table 37. Percentage and number of Shigella sonnei isolates resistant to antimicrobial agents, 2002–2011

Year	solates		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
		Antibiotic	536	434	241	340	321	414	494	410	337	225
Rank	CLSI [†] Antimicrobial Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not Tested
		Gentamicin (MIC ≥ 16)	0.0%	0.0%	0.0%	1.2% 4	0.0% 0	1.0%	0.4% 2	0.7% 3	0.0%	0.9% 2
		Kanamycin (MIC ≥ 64)	0.4%	0.0%	0.0%	0.0%	0.0%	0.2%	0.6% 3	0.2%	0.0%	0.0%
		Streptomycin (MIC ≥ 64)	55.4% 297	56.5% 245	56.8% 137	70.3% 239	61.7% 198	76.8% 318	82.4% 407	91.5% 375	96.1% 324	95.6% 215
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	2.2%	1.4%	1.7%	1.2%	1.9%	0.5%	3.2% 16	2.0%	0.0%	2.7%
1	Cephems	Ceftiofur (MIC ≥ 8)	0.0%	0.0%	0.4%	0.6%	0.0%	0.0%	0.0%	0.5%	0.3%	1.8%
		Ceftriaxone (MIC ≥ 4)	0.0%	0.0%	0.4% 1	0.6% 2	0.0% 0	0.0%	0.0%	0.5% 2	0.3% 1	1.8% 4
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.9% 2								
	Penicillins	Ampicillin (MIC ≥ 32)	77.6% 416	79.7% 346	79.3% 191	70.6% 240	62.6% 201	64.0% 265	61.3% 303	43.2% 177	36.8% 124	27.6% 62
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0%	0.6% 3	0.0% 0	1.5% 5	1.3% 3
		Nalidixic Acid (MIC ≥ 32)	1.5% 8	0.5% 2	1.7% 4	1.2% 4	2.8% 9	1.2% 5	1.6% 8	1.7% 7	3.3% 11	3.6% 8
	Cephems	Cefoxitin (MIC ≥ 32)	0.4% 2	0.0%	0.4% 1	0.3% 1	0.0% 0	0.0%	0.0% 0	0.7% 3	0.0%	1.3% 3
		Cephalothin (MIC ≥ 32)	7.3% 39	10.1% 44	Not Tested							
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	29.9% 160	31.3% 136	49.0% 118	57.9% 197	33.3% 107	20.0% 83	24.5% 121	23.9% 98	25.2% 85	39.6% 89
II		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	37.9% 203	38.5% 167	46.9% 113	55.0% 187	42.7% 137	22.0% 91	29.1% 144	36.1% 148	46.9% 158	68.9% 155
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.2% 1	1.2% 5	2.5% 6	2.4% 8	0.9% 3	1.2% 5	0.8% 4	1.2% 5	1.5% 5	2.7% 6
	Tetracyclines	Tetracycline (MIC ≥ 16)	23.5% 126	22.1% 96	36.1% 87	29.4% 100	22.7% 73	16.2% 67	16.8% 83	20.7% 85	21.4% 72	29.8% 67

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

Table 38. Resistance patterns of Shigella sonnei isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	536	434	241	340	321	414	494	410	337	225
Resistance Pattern										
No resistance detected	7.1%	8.5%	5.4%	4.4%	6.2%	6.8%	4.7%	3.7%	1.5%	0.9%
The recipitation detected	38	37	13	15	20	28	23	15	5	2
Resistance ≥ 1 CLSI class*	92.9%	91.5%	94.6%	95.6%	93.8%	93.2%	95.3%	96.3%	98.5%	99.1%
	498	397	228	325	301	386	471	395	332	223
Resistance ≥ 2 CLSI classes*	51.9%	54.1%	56.4%	70.6%	59.8%	63.0%	65.4%	65.4%	68.0%	73.8%
	278	235	136	240	192	261	323	268	229	166
Resistance ≥ 3 CLSI classes*	36.6%	35.3%	51.0%	55.3%	35.8%	21.3%	29.4%	29.8%	32.6%	44.9%
	196	153	123	188	115	88	145	122	110	101
Resistance ≥ 4 CLSI classes*	19.8%	20.5%	25.7%	12.4%	8.1%	5.1%	5.3%	5.9%	6.5%	13.3%
	106	89	62	42	26	21	26	24	22	30
Resistance ≥ 5 CLSI classes*	0.7%	0.5%	0.8%	0.9%	0.0%	1.2%	0.4%	0.5%	0.6%	3.6%
	4	2	2	3	0	5	2	2	2	8
At least ACSSuT [†]	0.0%	0.2%	0.0%	0.3%	0.0%	0.5%	0.2%	0.0%	0.6%	0.4%
	0	1	0	1	0	2	1	0	2	1
At least ACT/S [‡]	0.2%	0.9%	1.7%	2.4%	0.9%	0.5%	0.8%	1.0%	0.9%	2.2%
	1	4	4	8	3	2	4	4	3	5
At least AT/S§	30.2%	33.6%	35.3%	35.6%	22.7%	9.4%	14.2%	12.2%	14.2%	22.2%
	162	146	85	121	73	39	70	50	48	50
At least ANT/S [¶]	0.2%	0.2%	0.8%	0.3%	0.0%	0.7%	0.0%	0.0%	0.0%	1.3%
	1	1	2	1	0	3	0	0	0	3
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.3%	1.3%
resistant	0	0	1	1	0	0	0	0	1	3

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

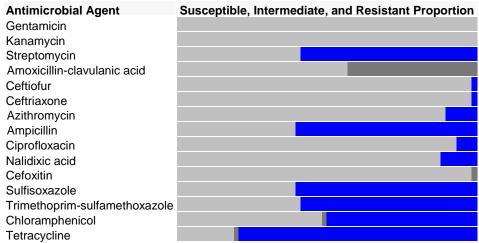
[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

[¶] ANT/S: resistance to AT/S, nalidixic acid

** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone


Table 39. Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial

agents, 2011 (N=58)

		•	Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (µg/m L)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R [§]	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0 - 6.2]					3.4	31.0	58.6	6.9								
		Kanamycin	0.0	0.0	[0.0 - 6.2]										100.0	-					
		Streptomycin	N/A	58.6	[44.9 - 71.4]												41.4	19.0	39.7		
	β-lactam / β-lactam as e inhibitor combinations	Amoxicillin-clavulanic acid	43.1	0.0	[0.0 - 6.2]							5.2	24.1	13.8	13.8	43.1		Ï			
	Cephems	Ceftiofur	0.0	1.7	[0.0 - 9.2]				39.7	48.3	6.9	3.4				1.7	-				
'		Ceftriaxone	0.0	1.7	[0.0 - 9.2]					98.3					-				1.7		
	Macrolide	Azithromycin	N/A	10.3	[3.9 - 21.2]				1.7	8.6	8.6	29.3	27.6	12.1		1.7	10.3				
	Penicillins	Ampicillin	0.0	60.3	[46.6 - 73.0]							25.9	12.1	1.7				60.3			
	Quinolones	Ciprofloxacin	0.0	6.9	[1.9 - 16.7]	81.0	1.7	1.7	3.4	3.4	1.7			3.4	3.4		_				
		Nalidixic acid	N/A	12.1	[5.0 - 23.3]						1.7	56.9	20.7	5.2	3.4		3.4	8.6			
	Cephems	Cefoxitin	1.7	0.0	[0.0 - 6.2]							1.7	53.4	41.4	1.7	1.7					
	Folate pathway inhibitors	Sulfisoxazole	N/A	60.3	[46.6 - 73.0]											32.8	3.4	1.7		1.7	60.3
II		Trimethoprim-sulfamethoxazole	N/A	58.6	[44.9 - 71.4]				29.3	6.9	5.2				58.6						
	Phenicols	Chloramphenicol	1.7	50.0	[36.6 - 63.4]								36.2	6.9	5.2	1.7	10.3	39.7			
	Tetracyclines	Tetracycline	1.7	79.3	[66.6 - 88.8]									19.0	1.7		6.9	72.4			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute

Figure 13. Antimicrobial resistance pattern for Shigella flexneri, 2011

[‡] Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

[‡] Percentage of isolates with intermediate susceptibility. NA if no MiCrange of intermediate susceptibility exists
§ Percentage of isolates that were resistant
¶ The 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

* The unshaded areas indicate the dilution range of the Sensitified plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MiCs greater than the highest concentrations on the Sensitifie® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MiCs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Table 40. Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 2002-

Year	Isolates		2002 73	2003	2004 62	2005 52	2006 74	2007	2008 49	2009 57	2010 61	2011 58
Rank	CLSI [†] Antimicrobial	Antibiotic	/3	51	62	52	74	61	49	57	61	58
	Class	(Resistance breakpoint)										<u> </u>
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	Tested
		Gentamicin	1.4%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	3.3%	0.0%
		(MIC ≥ 16)	1	0	0	0	1	0	0	0	2	0
		Kanamycin	4.1%	3.9%	0.0%	3.8%	0.0%	0.0%	0.0%	1.8%	0.0%	0.0%
		(MIC ≥ 64)	3	2	0	2	0	0	0	1	0	0
		Streptomycin	43.8%	60.8%	71.0%	57.7%	58.1%	52.5%	63.3%	73.7%	68.9%	58.6%
		(MIC ≥ 64)	32	31	44	30	43	32	31	42	42	34
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	5.5%	2.0%	1.6%	0.0%	0.0%	0.0%	4.1%	3.5%	0.0%	0.0%
	combinations	(MIC ≥ 32/16)	4	1	1	0	0	0	2	2	0	0
- 1	Cephems	Ceftiofur	1.4%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%	0.0%	1.7%
•		(MIC ≥ 8)	1	1	0	0	1	0	0	1	0	1
		Ceftriaxone	1.4%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	1.8%	0.0%	1.7%
		(MIC ≥ 4)	1	1	0	0	1	0	0	1	0	1
	Macrolides	Azithromycin	Not	Not	Not	Not	Not	Not	Not	Not	Not	10.3%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested	6
	Penicillins	Ampicillin	75.3%	84.3%	80.6%	75.0%	63.5%	63.9%	75.5%	70.2%	67.2%	60.3%
		(MIC ≥ 32)	55	43	50	39	47	39	37	40	41	35
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	1.4%	1.6%	2.0%	3.5%	3.3%	6.9%
		(MIC ≥ 4)	0	0	0	0	1	1	1	2	2	4
		Nalidixic Acid	2.7%	5.9%	1.6%	3.8%	5.4%	4.9%	2.0%	3.5%	11.5%	12.1%
		(MIC ≥ 32)	2	3	1	2	4	3	1	2	7	7
	Cephems	Cefoxitin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	0	0	0	0	0	0	0	0	0	0
		Cephalothin	2.7%	3.9%	Not	Not	Not	Not	Not	Not	Not	Not
		(MIC ≥ 32)	2	2	Tested	Tested	Tested	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	41.1%	52.9%	66.1%	55.8%	68.9%	62.3%	63.3%	73.7%	55.7%	60.3%
П		(MIC ≥ 512)	30	27	41	29	51	38	31	42	34	35
		Trimethoprim-sulfamethoxazole	28.8%	39.2%	46.8%	44.2%	59.5%	49.2%	49.0%	68.4%	55.7%	58.6%
		(MIC ≥ 4/76)	21	20	29	23	44	30	24	39	34	34
	Phenicols	Chloramphenicol	63.0%	68.6%	61.3%	65.4%	54.1%	55.7%	65.3%	66.7%	55.7%	50.0%
		(MIC ≥ 32)	46	35	38	34	40	34	32	38	34	29
	Tetracyclines	Tetracycline	78.1%	82.4%	95.2%	94.2%	83.8%	83.6%	87.8%	87.7%	86.9%	79.3%
	1	(MIC ≥ 16)	57	42	59	49	62	51	43	50	53	46

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Table 41. Resistance patterns of **Shigella flexneri** isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	73	51	62	52	74	61	49	57	61	58
Resistance Pattern										
No resistance detected	15.1%	7.8%	0.0%	5.8%	5.4%	9.8%	4.1%	5.3%	9.8%	17.2%
No resistance detected	11	4	0.070	3	4	6	2	3	6	10
Resistance ≥ 1 CLSI class*	84.9%	92.2%	100.0%	94.2%	94.6%	90.2%	95.9%	94.7%	90.2%	82.8%
	62	47	62	49	70	55	47	54	55	48
Resistance ≥ 2 CLSI classes*	76.7%	86.3%	93.5%	80.8%	85.1%	80.3%	93.9%	86.0%	83.6%	77.6%
	56	44	58	42	63	49	46	49	51	45
Resistance ≥ 3 CLSI classes*	75.3%	80.4%	90.3%	78.8%	75.7%	68.9%	85.7%	82.5%	80.3%	72.4%
	55	41	56	41	56	42	42	47	49	42
Resistance ≥ 4 CLSI classes*	57.5%	62.7%	64.5%	65.4%	47.3%	55.7%	57.1%	63.2%	57.4%	56.9%
	42	32	40	34	35	34	28	36	35	33
Resistance ≥ 5 CLSI classes*	19.2%	31.4%	29.0%	30.8%	28.4%	27.9%	26.5%	49.1%	27.9%	32.8%
	14	16	18	16	21	17	13	28	17	19
At least ACSSuT [†]	15.1%	29.4%	27.4%	28.8%	27.0%	26.2%	22.4%	47.4%	26.2%	27.6%
	11	15	17	15	20	16	11	27	16	16
At least ACT/S [‡]	21.9%	27.5%	24.2%	32.7%	28.4%	26.2%	24.5%	47.4%	27.9%	29.3%
	16	14	15	17	21	16	12	27	17	17
At least AT/S§	27.4%	37.3%	35.5%	38.5%	43.2%	36.1%	32.7%	52.6%	41.0%	41.4%
	20	19	22	20	32	22	16	30	25	24
At least ANT/S [¶]	1.4%	5.9%	0.0%	1.9%	2.7%	1.6%	0.0%	1.8%	8.2%	5.2%
	1	3	0	1	2	1	0	1	5	3
At least ACSSuTAuCx**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	1.7%
resistant	0	1	0	0	1	0	0	0	0	1

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

 $^{\ \, \}ddagger \ \, \text{ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole}$

[§] AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

[¶] ANT/S: resistance to AT/S, nalidixic acid

*** ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

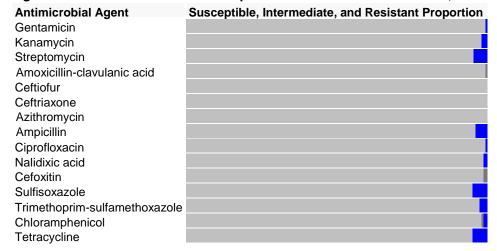

4. Escherichia coli O157

Table 42. Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents 2011 (N=162)

			Perc	entage	of isolates						Percent	tage of	all isola	ites wit	h MIC (I	ug/m L)					
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.6	[0.0 - 3.4]					4.3	77.8	16.7	0.6				0.6				
		Kanamycin	0.0	1.9	[0.4 - 5.3]										98.1				1.9		
		Streptomycin	N/A	4.3	[1.7 - 8.7]												95.7	1.2	3.1		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6	0.0	[0.0 - 2.3]							2.5	7.4	87.0	2.5	0.6					
	Cephems	Ceftiofur	0.0	0.0	[0.0 - 2.3]				1.2	7.4	90.1	1.2					-				
		Ceftriaxone	0.0	0.0	[0.0 - 2.3]					100.0					='						
	Macrolide	Azithromycin	N/A	0.0	[0.0 - 2.3]							6.2	82.1	9.9	0.6	1.2					
	Penicillins	Ampicillin	0.0	3.7	[1.4 - 7.9]							4.9	80.9	10.5				3.7			
	Quinolones	Ciprofloxacin	0.0	0.6	[0.0 - 3.4]	98.8			0.6						0.6	•					
		Nalidixic acid	N/A	1.2	[0.1 - 4.4]							2.5	88.9	7.4				1.2			
	Cephems	Cefoxitin	1.2	0.0	[0.0 - 2.3]							3.7	4.9	74.1	16.0	1.2					
	Folate pathway inhibitors	Sulfisoxazole	N/A	4.9	[2.2 - 9.5]											71.0	19.1	4.9			4.9
II		Trimethoprim-sulfamethoxazole	N/A	2.5	[0.7 - 6.2]				96.9	0.6					2.5						
	Phenicols	Chloramphenicol	0.6	1.2	[0.1 - 4.4]								1.2	21.0	75.9	0.6		1.2			
	Tetracyclines	Tetracycline	0.0	4.9	[2.2 - 9.5]									95.1		0.6	-	4.3			

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; N/A if no MIC range of intermediate susceptibility exists

Figure 14. Antimicrobial resistance pattern for Escherichia coli O157, 2011

[§] Percentage of isolates that were resistant

The 95% confidence intervals (Ci) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

"The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensititre® plate. Numbers listed for the low est tested concentration. CLSI breakpoints were used when available.

Table 43. Percentage and number of *Escherichia coli* O157 isolates resistant to antimicrobial agents, 2002–2011

Year	L-2011		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total	solates		399	158	169	194	233	190	161	187	170	162
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Amikacin (MIC ≥ 64)	0.0% 0	Not Tested								
		Gentamicin (MIC ≥ 16)	0.0% 0	0.0% 0	0.6% 1	0.5% 1	0.0% 0	0.0% 0	1.2% 2	0.5% 1	0.6% 1	0.6% 1
		Kanamycin (MIC ≥ 64)	0.5% 2	0.0% 0	0.0% 0	0.5% 1	0.4% 1	0.0% 0	0.0% 0	0.5% 1	1.2% 2	1.9% 3
		Streptomycin (MIC ≥ 64)	2.3% 9	1.9% 3	1.8% 3	2.1% 4	2.6% 6	2.1% 4	1.9% 3	4.8% 9	2.4% 4	4.3% 7
	β-lactam/β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid (MIC ≥ 32/16)	0.0% 0	1.3% 2	0.0% 0	0.0% 0	1.3% 3	0.5% 1	0.6% 1	0.5% 1	0.0% 0	0.0% 0
- 1	Cephems	Ceftiofur (MIC ≥ 8)	0.0% 0	1.3% 2	0.0% 0	0.0%	1.3% 3	0.0% 0	0.6% 1	0.0%	0.0%	0.0% 0
		Ceftriaxone (MIC ≥ 4)	0.0% 0	1.3% 2	0.0% 0	0.0%	1.3% 3	0.0% 0	0.6% 1	0.0%	0.0%	0.0% 0
	Macrolides	Azithromycin (MIC ≥ 32)	Not Tested	0.0% 0								
	Penicillins	Ampicillin (MIC ≥ 32)	1.5% 6	3.2% 5	1.2% 2	4.1% 8	2.6% 6	2.1% 4	3.7% 6	4.3% 8	1.8% 3	3.7% 6
	Quinolones	Ciprofloxacin (MIC ≥ 4)	0.0% 0	0.0% 0	0.0% 0	0.0%	0.4% 1	0.5% 1	0.0%	0.5% 1	0.0%	0.6% 1
		Nalidixic Acid (MIC ≥ 32)	1.0% 4	0.6% 1	1.8% 3	1.5% 3	2.1% 5	2.1% 4	1.2% 2	2.1% 4	1.2% 2	1.2% 2
	Cephems	Cefoxitin (MIC ≥ 32)	0.0% 0	1.3% 2	0.6% 1	0.0% 0	1.3% 3	0.0% 0	1.2% 2	0.5% 1	0.0% 0	0.0% 0
		Cephalothin (MIC ≥ 32)	1.5% 6	3.2% 5	Not Tested							
п	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡] (MIC ≥ 512)	3.5% 14	3.8% 6	1.8% 3	6.7% 13	3.0% 7	2.6% 5	3.1% 5	6.4% 12	4.7% 8	4.9% 8
"		Trimethoprim-sulfamethoxazole (MIC ≥ 4/76)	0.5% 2	0.6% 1	0.0% 0	0.5% 1	0.4% 1	1.1% 2	1.2% 2	4.3% 8	1.2% 2	2.5% 4
	Phenicols	Chloramphenicol (MIC ≥ 32)	1.3% 5	1.3% 2	0.6% 1	1.0% 2	1.3% 3	0.5% 1	0.6% 1	1.1% 2	0.6% 1	1.2% 2
	Tetracyclines	Tetracycline (MIC ≥ 16)	3.0% 12	5.7% 9	1.8% 3	8.8% 17	4.7% 11	4.7% 9	1.9% 3	7.5% 14	4.7% 8	4.9% 8

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important + CLCI: Clinical and Laboratory Standards Institute

Table 44. Resistance patterns of Escherichia coli O157 isolates, 2002-2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	399	158	169	194	233	190	161	187	170	162
Resistance Pattern										
No resistance detected	94.0%	90.5%	94.7%	87.6%	91.8%	92.1%	91.9%	89.8%	93.5%	92.6%
	375	143	160	170	214	175	148	168	159	150
Resistance ≥ 1 CLSI class*	6.0%	9.5%	5.3%	12.4%	8.2%	7.9%	8.1%	10.2%	6.5%	7.4%
	24	15	9	24	19	15	13	19	11	12
Resistance ≥ 2 CLSI classes*	3.8%	5.1%	2.4%	6.7%	4.7%	3.2%	3.1%	7.5%	4.7%	4.9%
	15	8	4	13	11	6	5	14	8	8
Resistance ≥ 3 CLSI classes*	2.0%	3.2%	1.2%	5.2%	3.4%	2.1%	2.5%	5.9%	4.1%	4.3%
	8	5	2	10	8	4	4	11	7	7
Resistance ≥ 4 CLSI classes*	0.8%	1.3%	0.6%	1.0%	2.1%	1.1%	1.2%	4.3%	1.8%	2.5%
	3	2	1	2	5	2	2	8	3	4
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.9%	0.5%	0.0%	0.5%	0.0%	0.6%
	0	0	0	0	2	1	0	1	0	1
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%	0.0%	0.0%	0.6%
	0	0	0	0	2	0	0	0	0	1
At least ACT/S [‡]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	1.2%
	0	0	0	0	0	0	1	0	0	2
At least ACSSuTAuCx§	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftriaxone and nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%
resistant	0	0	0	0	1	0	0	0	0	0

^{*} CLSI: Clinical and Laboratory Standards Institute; starting in 2011, testing included nine classes with the addition of the macrolide azithromycin

[†] CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004

[†] ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

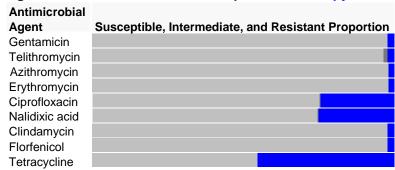
[‡] ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§] ACSSuTAuCx: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftriaxone

5. Campylobacter

Table 45. Frequency of Campylobacter species, 2011

Species	20	11
	N	(%)
Campylobacter jejuni	1275	(86.3)
Campylobacter coli	148	(10.0)
Other	55	(3.7)
Total	1478	(100)


Table 46. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter isolates to

antimicrobial agents, 2011 (N=1478)

D	CLSI [†] Antimicrobial Class	Australia de la Austria	Perc	entage	of isolates						Percen	tage of	all isola	tes wit	h MIC (µ	ıg/m L) [*]					
Rank*	CLSI Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.1	2.0	[1.4 - 2.9]				3.4	33.2	57.8	3.3	0.3	0.1			0.1	2.0			
	Ketolide	Telithromycin	1.4	2.1	[1.4 - 3.0]	0.1			0.1	1.6	10.1	34.9	37.7	12.0	1.4	2.1					
١.	Macrolides	Azithromycin	0.0	1.8	[1.2 - 2.6]		1.5	10.1	46.2	35.6	4.3	0.2	0.3						1.8		
'		Erythromycin	0.0	1.8	[1.2 - 2.6]				0.3	2.0	14.6	49.3	26.1	5.5	0.4				1.8		
	Quinolones	Ciprofloxacin	0.3	24.2	[22.0 - 26.4]		0.4	17.6	43.5	10.4	3.2	0.5	0.3	0.6	7.1	9.7	4.7	1.6	0.5		
		Nalidixic acid	0.3	24.8	[22.6 - 27.0]									56.7	15.2	3.0	0.3	0.4	24.4		
	Lincosamides	Clindamycin	0.3	2.0	[1.4 - 2.9]			0.1	3.8	28.1	43.4	17.9	4.4	0.3	0.3	0.3	1.4				
п	Phenicols	Florfenicol ^{††}	N/A	2.0	[1.4 - 2.9]			0.1			0.8	25.4	59.4	12.2	1.4	0.5	0.1				
	Tetracyclines	Tetracycline	0.1	45.1	[42.5 - 47.6]			0.1	2.4	24.2	18.9	6.5	1.9	0.9	0.1	0.2	0.4	1.6	42.8		

Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

Figure 15. Antimicrobial resistance pattern for Campylobacter, 2011

[†] CLSt Clinical and Laboratory Standards Institute ‡ Percentage of isolates with intermediate susceptibility; NA if no MC range of intermediate susceptibility exists § Percentage of isolates that were resistant

[§] Percentage of isolates that were resistant

¶ The 95% confidence intervals (C) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

** The unshaded areas indicate the dilution range of the Sensititre® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with man the lowest tested concentration. CLSI breakpoints were used when available.

†† Only a susceptible breakpoint (≤ 4 µg/mL) has been established. In this report, isolates with an MIC ≥ 8 µg/mL are categorized as resistant.

Table 47. Percentage and number of Campylobacter isolates resistant to antimicrobial agents, 2002–2011

Year	solates	, ,	2002 354	2003 328	2004 347	2005 888	2006 816	2007 1100	2008 1155	2009 1495	2010 1310	2011 1478
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)	354	328	347	000	010	1100	1155	1495	1310	1470
	Aminoglycosides	Gentamicin (MIC ≥ 8)	0.0% 0	0.3% 1	0.3% 1	0.5% 4	0.1% 1	0.6% 7	1.1% 13	0.9% 13	1.6% 21	2.0% 30
	Ketolides	Telithromycin (MIC ≥ 16)	Not Tested	Not Tested	Not Tested	1.0% 9	1.6% 13	1.5% 16	2.5% 29	1.5% 22	1.6% 21	2.1% 31
١.	Macrolides	Azithromycin (MIC ≥ 8)	2.0% 7	0.9% 3	0.6% 2	1.8% 16	1.7% 14	2.0% 22	3.0% 35	1.7% 25	1.5% 19	1.8% 27
'		Erythromycin (MIC ≥ 32)	1.4% 5	0.9% 3	0.3% 1	1.7% 15	1.7% 14	2.0% 22	3.0% 35	1.7% 25	1.5% 19	1.8% 27
	Quinolones	Ciprofloxacin (MIC ≥ 4)	20.1% 71	17.7% 58	19.0% 66	21.6% 192	19.6% 160	26.0% 286	23.0% 266	22.9% 342	22.4% 294	24.2% 357
		Nalidixic Acid (MIC ≥ 64)	20.6% 73	18.9% 62	19.6% 68	22.3% 198	20.1% 164	26.5% 291	23.5% 272	23.1% 346	22.7% 298	24.8% 366
	Lincosamides	Clindamycin (MIC ≥ 8)	2.0% 7	0.6% 2	2.0% 7	1.4% 12	2.0% 16	1.7% 19	2.8% 32	1.4% 21	1.7% 22	2.0% 30
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.3% 1	0.0% 0	1.4% 5	Not Tested						
"		Florfenicol [‡] Susceptible breakpoint: (MIC ≤ 4)	Not Tested	Not Tested	Not Tested	0.5% 4	0.0%	0.0%	0.5% 6	0.5% 8	1.3% 17	2.0% 30
	Tetracyclines	Tetracycline (MIC ≥ 16)	41.2% 146	38.4% 126	46.1% 160	40.5% 360	46.0% 375	44.4% 488	43.6% 504	43.5% 651	42.1% 552	45.1% 666

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important † CLSi: Clinical and Laboratory Standards Institute

‡ Only a susceptible breakpoint (≤ 4 μg/mL) has been established. In this report, isolates with an MIC ≥ 8 μg/mL are categorized as resistant.

Table 48. Resistance patterns of Campylobacter isolates, 2002–2011

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Isolates	354	328	347	888	816	1100	1155	1495	1310	1478
Resistance Pattern										
No resistance detected	48.0%	50.9%	46.1%	48.5%	43.9%	45.2%	45.9%	46.4%	47.3%	45.0%
	170	167	160	431	358	497	530	694	619	665
Resistance ≥ 1 CLSI class*	52.0%	49.1%	53.9%	51.5%	56.1%	54.8%	54.1%	53.6%	52.7%	55.0%
	184	161	187	457	458	603	625	801	691	813
Resistance ≥ 2 CLSI classes*	12.7%	8.5%	14.1%	13.6%	12.0%	17.5%	15.6%	14.2%	14.3%	17.4%
	45	28	49	121	98	192	180	212	187	257
Resistance ≥ 3 CLSI classes*	1.4%	0.9%	1.7%	1.7%	1.5%	1.7%	2.7%	1.7%	2.1%	3.0%
	5	3	6	15	12	19	31	25	28	45
Resistance ≥ 4 CLSI classes*	0.0%	0.3%	0.3%	0.3%	0.5%	0.9%	1.4%	1.1%	0.8%	1.2%
	0	1	1	3	4	10	16	16	10	18
Resistance ≥ 5 CLSI classes*	0.0%	0.3%	0.0%	0.0%	0.1%	0.6%	0.7%	0.5%	0.6%	0.7%
	0	1	0	0	1	7	8	8	8	11
At least quinolone and macrolide resistant	0.8%	0.9%	0.6%	1.0%	0.9%	1.4%	1.7%	1.2%	0.9%	1.7%
	3	3	2	9	7	15	20	18	12	25

^{*} CLSI: Clinical and Laboratory Standards Institute

Table 49. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to

antimicrobial agents, 2011 (N=1275)

Rank	CLSI [†] Antimicrobial Class	Australia de la Austra	Perc	entage	of isolates						Percen	tage of	all isola	ites witl	h MIC (µ	g/mL)¨					
Rank	CLSI Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	< 0.1	0.9	[0.5 - 1.6]				3.4	33.7	59.1	2.7	0.2	< 0.1				0.9			
	Ketolide	Telithromycin	0.7	1.9	[1.2 - 2.8]	< 0.1				0.9	8.5	38.0	40.0	10.0	0.7	1.9					
١.	Macrolides	Azithromycin	0.0	1.7	[1.1 - 2.6]		1.6	10.4	47.7	35.4	3.1		0.2						1.7		
'		Erythromycin	0.0	1.7	[1.1 - 2.6]				0.3	1.8	13.7	52.2	26.2	3.9	< 0.1				1.7		
	Quinolones	Ciprofloxacin	0.2	23.5	[21.1 - 25.9]		0.4	19.5	45.3	9.1	1.6	0.4	0.2	0.6	7.2	9.5	4.2	1.3	0.6		
		Nalidixic acid	0.4	23.7	[21.4 - 26.1]									61.5	12.6	1.8	0.4	0.3	23.4		
	Lincosamides	Clindamycin	0.2	1.8	[1.1 - 2.7]			0.2	3.8	29.2	45.4	15.9	3.5	0.2	0.2	0.3	1.3				
ш	Phenicols	Florfenicol ^{††}	N/A	2.1	[1.4 - 3.1]			< 0.1			0.9	27.0	60.1	9.9	1.4	0.6	< 0.1				
	Tetracyclines	Tetracycline	0.2	45.9	[43.1 - 48.7]			0.2	2.4	24.8	18.3	6.1	1.3	0.9	0.2	< 0.1	0.5	1.8	43.5		

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically important; Rank II, Highly Important

Figure 16. Antimicrobial resistance pattern for Campylobacter jejuni, 2011

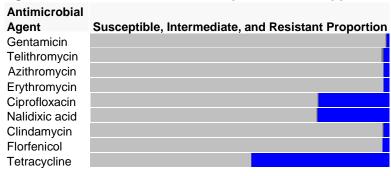


Table 50. Percentage and number of Campylobacter jejuni isolates resistant to antimicrobial agents, 2002-2011

Year			2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total Is	solates		329	303	320	788	709	992	1042	1350	1158	1275
Rank*	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin (MIC ≥ 8)	0.0%	0.0% 0	0.3% 1	0.1% 1	0.0%	0.7% 7	1.1% 11	0.6% 8	0.6% 7	0.9% 12
	Ketolides	Telithromycin (MIC ≥ 16)	Not Tested	Not Tested	Not Tested	0.5% 4	0.8% 6	1.0% 10	2.1% 22	1.3% 18	1.2% 14	1.9% 24
١.	Macrolides	Azithromycin (MIC ≥ 8)	1.8% 6	0.3% 1	0.6% 2	1.5% 12	0.8% 6	1.6% 16	2.2% 23	1.5% 20	1.1% 13	1.7% 22
'		Erythromycin (MIC ≥ 32)	1.2% 4	0.3% 1	0.3% 1	1.4% 11	0.8% 6	1.6% 16	2.2% 23	1.5% 20	1.1% 13	1.7% 22
	Quinolones	Ciprofloxacin (MIC ≥ 4)	20.7% 68	17.2% 52	18.1% 58	21.3% 168	19.5% 138	25.8% 256	22.3% 232	23.0% 310	21.8% 252	23.5% 299
		Nalidixic Acid (MIC ≥ 64)	21.3% 70	17.8% 54	18.4% 59	21.7% 171	19.0% 135	26.1% 259	22.7% 237	23.1% 312	21.9% 254	23.7% 302
	Lincosamides	Clindamycin (MIC ≥ 8)	1.8% 6	0.0% 0	2.2% 7	0.9% 7	1.0% 7	1.3% 13	2.0% 21	1.3% 17	1.2% 14	1.8% 23
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.3% 1	0.0% 0	1.6% 5	Not Tested						
"		Florfenicol [‡] Susceptible breakpoint: (MIC ≤ 4)	Not Tested	Not Tested	Not Tested	0.4% 3	0.0% 0	0.0% 0	0.6% 6	0.6% 8	1.5% 17	2.1% 27
	Tetracyclines	Tetracycline (MIC ≥ 16)	41.3% 136	38.3% 116	46.9% 150	41.8% 329	47.4% 336	44.8% 444	44.1% 460	43.4% 586	42.7% 495	45.9% 585

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

[†] CLSt: Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; NA if no MC range of intermediate susceptibility exists

[§] Percentage of isolates that were resistant

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 95% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for percent resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

The 15% confidence intervals (Cf) for such confidence intervals (%R) approximation to the Clopper-Pearson exact method

The 15% confidence intervals (%R) approximation (%R)

^{††} Only a susceptible breakpoint (≤ 4 µg/mL) has been established. In this report, isolates with an MIC≥8 µg/mL are categorized as resistant.

[†] CLSI: Clinical and Laboratory Standards Institute ‡ Only a susceptible breakpoint (≤ 4 μg/mL) has been established. In this report, isolates with an MIC ≥ 8 μg/mL are categorized as resistant.

Table 51. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to

antimicrobial agents, 2011 (N=148)

			Percentage of isolates			Percentage of all isolates with MIC (µg/mL)**															
Rank	CLSI [†] Antimicrobial Class	Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	12.2	[7.4 - 18.5]					23.6	62.2	1.4	0.7				0.7	11.5			
	Ketolide	Telithromycin	7.4	3.4	[1.1 - 7.7]				1.4	8.1	23.6	8.1	20.3	27.7	7.4	3.4					
١.	Macrolides	Azithromycin	0.0	2.7	[0.7 - 6.8]		0.7	6.8	33.1	37.8	16.2	2	0.7						2.7		
'		Erythromycin	0.0	2.7	[0.7 - 6.8]					3.4	22.3	23.6	25.7	18.9	3.4				2.7		
	Quinolones	Ciprofloxacin	0.0	35.8	[28.1 - 44.1]		0.7	3.4	30.4	17.6	11.5	0.7			7.4	14.9	9.5	4.1			
		Nalidixic acid	0.0	35.8	[28.1 - 44.1]									18.9	36.5	8.8			35.8		
	Lincosamides	Clindamycin	0.7	4.1	[1.5 - 8.6]				2.0	21.6	31.1	28.4	12.2	0.7	1.4		2.7	_			
ш	Phenicols	Florfenicol ^{††}	N/A	0.7	[0.0 - 3.7]						0.7	15.5	58.1	25	0.7						
	Tetracyclines	Tetracycline	0.0	50.7	[42.3 - 59.0]				1.4	17.6	20.9	6.8	2.7			1.4		0.7	48.6		

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

Figure 17. Antimicrobial resistance pattern for Campylobacter coli, 2011

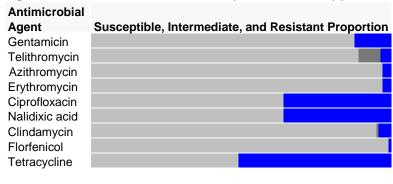


Table 52. Percentage and number of Campylobacter coli isolates resistant to antimicrobial agents, 2002-2011

Year			2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Total I	solates		25	22	26	99	97	105	110	142	116	148
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin (MIC ≥ 8)	0.0%	4.5% 1	0.0% 0	3.0%	1.0% 1	0.0% 0	1.8% 2	3.5% 5	12.1% 14	12.2% 18
	Ketolides	Telithromycin (MIC ≥ 16)	Not Tested	Not Tested	Not Tested	5.1% 5	7.2% 7	5.7% 6	6.4% 7	2.8% 4	5.2% 6	3.4% 5
١.	Macrolides		4.0% 1	9.1% 2	0.0% 0	4.0% 4	8.2% 8	5.7% 6	10.9% 12	3.5% 5	5.2% 6	2.7% 4
'			4.0% 1	9.1% 2	0.0% 0	4.0% 4	8.2% 8	5.7% 6	10.9% 12	3.5% 5	5.2% 6	2.7% 4
	Quinolones	Ciprofloxacin (MIC ≥ 4)	12.0% 3	22.7% 5	30.8% 8	24.2% 24	21.6% 21	28.6% 30	30.9% 34	22.5% 32	31.9% 37	35.8% 53
		Nalidixic Acid (MIC ≥ 64)	12.0% 3	22.7% 5	34.6% 9	27.3% 27	23.7% 23	30.5% 32	30.9% 34	23.9% 34	31.9% 37	35.8% 53
	Lincosamides	Clindamycin (MIC ≥ 8)	4.0% 1	9.1% 2	0.0% 0	5.1% 5	9.3% 9	5.7% 6	10.0% 11	2.8% 4	6.9% 8	4.1% 6
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.0% 0	0.0% 0	0.0% 0	Not Tested						
"		Florfenicol [‡] Susceptible breakpoint: (MIC ≤ 4)	Not Tested	Not Tested	Not Tested	1.0% 1	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.7% 1
	Tetracyclines	Tetracycline (MIC ≥ 16)	40.0% 10	45.5% 10	38.5% 10	31.3% 31	39.2% 38	41.9% 44	40.0% 44	45.1% 64	49.1% 57	50.7% 75

^{*} Rank of antimicrobials is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important

[†] CLSt: Clinical and Laboratory Standards Institute

‡ Percentage of isolates with intermediate susceptibility; NA if no MC range of intermediate susceptibility exists

[§] Percentage of isolates that were resistant

[§] Percentage of isolates that we're resistant (%R) were calculated using the Paulson-Camp-Pratt approximation to the Clopper-Pearson exact method

"The Unshaded areas indicate the dilution range of the Sensitire® plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire® plate. Numbers listed for the low est tested concentrations represent the percentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available

^{††} Only a susceptible breakpoint (≤ 4 µg/mL has been established. In this report, isolates with an MIC≥ 8 µg/mL are categorized as resistant.

[‡] Only a susceptible breakpoint (≤ 4 µg/mL) has been established. In this report, isolates with an MIC ≥ 8 µg/mL are categorized as resistant.

6. Vibrio species other than V. cholerae

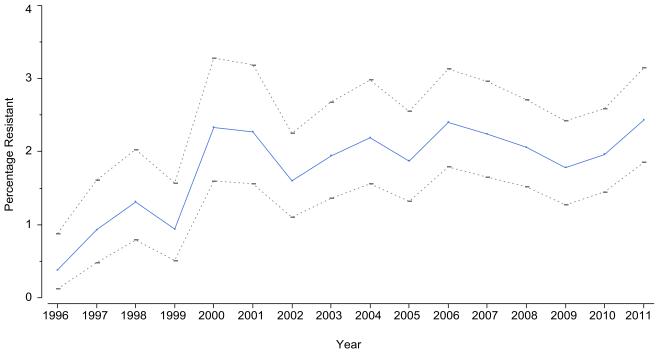
Table 53. Frequency of Vibrio species other than V. cholerae, 2009-2011

Species	20	09	20	10	2011			
	n	(%)	n	(%)	n	(%)		
Vibrio parahaemolyticus	149	(52.8)	179	(54.2)	201	(50.3)		
Vibrio alginolyticus	46	(16.3)	49	(14.8)	103	(25.8)		
Vibrio vulnificus	50	(17.7)	61	(18.5)	63	(15.8)		
Vibrio fluvialis	21	(7.4)	24	(7.3)	18	(4.5)		
Vibrio mimicus	11	(3.9)	9	(2.7)	9	(2.3)		
Vibrio harveyi	0	(0)	2	(0.6)	4	(1.0)		
Other	5	(1.8)	6	(1.8)	2	(0.5)		
Total	282	(100)	330	(100)	400	(100)		

Table 54. Minimum inhibitory concentrations (MICs) and resistance of isolates of Vibrio species other

	CLSI [†] Antimicrobial Class		Perc	entage	of isolates			-20					Perce	ntage	of all is	olates	with M	IC (µg/	m L)**							
ank*	Antimicrobial Agent	Year (# of isolates)	%l [‡]	%R ⁵	[95% CI] [¶]	0.002	0.004	0.007	0.015	0.03	0.06	0.125		0.5	1	2	4	8	16	32	64	128	256	512	1024	204
	Aminoglycosides																									
	Kanamycin ^{††}	2009 (282)	N/A	N/A	N/A										0.4	5.7	55.7	34.0	4.3							
		2010 (330)	N/A	N/A	N/A										0.6	7.0	60.0	30.9	0.9	0.6						
		2011 (400)	N/A	N/A	N/A										0.5	1.3	39.5	50.3	7.3	1.0	0.3					
	Streptomycin ^{††}	2009 (282)	N/A	N/A	N/A											2.5	9.9	39	47.2	1.4						
		2010 (330)	N/A	N/A	N/A										0.9	2.7	9.4	55.8	30.6		0.6					
		2011 (400)	N/A	N/A	N/A												3.8	41.0	52.0	3.0	0.3					
	Penicillins																									
	Ampicillin	2009 (282)	21.6	22.0	[17.3 - 27.3]								0.4		14.2	11.3	11.3	19.1	21.6	9.2	4.6	1.4		6.7		
'		2010 (330)	16.7	19.1	[15.0 - 23.8]									0.9	14.8	10.3	19.1	19.1	16.7	6.7	3.0	0.6		8.8		
		2011 (400)	16.3	48.5	[43.5 - 53.5]						0.3			0.5	10.3	5.3	10.3	8.8	16.3	15.3	8.5	2.0	1.3	21.5		
	Quinolones																									
	Ciprofloxacin	2009 (282)	0.0	0.0	[0.0 - 1.3]		6.4	2.8	2.8	7.8	18.1	58.2	3.5	0.4												
		2010 (330)	0.0	0.0	[0.0 - 1.1]		5.2	4.5	1.2	9.7	16.1	57.6	4.8	0.9												
		2011 (400)	0.0	0.0	[0.0 - 0.9]		1.8	3.3	2.5	6.8	11.8	42.8	29.3	2.0			ш									
	Nalidixic acid ^{††}	2009 (282)	N/A	N/A	N/A								1.1	5.7	27.3	61.7	3.5	0.7								
		2010 (330)	N/A	N/A	N/A								1.2	5.8	33.6	50.9	8.5									
		2011 (400)	N/A	N/A	N/A								0.8	2.5	20.0	63.8	12.5	0.3		0.3						
	Cephems																									
	Cephalothin ^{††}	2009 (282)	N/A	N/A	N/A								0.7		2.8	5.0	19.1	59.6	7.8				0.7	4.3		
		2010 (330)	N/A	N/A	N/A										0.6	2.7	12.1	50.0	28.2	0.6				5.8		
		2011 (400)	N/A	N/A	N/A								0.3			3.0	4.5	30.5	50.5	7.5	0.3			3.5		
	Folate pathway inhibitors																									
	Trimethoprim-sulfamethoxazole	2009 (282)	N/A	0.0	[0.0 - 1.3]					0.4	8.2	61.3	30.1													
		2010 (330)	N/A	0.3	[0.0 - 1.7]	0.3			0.3	0.9	13.9	70.0	13.6	0.3		0.3					0.3					
,		2011 (400)	N/A	0.3	[0.0 - 1.4]						14.8	73.0	12.0								0.3					
"	Phenicols																									
	Chloramphenicol ^{††}	2009 (282)	N/A	N/A	N/A									9.6	82.6	7.8										
		2010 (330)	N/A	N/A	N/A							0.3	0.6	11.8	82.1	4.5	0.3	0.3								
		2011 (400)	N/A	N/A	N/A									5.5	72	21.5	0.5	0.3	0.3							
	Tetracyclines																									
	Tetracycline	2009 (282)	0.0	0.0	[0.0 - 1.3]							1.1	0.7	5.7	44.0	48.2	0.4									
		2010 (330)	0.0	0.0	[0.0 - 1.1]						0.3		0.9	6.7	63.9	27.3	0.9									
		2011 (400)	0.0	0.3	[0.0 - 1.4]							0.3	1.0	9.0	70.3	17.8	1.5				0.3					

^{*} Rank of antimicrobial agents is based on World Health Organization's categorization of critical importance in human medicine (Appendix A, Table 1): Rank I, Critically Important; Rank II, Highly Important
† CLSI Clinical and Laboratory Standards Institute
† Percentage of isolates with intermediate susceptibility; NA if no MC range of intermediate susceptibility exists or no CLSI breakpoints have been established
§ Percentage of isolates that were resistant. NA indicates that no CLSI breakpoints have been established
¶ The 95% confidence intervals (Cl) for percent resistant (%R) were calculated using the Paulson-Camp-Part approximation to the Copper-Pearson exact method; NA indicates that no CLSI breakpoints have been established
** The unshaded areas indicate the dilution range of the Besit® strips used to test isolates. Single vertical bars indicate the resultance that the full of the complex of the comple


Table 55. Percentage and number of isolates of *Vibrio* species other than *V. cholerae* resistant to ampicillin, 2009–2011

Species	2009	2010	2011
Vibrio parahaemolyticus	9.4%	8.4%	40.3%
Vibrio parariaemolyticus	14	15	81
Vibrio alginolyticus	82.6%	89.8%	95.1%
VIDNO alginolyticus	38	44	98
Vibrio vulnificus	2.0%	0.0%	4.8%
VIDNO Valitineus	1	0	3
Vibrio fluvialis	33.3%	12.5%	44.4%
VIDITO TIUVIAIIS	7	3	8
Vibrio mimicus	9.1%	0.0%	0.0%
VIDNO MIMICUS	1	0	0
Vibrio harveyi	0.0%	50.0%	100.0%
Vibrio riarveyi	0	1	4
Other	20.0%	0.0%	0.0%
Ottlei	1	0	0
Total	22.0%	19.1%	48.5%
Total	62	63	194

Antimicrobial Resistance: 1996–2011

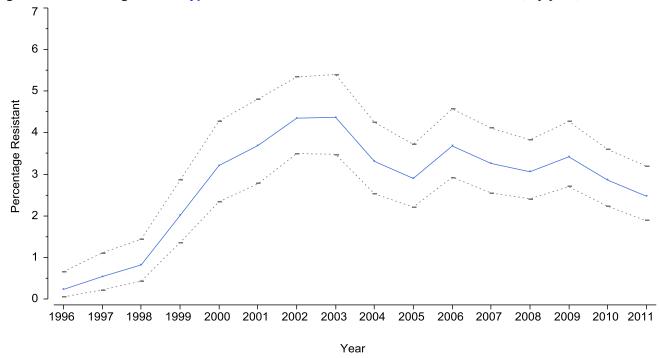

The following figures display resistance to selected agents and combinations of agents from 1996–2011 for non-typhoidal *Salmonella*, 1999–2011 for *Salmonella* ser. Typhi, 1997–2011 for *Campylobacter*, and 1999–2011 for *Shigella*.

Figure 18. Percentage of non-typhoidal Salmonella isolates resistant to nalidixic acid, by year, 1996–2011

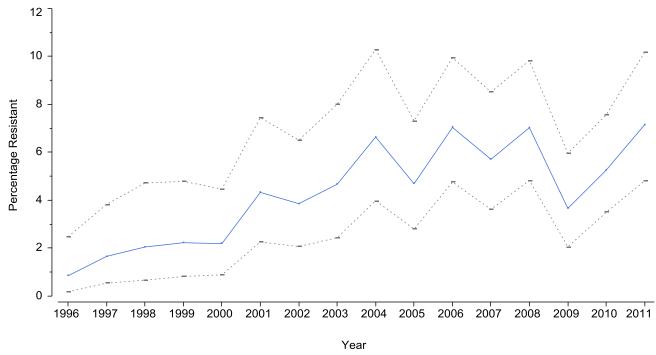

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- — Annual percentage resistant

Figure 19. Percentage of non-typhoidal Salmonella isolates resistant to ceftriaxone, by year, 1996–2011

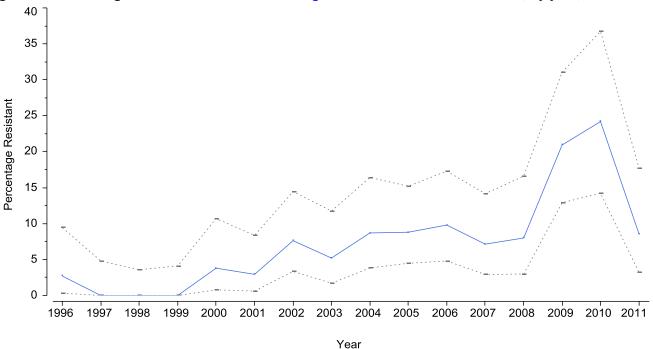

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

Figure 20. Percentage of *Salmonella* ser. Enteritidis isolates resistant to nalidixic acid, by year, 1996–2011

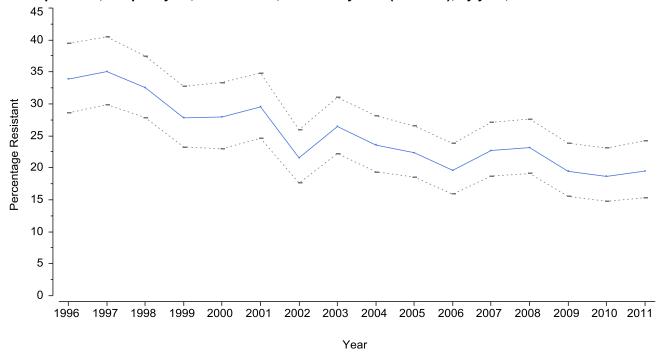

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

Figure 21. Percentage of Salmonella ser. Heidelberg isolates resistant to ceftriaxone, by year, 1996-2011

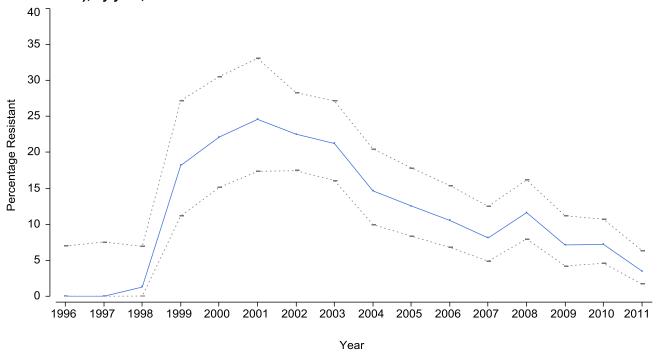

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- — Annual percentage resistant

Figure 22. Percentage of *Salmonella* ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2011

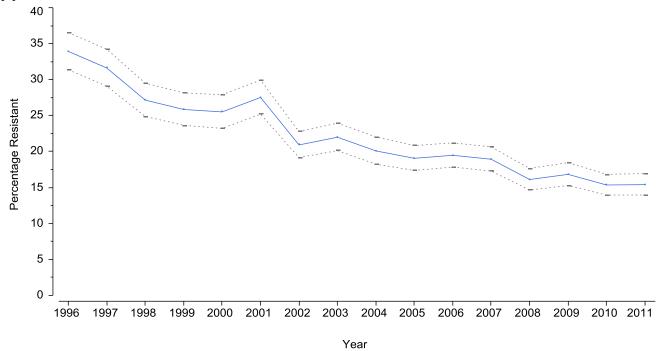

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

Figure 23. Percentage of Salmonella ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftriaxone (ACSSuTAuCx), by year, 1996–2011

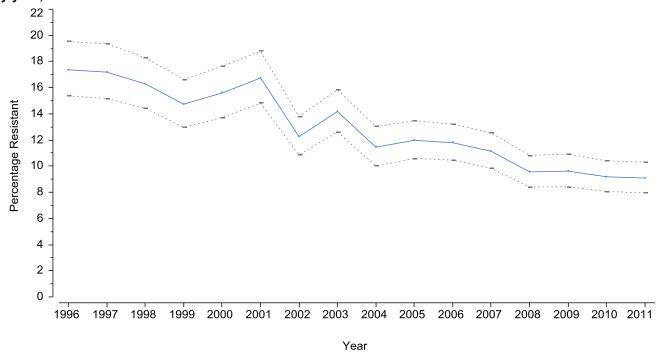

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

Figure 24. Percentage of non-typhoidal *Salmonella* isolates resistant to 1 or more antimicrobial classes, by year, 1996–2011

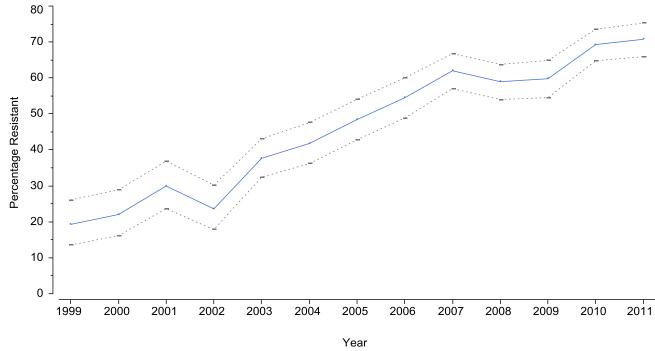

- = --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

Figure 25. Percentage of non-typhoidal *Salmonella* isolates resistant to 3 or more antimicrobial classes, by year, 1996–2011

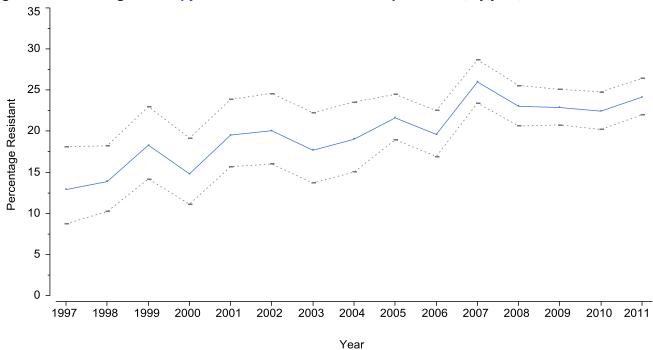

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

Figure 26. Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999–2011

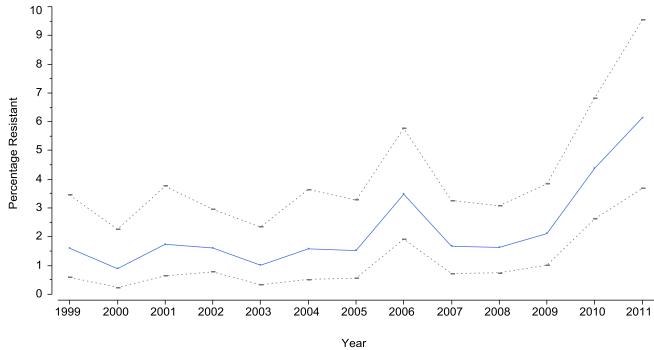

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

Figure 27. Percentage of Campylobacter isolates resistant to ciprofloxacin, by year, 1997–2011

- --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- — Annual percentage resistant

Figure 28. Percentage of Shigella isolates resistant to nalidixic acid, by year, 1999-2011

- = --- Upper and lower limits of the individual 95% confidence intervals for annual percentage resistant
- Annual percentage resistant

References

American Academy of Pediatrics. 2012. Shigella infections. In: L.K. Pickering (ed.), Red Book: 2012 Report of the Committee on Infectious Diseases, 29 ed. American Academy of Pediatrics, Elk Frove Village, IL.

CDC. <u>National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2005 human isolates final report</u>. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2007.

CDC. Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet Surveillance Report for 2011 (Final Report). Atlanta, Georgia: U.S. Department of Health and Human Services, CDC. 2012.

Clinical and Laboratory Standards Institute. <u>Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: approved guideline—Second Edition</u>. CLSI Document M45-A2. CLSI, Wayne, Pennsylvania, 2010.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Twenty-Second Informational Supplement. CLSI Document M100-S22. CLSI, Wayne, Pennsylvania, 2012.

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard---Eighth Edition. CLSI Document M07-A8. CLSI, Wayne, Pennsylvania, 2009.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved Standard-Third Edition. CLSI Document M31-A3. CLSI, Wayne, Pennsylvania, 2008.

Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 2003;37:75–81.

Fleiss JL, Levin B, Paik MC. <u>Statistical methods in for rates and proportions</u>. In: Shewart WA, Wilks SS, eds. Wiley Series in Probability and Statistics. Published Online; 2004:284–308.

Gonzalez, I, Grant KA, Richardson PT, Park SF, Collins MD. <u>Specific identification of the enteropathogens</u> <u>Campylobacter jejuni and Campylobacter coli by using a PCR test based on the <u>ceuE</u> gene encoding a putative virulence determinant. Journal of Clinical Microbiology 1997;35:759–63.</u>

Howie RL, Folster JP, Bowen A, Barzilay EJ, Whichard JM. <u>Reduced azithromycin susceptibility in Shigella sonnei, United States.</u> Microb Drug Resist. 2010 Dec;16(4):245-8.

Kleinbaum DG, Kupper LL, Nizam A, Muller KE. Applied Regression Analysis and Other Multivariable Methods, 4th ed. Belmont. CA: Duxbury; 2008.

Linton D, Lawson AJ, Owen RJ, Stanley J. <u>PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples</u>. Journal of Clinical Microbiology 1997;35:2568–72.

Linton D, Owen RJ, Stanley J. Rapid Identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Research in Microbiology 1996;147:707–18. Pruckler J et al., Comparison of four real-time PCR methods for the identification of the genus Campylobacter and speciation of C. jejuni and C. coli. ASM 106th General meeting; Poster C282.

Sjölund-Karlsson M, Joyce K, Blickenstaff K. et al. <u>Antimicrobial Susceptibility to Azithromycin among Salmonella enterica isolated in the United States</u>. Antimicrob Agents Chemother. 2011 Jun 20.

U.S. Census Bureau. <u>Guide to State and Local Geography – Selected Data from the 2011 Census.</u> Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2012.

U.S. Census Bureau. <u>Census Regions and Divisions of the United States</u>. Washington, D.C.: U.S. Department of Commerce, U.S. Census Bureau, 2012.

Vandamme P, Van Doorn LJ, al Rashid ST, Quint WG, van der Plas J, Chan VL, On SL. <u>Campylobacter hyoilei</u> <u>Alderton et al. 1995 and Campylobacter coli Veron and Chatelain 1973 are subjective synonyms</u>. Inter. J. Syst. Bacteriol 1997; 47:1055–60.

World Health Organization (WHO). <u>Critically Important Antimicrobials for Human Medicine</u>. 3rd Revision. Switzerland, 2011.

World Health Organization, <u>Guidelines for the control of shigellosis</u>, <u>including epidemics due to Shigella dysenteriae type 1</u>, 2005, World Health Organization: Geneva.

NARMS Publications in 2011

Crump JA, Medalla FM, Joyce KW, Krueger AL, Hoekstra RM, Whichard JM, et al. <u>Antimicrobial resistance</u> among invasive nontyphoidal *Salmonella enterica* isolates in the United States: National Antimicrobial Resistance <u>Monitoring System</u>, 1996 to 2007. Antimicrob Agents Chemother. 2011 Mar;55(3):1148-54.

Folster JP, Pecic G, Taylor E, Whichard J. <u>Characterization of Isolates from an outbreak of multidrug-resistant, Shiga toxin-producing Escherichia coli O145 in the United States. Antimicrob Agents Chemother. 2011 Dec;55(12):5955-6.</u>

Folster JP, Pecic G, McCullough A, Rickert R, Whichard JM. <u>Characterization of bla(CMY)-encoding plasmids</u> among *Salmonella* isolated in the United States in 2007. Foodborne Pathog Dis. 2011 Dec;8(12):1289-94.

Folster JP, Pecic G, Bowen A, Rickert R, Carattoli A, Whichard JM. <u>Decreased susceptibility to ciprofloxacin among Shigella isolates in the United States, 2006 to 2009.</u> Antimicrob Agents Chemother. 2011 Apr;55(4):1758-60.

Krueger AL, Folster J, Medalla F, Joyce K, Perri MB, Johnson L, et al. <u>Commensal Escherichia coli isolate</u> resistant to eight classes of antimicrobial agents in the United States. Foodborne Pathog Dis. 2011 Feb;8(2):329-32.

Medalla F, Sjölund-Karlsson M, Shin S, Harvey E, Joyce K, Theobald L, et al. <u>Ciprofloxacin-resistant Salmonella enterica</u> Serotype Typhi, United States, 1999–2008. Emerg Infect Dis. 2011 Jun;17(6):1095-8.

Sjölund-Karlsson M, Reimer A, Folster JP, Walker M, Dahourou GA, Batra DG, et al. <u>Drug-resistance</u> <u>mechanisms in *Vibrio cholerae* O1 outbreak strain, Haiti, 2010.</u> Emerg Infect Dis. 2011 Nov;17(11):2151-4.

Sjölund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla FM, et al. <u>Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the United States.</u> Antimicrob Agents Chemother. 2011 Sep;55(9):3985-9.

Sjölund-Karlsson M, Howie R, Krueger A, Rickert R, Pecic G, Lupoli K, et al. <u>CTX-M-producing non-Typhi Salmonella spp. Isolated from humans, United States.</u> Emerg Infect Dis. 2011 Jan;17(1):97-9.

Appendix A. WHO Categorization of Antimicrobial Agents

In 2011 the World Health Organization (WHO) convened a panel of experts to update a list of antimicrobial agents ranked according to their relative importance to human medicine (WHO, 2011). The participants categorized antimicrobial agents as either Critically Important, Highly Important, or Important based upon two criteria: (1) used as sole therapy or one of the few alternatives to treat serious human disease and (2) used to treat disease caused by either organisms that may be transmitted via non–human sources or diseases caused by organisms that may acquire resistance genes from non–human sources. Antimicrobial agents tested in NARMS have been included in the WHO categorization table.

- Antimicrobial agents are critically important if both criteria (1) and (2) are true.
- Antimicrobial agents are highly important if either criterion (1) or (2) is true.
- Antimicrobial agents are important if neither criterion is true.

Table A1. WHO categorization of antimicrobials of critical importance to human medicine

WHO Category Level	Importance	CLSI* Class	Antimicrobial Agent tested in NARMS					
			Amikacin					
		A main a gluna aida a	Gentamicin					
		Aminoglycosides	Kanamycin					
			Streptomycin					
		β-lactam / β-lactamase inhibitor	Amoxicillin-clavulanic acid					
		combinations	Piperacillin-tazobactam					
			Cefepime					
		Cephems	Cefotaxime					
100	Critically important	Серпетіз	Ceftazidime					
'	Chucany important		Ceftriaxone					
		Ketolides	Telithromycin					
		Macrolides	Azithromycin					
		Macrolides	Erythromycin					
		Monobactams	Aztreonam					
		Penems	Imipenem					
		Penicillins	Ampicillin					
		Quinolones	Ciprofloxacin					
		Quilloines	Nalidixic acid					
		Canhama	Cefoxitin					
		Cephems	Cephalothin					
			Sulfamethoxazole / Sulfisoxazole					
H H	Highly important	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole					
		Lincosamides	Clindamycin					
		Phenicols	Chloramphenicol					
		Tetracyclines	Tetracycline					

^{*} CLSI: Clinical and Laboratory Standards Institute

Appendix B. Criteria for Retesting of Isolates

Repeat testing of an isolate must be done when one or more of the following conditions occur:

- No growth on panel
- · Growth in all wells
- Multiple skip patterns
- Apparent contamination in wells or isolate preparation
- Unlikely or discordant susceptibility results (Table B1)

If an isolate is retested, data for <u>all</u> antimicrobial agents should be replaced with the new test results. Categorical changes may require a third test (and may indicate a mixed culture).

Uncommon test results (Table B2) may represent emerging resistance phenotypes. Retesting is encouraged.

Table B1. Retest criteria for unlikely or discordant resistance phenotypes

Organism(s)	Resistance phenotype (MIC values in µg/mL)	Comments
Salmonella and E. coli O157	ceftiofur ^R (≥8) OR ceftriaxone ^R (≥4) AND ampicillin ^S (≤8)	The presence of an ESBL* or AmpC betalactamase should confer resistance to ampicillin
	ceftiofur ^R (≥8) AND ceftriaxone ^S (≤1) OR ceftiofur ^S (≤2) AND ceftriaxone ^R (≥4)	Both antimicrobial agents are 3 rd generation β-lactams and should have equal susceptibility interpretations
	ampicillin ^S (≤8) AND amoxicillin-clavulanic acid ^R (≥32/16)	
	sulfisoxazole ^S (≤256) AND trimethoprim-sulfamethoxazole ^R (≥4/76)	
Salmonella	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥1)	The stepwise selection of mutations in the QRDR [†] does not support this phenotype, although it may occur with plasmid-mediated mechanisms
E. coli O157	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥4)	The stepwise selection of mutations in the QRDR [†] does not support this phenotype
Campylobacter	erythromycin ^S (≤8) AND azithromycin ^R (≥8) erythromycin ^R (≥32) AND azithromycin ^S (≤2)	Erythromycin is class representative for 14- and 15-membered macrolides (azithromycin, clarithromycin, roxithromycin, and dirithromycin)
	nalidixic acid ^S (≤16) AND ciprofloxacin ^R (≥4)	In Campylobacter, one mutation is sufficient to confer resistance to both nalidixic acid and
	nalidixic acid ^R (≥64) AND ciprofloxacin ^S (≤1)	ciprofloxacin
	For <i>C. fetus</i> and <i>C. lari</i> isolates: nalidixic Acid ^S (≤16) OR ciprofloxicin ^S (≤1)	C. fetus and C. lari are intrinsically resistant to quinolones; consider likelihood of misidentification

^{*} Extended-spectrum beta-lactamase

Table B2. Uncommon resistance phenotypes for which retesting is encouraged

Organism(s)	Resistance phenotype (MIC values in µg/mL)						
Salmonella and	Pan-resistance						
E. coli O157	Resistance to azithromycin (>16)						
	ceftriaxone and/or ceftiofur MIC ≥2 AND ciprofloxacin MIC ≥0.125 and/or nalidixic acid MIC ≥32						
Campylobacter	Pan-resistance						
	Resistance to gentamicin (≥8)						
	Not susceptible to florfenicol (≥8)						

[†]Quinolone resistance-determining regions