

National Antimicrobial Resistance Monitoring System: Enteric Bacteria

Human Isolates Final Report

National Center for Emerging and Zoonotic Infectious Diseases Division of Foodborne, Waterborne, and Environmental Diseases

Table of Contents

List of Tables	2
List of Figures	5
List of Boxes	6
List of Abbreviations and Acronyms	6
NARMS Working Group	7
What is New in the NARMS Report for 20081	1
Introduction1	2
WHO Categorization of Antimicrobial Agents1	3
Summary of NARMS 2008 Surveillance Data1	4
Surveillance and Laboratory Testing Methods2	3
Results	0
1. Non-typhoidal Salmonella 3 A. Salmonella ser. Enteritidis 3 B. Salmonella ser. Typhimurium 3 C. Salmonella ser. Newport. 3 D. Salmonella ser. I 4,[5],12:i:- 3 E. Salmonella ser. Heidelberg. 4 2. Typhoidal Salmonella 4 3. Shigella 5 4. Escherichia coli O157 5 5. Campylobacter 6	0246804080
REFERENCES	5
NARMS Publications in 2008	6
APPENDIX A	7
Summary of <i>Escherichia coli</i> Resistance Surveillance Pilot Study, 2008	7

Suggested Citation: CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2008. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2010.

Information Available Online: Previous reports and additional information about NARMS are posted on the CDC NARMS website: <u>http://www.cdc.gov/narms</u>

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement by the Centers for Disease Control and Prevention or the U. S. Department of Health and Human Services.

List of Tables

Table 1.	World Health Organization (WHO) categorization of antimicrobials of critical importance to human medicine	13
Table 2.	Population size and number of isolates received and tested, NARMS, 2008	22
Table 3.	Antimicrobial agents used for susceptibility testing for <i>Salmonella, Shigella</i> , and <i>Escherichia coli</i> 0157 isolates, NARMS, 2008	24
Table 4.	Antimicrobial agents used for susceptibility testing for <i>Campylobacter</i> isolates, NARMS, 1997–2007	26
Table 5.	Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2008 (N=2,379)	30
Table 6.	Percentage and number of non-typhoidal <i>Salmonella</i> isolates resistant to antimicrobial agents, 1999–2008	31
Table 7.	Resistance patterns of non-typhoidal Salmonella isolates, 1999–2008	31
Table 8.	Twenty most common non-typhoidal Salmonella serotypes in NARMS, 2008	32
Table 9.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Enteritidis isolates to antimicrobial agents, 2008 (N=439)	32
Table 10.	Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 1999–2008	33
Table 11.	Resistance patterns of Salmonella ser. Enteritidis isolates, 1999–2008	34
Table 12.	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2008 (N=397)	34
Table 13.	Percentage and number of <i>Salmonella</i> ser. Typhimurium isolates resistant to antimicrobial agents, 1999–2008	35
Table 14.	Resistance patterns of Salmonella ser. Typhimurium isolates, 1999–2008	36
Table 15.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Newport isolates to antimicrobial agents, 2008 (N=252)	36
Table 16.	Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 1999–2008	37
Table 17.	Resistance patterns of Salmonella ser. Newport isolates, 1999–2008	38
Table 18.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2008 (N=83)	38
Table 19.	Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 1999–2008	39
Table 20.	Resistance patterns of Salmonella ser. I 4,[5],12:i:- isolates, 1999–2008	40

Table 21.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Heidelberg isolates to antimicrobial agents, 2008 (N=75)	10
Table 22.	Percentage and number of <i>Salmonella</i> ser. Heidelberg isolates resistant to antimicrobial agents, 1999–2008	11
Table 23.	Resistance patterns of Salmonella ser. Heidelberg isolates, 1999–2008	12
Table 24.	Number and percentage of ACSSuT-, ACSSuTAuCf, Nalidixic acid-, and Ceftiofur-resistant isolates among the 20 most common non-typhoidal <i>Salmonella</i> serotypes isolated in NARMS, 2008	1 3
Table 25.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Typhi isolates to antimicrobial agents, 2008 (N=410)	14
Table 26.	Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 1999–2008	¥5
Table 27.	Resistance patterns of Salmonella ser. Typhi isolates, 1999–2008	ł5
Table 28.	Frequency of <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C isolated in NARMS, 20084	¥6
Table 29.	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates to antimicrobial agents, 2008 (N=92)	16
Table 30.	Percentage and number of Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates resistant to antimicrobial agents, 1999–2008	17
Table 31.	Resistance patterns of <i>Salmonella</i> ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates, 1999–2008	17
Table 32.	Frequency of Shigella species isolated in NARMS, 20085	50
Table 33.	Minimum inhibitory concentrations (MICs) and resistance of <i>Shigella</i> isolates to antimicrobial agents, 2008 (N=552)	50
Table 34.	Percentage and number of Shigella isolates resistant to antimicrobial agents, 1999–2008	51
Table 35.	Resistance patterns of <i>Shigella</i> isolates, 1999–20085	52
Table 36.	Minimum inhibitory concentrations (MICs) and resistance of <i>Shigella sonnei</i> isolates to antimicrobial agents, 2008 (N=498)5	52
Table 37.	Percentage and number of Shigella sonnei isolates resistant to antimicrobial agents, 1999–2008.	53
Table 38.	Resistance patterns of Shigella sonnei isolates, 1999–20085	54
Table 39.	Minimum inhibitory concentrations and resistance of <i>Shigella flexneri</i> isolates to antimicrobial agents, 2008 (N=46)	54
Table 40.	Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 1999–2008.5	55
Table 41.	Resistance patterns of Shigella flexneri isolates, 1999–2008	56
Table 42.	Minimum inhibitory concentrations (MICs) and resistance of <i>Escherichia coli</i> O157 isolates to antimicrobial agents, 2008 (N=160)	58
Table 43.	Percentage and number of <i>Escherichia coli</i> O157 isolates resistant to antimicrobial agents, 1999–2008	59

Table 44.	Resistance patterns of <i>Escherichia coli</i> O157 isolates, 1999–2008	59
Table 45.	Frequency of Campylobacter species isolated in NARMS, 2008	60
Table 46.	Minimum inhibition concentrations (MICs) and resistance of <i>Campylobacter</i> isolates to antimicrobial agents, 2008 (N=1159)	60
Table 47.	Percentage and number of Campylobacter isolates resistant to antimicrobial agents, 1999–2008.	61
Table 48.	Resistance patterns of Campylobacter isolates, 1999–2008	61
Table 49.	Minimum inhibitory concentrations (MICs) and resistance of <i>Campylobacter jejuni</i> isolates to antimicrobial agents, 2008 (N=1055)	61
Table 50.	Percentage and number of <i>Campylobacter jejuni</i> isolates resistant to antimicrobial agents, 1999–2008	62
Table 51.	Minimum inhibitory concentrations (MICs) and resistance of <i>Campylobacter coli</i> isolates to antimicrobial agents, 2008 (N=101)	63
Table 52.	Percentage and number of <i>Campylobacter coli</i> isolates resistant to antimicrobial agents, 1999–2008	64
Table 53.	Antimicrobial agents used for susceptibility testing of <i>Escherichia coli</i> , 2008	69
Table 54.	Minimum inhibitory concentrations (MICs) and resistance of <i>Escherichia coli</i> isolates to antimicrobial agents, 2008, (N=57)	69
Table 55.	Percentage and number of <i>Escherichia coli</i> isolates resistant to antimicrobial agents, 2004–2008.	71
Table 56.	Resistance patterns of <i>Escherichia coli</i> isolates, 2004–2008	72

List of Figures

Figure 1.	Proportion of non-typhoidal Salmonella isolates resistant to nalidixic acid, by year, 1996–2008	. 17
Figure 2.	Proportion of non-typhoidal Salmonella isolates resistant to ceftiofur, by year, 1996–2008	. 18
Figure 3.	Proportion of Salmonella ser. Enteritidis isolates resistant to nalidixic acid, by year, 1996–2008	. 18
Figure 4.	Proportion of <i>Salmonella</i> ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2008	. 19
Figure 5.	Proportion of <i>Salmonella</i> ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftiofur (ACSSuTAuCf), by year, 1996–2008	19
Figure 6.	Proportion of non-typhoidal <i>Salmonella</i> isolates resistant to 1 or more antimicrobial classes, by year, 1996–2008	20
Figure 7.	Proportion of non-typhoidal <i>Salmonella</i> isolates resistant to 3 or more antimicrobial classes, by year, 1996–2008	20
Figure 8.	Proportion of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999–2008	. 21
Figure 9.	Proportion of <i>Campylobacter</i> isolates resistant to ciprofloxacin, by year, 1997–2008	. 21
Figure 10.	How to read a squashtogram	28
Figure 11.	Proportional chart, a categorical graph of a squashtogram	. 29
Figure 12.	Antimicrobial resistance pattern for non-typhoidal Salmonella, 2008	30
Figure 13.	Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2008	33
Figure 14.	Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2008	35
Figure 15.	Antimicrobial resistance pattern for Salmonella ser. Newport, 2008	37
Figure 16.	Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2008	39
Figure 17.	Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2008	. 41
Figure 18.	Antimicrobial resistance pattern for Salmonella ser. Typhi, 2008	44
Figure 19.	Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, B, and C, 2008	46
Figure 20.	Antimicrobial resistance pattern for Shigella, 2008	51
Figure 21.	Antimicrobial resistance pattern for Shigella sonnei, 2008	53
Figure 22.	Antimicrobial resistance pattern for Shigella flexneri, 2008	55
Figure 23.	Antimicrobial resistance pattern for <i>Escherichia coli</i> O157, 2008	. 58
Figure 24.	Antimicrobial resistance pattern for Campylobacter, 2008	60
Figure 25.	Antimicrobial resistance pattern for Campylobacter jejuni, 2008	62
Figure 26.	Antimicrobial resistance pattern for Campylobacter coli, 2008	63
Figure 27.	Antimicrobial resistance pattern for <i>Escherichia coli</i> , 2008	.70

List of Boxes

Box 1.	Changes in Antimicrobial Resistance: 2008 vs. 2003-2007	.16
Box 2.	Identification of the aminoglycoside resistance determinants <i>armA</i> and <i>rmtC</i> among human non-typhoidal <i>Salmonella</i> isolated in the United States	48
Box 3.	Plasmid-mediated quinolone resistance among non-typhoidal Salmonella isolated in the United States	49
Box 4.	Identification and characterization of CTX-M-producing Shigella isolates in the United States	.57

List of Abbreviations and Acronyms

ACSSuT	Resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline
ACSSuTAuCf	Resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, amoxicillin-clavulanic acid, and ceftiofur
ACT/S	Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole
ANT/S	Resistance to at least ampicillin, nalidixic acid and trimethoprim-sulfamethoxazole
AT/S	Resistance to at least ampicillin and trimethoprim-sulfamethoxazole
CDC	Centers for Disease Control and Prevention
CI	Confidence interval
CLSI	Clinical and Laboratory Standards Institute
EIP	Emerging Infections Program
ELC	Epidemiology and Laboratory Capacity
FDA-CVM	Food and Drug Administration-Center for Veterinary Medicine
FoodNet	Foodborne Diseases Active Surveillance Network
MIC	Minimum inhibitory concentration
NARMS	National Antimicrobial Resistance Monitoring System for Enteric Bacteria
OR	Odds ratio
PHLIS	Public Health Laboratory Information System
USDA	United States Department of Agriculture
WHO	World Health Organization

NARMS Working Group

Centers for Disease Control and Prevention

Enteric Diseases Epidemiology Branch

Enteric Diseases Laboratory Branch

Division of Foodborne, Waterborne and Environmental Diseases (proposed)

National Center for Emerging and Zoonotic Infectious Diseases (proposed)

Frederick Angulo Ezra Barzilav **Richard Bishop** Kristen Blanchard Jason Folster Peter Gerner-Smidt Audrey Green Sharon Greene Patricia Griffin Robert Michael Hoekstra Rebecca Howie Kevin Joyce Maria Karlsson Amv Krueger Kathryn Lupoli Amie May ThurdeKoos Andre McCullough Felicita Medalla **Terrell Miller** Michael Omondi Gary Pecic Regan Rickert Jacinta Smith Andrew Stuart Robert Tauxe Jean Whichard

U.S. Food and Drug Administration Center for Veterinary Medicine

Beth Karp Patrick McDermott David White

Participating State and Local Health Departments

Alabama Department of Public Health

LaDonna Cranidiotis Sherri Davidson Sharon Massingale Ethel Oldham Joanna Roberson

Alaska Department of Health and Social Services

Shellie Smith Catherine Xavier

Arizona Department of Health Services

Shoana Anderson Aarikha D'Souza Daniel Flood Melissa Hoffman Ken Komatsu William Slanta Victor Waddell

Arkansas Department of Health

Dennis Berry Joanie Jones-Harp Rossina Stefanova

California Department of Health Services

Wendy Cheung Claudia Crandall Samar Fontanoz Paul Kimsey Will Probert Sam Shin Duc Vugia

Colorado Department of Public Health and Environment

Alicia Cronquist Laura Gillim-Ross Joyce Knutsen Hugh Maguire

Connecticut Department of Public Health

Sharon Hurd Aristea Kinney Mona Mandour Charles Welles

Delaware Health and Social Services

Gaile McLaughlin Bela Patel Debra Rutledge

Florida Department of Health

Ronald Baker Maria Calcaterra Sonia Etheridge Dian Sharma

Georgia Division of Public Health

Jim Benson Elizabeth Franko Tameka Hayes Mary Hodel Susan Lance Bob Manning Mahin Park Lynett Poventud Suzanne Segler Stepy Thomas Melissa Tobin-D'Angelo

Hawaii Department of Health

Rebecca Kanenaka Norman O'Connor

Houston Health and Human

Services Department Raouf Arafat Onesia Bishop Keri Goede Vern Juchau Joan Rogers

Idaho Department of Health and Welfare

Colleen Greenwalt Vivian Lockary Raemi Nolevanko

Illinois Department of Public Health

Nancy Barstead Bob Cox Mark Dworkin Juan Garcia Rebecca Hambelton Sue Kubba Kiran Patel Bindu Shah Guinevere Reserva Andrea Stadsholt Tricia Patterson Patrick Miller Steve Hopkins Stephen Hendren

Indiana State Department of

Health Brent Barrett John Radosevic

Iowa Department of Public Health, University Hygienic Laboratory

Mary DeMartino Randy Groepper

Kansas Department of Health and Environment

Cheryl Banez-Ocfemia Robert Flahart Gail Hansen Carissa Pursell June Sexton Kathleen Waters

Kentucky Department of Public Health

Robin Cotton Karim George William Grooms Darrin Sevier Jack Wiedo

Los Angeles County

Department of Health Services

Michael Stephens Sheena Chu Sue Sabet Laurene Mascola Roshan Reporter Joan Sturgeon

Louisiana Department of Health

and Hospitals

Gary Balsamo Wayne Dupree Catrin Jones-Nazar Lori Kravet Steven Martin Raoult Ratard Theresa Sokol Susanne Straif-Bourgeois Annu Thomas

Maine Department of Human Services

Geoff Beckett Kathleen Gensheimer Jeff Randolph Vicki Rea Lori Webber Donna Wrigley Anthony Yartel

Maryland Department of Health and Mental Hygiene and University of Maryland School of Medicine, Department of Epidemiology and Preventive Medicine Marisa Caipo Karen Cuenco Julie Kiehlbauch Melanie Megginson J. Glenn Morris, Jr. Jonigene Ruark Pat Ryan

Massachusetts Department of Public Health

Catherine Brown Alfred DeMaria Robert Goldbaum Emily Harvey Patricia Kludt Joseph Peppe Tracy Stiles

Michigan Department of Community Health

Carrie Anglewicz Frances Downes Teri Lee Dyke James Rudrik William Schneider Patricia Somsel

Minnesota Department of Health

John Besser Billie Juni Fe Leano Stephanie Meyer Kirk Smith Charlotte Taylor Theresa Weber

Mississippi Department of Health

Jannifer Anderson Jane Campbell Gloria Kendrick Sheryl Hand Cathie Hoover Daphne Ware

Missouri Department of Health

David Byrd Steve Gladbach Jason Herstein Harvey Marx JoAnn Rudroff

Montana Department of Public Health and Human Services

Bonnie Barnard Anne Weber Susanne Zanto

Nebraska Health and Human Services System and University of Nebraska Medical Center, Department of Pathology and Microbiology

Jude Eberhardt Paul Fey Jodi Garrett Peter Iwen Tom Safranek

Nevada Department of Health and Human Services

Vince Abitria Patricia Armour Stephanie Ernaga Jaime Frank Paul Hug Bradford Lee Susanne Quianzon Lisa Southern Stephanie Van Hooser

New Hampshire Department of

Health and Human Services

Christine Adamski Christine Bean Elizabeth Daly Wendy Lamothe Nancy Taylor Daniel Tullo

New Jersey Department of Health

Ruth Besco Michelle Malavet Sylvia Matiuck Paul Seitz

New Mexico Department of

Health Lisa Butler Cynthia Nicholson Lisa Onischuk Erica Pierce Paul Torres

New York City Department of Health

Sharon Balter Ludwin Chicaiza Heather Hanson Lara Kidiguchi Lillian Lee Vasudha Reddy

New York State Department of Health

Leeanna Armstrong Nellie Dumas Tammy Quinlan Dale Morse Tim Root Shelley Zansky

North Carolina Department of

Health and Human Services Denise Griffin Debra Springer

North Dakota Department of

Health Lisa Elijah Julie Wagendorf Eric Hieb Nicole Meier Tracy Miller Lisa Well

Ohio Department of Health

Rick Bokanyi Tammy Bannerman Jane Carmean Larry King Mary Kay Parrish Susan Luning Ellen Salehi

Oklahoma State Department of

Health

Rebekah Berry Mike Lytle Jeff Mathewson Mike McDermott

Oregon Department of Human Resources

Debbie Berquist Cathy Ciaffoni Paul Cieslak Emilio DeBess Julie Hatch Mayland Heim Steve Mauvais Beletsachew Shiferaw Larry Stauffer Ivor Thomas Janie Tierheimer Robert Vega Veronica Williams

Pennsylvania Department of Health

Wayne Chmielecki Lisa Dettinger Nkuchia Mikanatha Stanley Reynolds Carol Sandt James Tait

Rhode Island Department of Health

Tara Cooper Kerry Patterson Deanna Simmons Cindy Vanner

South Carolina Department of Health and Environmental Control

Dana Giurgiutiu Mamie Turner Jennifer Meredith Arthur Wozniak

South Dakota Department of Health

Christopher Carlson Lon Kightlinger Mike Smith Yvette Thomas

Tennessee Department of

Health Parvin Arjmandi Paula Bailey Samir Hanna Henrietta Hardin Tim Jones

Texas Department of State

Health Services Tamara Baldwin Leslie Bullion Elizabeth Delamater Linda Gaul Eldridge Hutcheson Miriam Johnson Susan Neill Pushker Raj Ana Valle

Utah Department of Health

Dan Andrews Kim Christensen Jana Coombs Cindy Fisher David Jackson Barbara Jepson Susan Mottice

Vermont Department of Health

Valerie Cook Eunice H. Froeliger Christine LaBarre Mary Spayne

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health Ellen Basinger Sherry Giese Jody Lowman Mary Mismas Denise Toney

Washington Department of Health

Jennifer Breezee Romesh Gautom Donna Green Brian Hiatt Yolanda Houze Kathryn MacDonald

West Virginia Department of Health and Human Resources

Danae Bixler Christi Clark Maria del Rosario Loretta Haddy Andrea Labik Megan Young

Wisconsin Department of

Health and Family Services John Archer Susann Ahrabi-Fard Charles Brokopp Jeffrey Davis Rick Heffernan Rachel Klos Tim Monson Dave Warshauer

Wyoming Department of Health

Richard Harris John Harrison Clay Van Houten Tracy Murphy Jim Walford

Salmonella ser. Paratyphi A and Salmonella ser. Paratyphi C Sampling

In previous reports, *Salmonella* ser. Paratyphi A and *Salmonella* ser. Paratyphi C were included in the every 20th sampling for non-Typhi *Salmonella*. Starting in 2008, NARMS requested sites to submit every *Salmonella* ser. Paratyphi A and *Salmonella* ser. Paratyphi C isolate for susceptibility testing. *Salmonella* ser. Paratyphi A and *Salmonella* ser. Paratyphi C are reported under the typhoidal *Salmonella* section of this report.

Ceftriaxone Resistance Breakpoint

In previous reports, the resistance breakpoint for ceftriaxone was defined as MIC \geq 64 µg/mL. In January 2010, the Clinical and Laboratory Standards Institute (CLSI) published revised interpretive criteria for ceftriaxone and *Enterobacteriaceae;* the revised resistance breakpoint for ceftriaxone is MIC \geq 4 µg/mL. In this report, NARMS used the revised CLSI breakpoint for ceftriaxone resistance.

Blue Boxes

Blue boxes have been added to highlight trends in antimicrobial resistance and NARMS special studies. The trends in antimicrobial resistance box is in the summary section and the special studies boxes are in the results section.

Method to Assess Change in Antimicrobial Resistance

We used logistic regression to compare the prevalence of specific antimicrobial resistance patterns among *Salmonella* and *Campylobacter* isolates tested in 2008 compared with the reference, which was the average prevalence of resistance in the previous 5 years (2003–07). In previous reports that included logistic regression analysis, we compared the prevalence of resistance in the current year with the prevalence in the first year of NARMS surveillance.

The National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria is a collaboration among the Centers for Disease Control and Prevention (CDC), <u>U.S. Food and Drug Administration's Center for</u> <u>Veterinary Medicine</u> (FDA-CVM), and <u>U.S. Department of Agriculture</u> (USDA). The primary purpose of NARMS at CDC is to monitor antimicrobial resistance among foodborne enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in enteric bacterial pathogens isolated from foods, conducted by the FDA-CVM

(<u>http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm</u>), and resistance in enteric pathogens isolated from animals, conducted by the USDA Agricultural Research Service (<u>http://www.ars.usda.gov/main/site_main.htm?modecode=66-12-05-08</u>).

Many NARMS activities are conducted within the framework of CDC's Emerging Infections Program (EIP), Epidemiology and Laboratory Capacity (ELC) Program, and the Foodborne Diseases Active Surveillance Network (FoodNet). In addition to surveillance of resistance in enteric pathogens, the NARMS program at CDC also includes public health research into the mechanisms of resistance, education efforts to promote prudent use of antimicrobial agents, and studies of resistance in commensal organisms.

Before NARMS was established, CDC monitored antimicrobial resistance in *Salmonella, Shigella*, and *Campylobacter* through periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with prospective monitoring of antimicrobial resistance among clinical non-typhoidal *Salmonella* and *Escherichia coli* O157 isolates in 14 sites. In 1997, testing of clinical *Campylobacter* isolates was initiated in the five sites participating in FoodNet. Testing of clinical *Salmonella enterica* serotype Typhi and *Shigella* isolates was added in 1999. Since 2003, all 50 states have been forwarding a representative sample of non-typhoidal *Salmonella*, *Salmonella* ser. Typhi, *Shigella*, and *E. coli* O157 isolates to NARMS for antimicrobial susceptibility testing, and 10 FoodNet states have been participating in *Campylobacter* surveillance.

This annual report includes CDC's surveillance data for 2008 for non-typhoidal *Salmonella*, typhoidal *Salmonella*, *Shigella*, *Campylobacter* and *E. coli* O157 isolates. Data for earlier years are presented in tables and graphs when appropriate. Antimicrobial classes defined by Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis. CLSI classes constitute major classifications of antimicrobial agents, e.g., aminoglycosides and cephems.

This report also includes the World Health Organization's categorization of antimicrobials of critical importance to human medicine (Table 1). The table includes only antimicrobials that are tested in NARMS.

Additional NARMS data and more information about NARMS activities are available at http://www.cdc.gov/narms

WHO Categorization of Antimicrobial Agents

In 2007, the World Health Organization (WHO) convened for the second time a panel of experts to develop a list of essential antimicrobial agents according to their importance to human medicine (WHO, 2007). The participants categorized antimicrobial agents as either Critically Important, Highly Important, or Important based upon two criteria: (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non–human sources or diseases caused by organisms that may be transmitted via non–human sources.

- Antimicrobial agents are considered critically important if both criteria (1) and (2) are true.
- Antimicrobial agents are highly important if either criterion (1) or (2) is true.
- Antimicrobial agents are important if neither criterion is true.

Table 1. WHO categorization of antimicrobials of critical importance to human medicine

WHO Category Level	Importance	CLSI Class	Antimicrobial Agent tested in NARMS			
			Amikacin			
		Aminoglycosides	Gentamicin			
			Streptomycin			
		β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid			
		Cephems	Ceftriaxone			
1	Critically important	Ketolides	Telithromycin			
		Macrolidas	Azithromycin			
		Maciondes	Erythromycin			
		Penicillins	Ampicillin			
		Quinelance	Ciprofloxacin			
		Quilloines	Nalidixic acid			
		Aminoglycosides	Kanamycin			
		Carbona	Cefoxitin			
		Cephenis	Cephalothin			
II.	Highly important		Sulfamethoxazole / Sulfisoxazole			
		Folate pathway inhibitors	Trimethoprim-sulfamethoxazole			
		Phenicols	Chloramphenicol			
		Tetracyclines	Tetracycline			
Ш	Important	Lincosamides	Clindamycin			

Population

In 2008, all 50 states participated in NARMS, representing the entire U.S. population of approximately 304 million persons (<u>Table 2</u>). Surveillance was conducted in all states for non-typhoidal *Salmonella*, typhoidal *Salmonella*, *Shigella*, and *Escherichia coli* O157. For *Campylobacter*, surveillance was conducted in 10 states that comprise the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 46 million persons (15.2% of the U.S. population).

Clinically Important Antimicrobial Resistance Patterns

In the United States, fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are commonly used to treat severe *Salmonella* infections, including *Salmonella* ser. Typhi, the organism that causes typhoid fever. In *Enterobacteriaceae*, resistance to nalidixic acid, an elementary quinolone, correlates with decreased susceptibility to ciprofloxacin (MIC $\ge 0.12 \ \mu g/mL$) and possible fluoroquinolone treatment failure. Ceftiofur is a third-generation cephalosporin used in food animals in the United States; resistance to ceftiofur among *Enterobacteriaceae* correlates with resistance to ceftriaxone (MIC $\ge 4 \ \mu g/mL$). A substantial proportion of *Enterobacteriaceae* isolates tested in 2008 demonstrated resistance to clinically important antimicrobial agents.

- 2.0% (47/2379) of non-typhoidal Salmonella isolates were resistant to nalidixic acid, including
 - o 6.6% (29/439) of *Salmonella* ser. Enteritidis isolates
 - Enteritidis was the most common serotype among nalidixic acid–resistant non-typhoidal Salmonella isolates: 61.7% (29/47) of nalidixic acid–resistant isolates were serotype Enteritidis.
- 2.9% (70/2379) of non-typhoidal Salmonella isolates were resistant to ceftriaxone, including
 - o 12.3% (31/252) of Salmonella ser. Newport isolates
 - Newport was the most common serotype among ceftriaxone–resistant non-typhoidal Salmonella isolates: 44.3% (31/70) of ceftiofur–resistant isolates were serotype Newport.
- 59.0% (242/410) of Salmonella ser. Typhi isolates were resistant to nalidixic acid.
- 2.2% (12/552) of *Shigella* isolates were resistant to nalidixic acid and 0.9% (5/552) were resistant to ciprofloxacin.
- 1.9% (3/160) of *E. coli* O157 isolates were resistant to nalidixic acid.

In *Campylobacter*, fluoroquinolones and macrolides (e.g., erythromycin) are important agents in the treatment of severe infections.

- 23.0% (267/1159) of Campylobacter isolates were resistant to ciprofloxacin, including
 - o 30.7% (31/101) of Campylobacter coli isolates
 - o 22.4% (236/1055) of Campylobacter jejuni isolates
- 3% (35/1159) of Campylobacter isolates were resistant to erythromycin, including
 - o 10.9% (11/101) of Campylobacter coli isolates
 - o 2.3% (24/1055) Campylobacter jejuni isolates

Multidrug Resistance

Multidrug resistance is described in NARMS as resistance to three or more antimicrobial classes and also by specific coresistant phenotypes. Antimicrobial classes of agents defined by the Clinical and Laboratory Standards Institute (CLSI) are used in this report (Table 3, Table 4). For non-typhoidal *Salmonella*, an important multidrug-resistant phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole/sulfisoxazole), and tetracycline (ACSSuT). The ACSSuT phenotype includes resistance to at least five CLSI classes. Another important phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftiofur (ACSSuTAuCf). The ACSSuTAuCf phenotype includes resistance to at least 7 CLSI classes. With the new ceftriaxone resistance breakpoint (lowered from 64 μ g/mL to 4 μ g/mL), all but one isolate with this phenotype was ceftriaxone resistant. In addition, 12.4% (294/2379) of non-typhoidal *Salmonella* isolates were resistant to two or more CLSI classes, and 9.4% (223/2379) were resistant to three or more CLSI classes.

- o 27.7% (110/397) of Salmonella ser. Typhimurium isolates were resistant to three or more classes.
- o 13.5% (34/252) of Salmonella ser. Newport isolates were resistant to three or more classes.
- o 0.2% (1/439) of Salmonella ser. Enteritidis isolates were resistant to three or more classes.

- Of 223 non-typhoidal *Salmonella* resistant to three or more classes, 49.3% were *Salmonella* ser. Typhimurium.
- 5.8% (137/2379) of non-typhoidal Salmonella isolates had the ACSSuT resistance pattern, including
 - o 22.9% (91/397) of Salmonella ser. Typhimurium isolates, and
 - o 11.5% (29/252) of Salmonella ser. Newport isolates.
- 1.8% (43/2379) of non- typhoidal Salmonella isolates had the ACSSuTAuCf resistance pattern, including
 - o 11.5% (29/252) of Salmonella ser. Newport isolates, and
 - o 2.0% (8/397) of Salmonella ser. Typhimurium isolates.
- 41.3% (228/552) of *Shigella* isolates were resistant to three or more classes.
- 3.1% (5/160) of *E. coli* O157 isolates were resistant to three or more classes.

Box 1. Changes in Antimicrobial Resistance: 2008 vs. 2003-07

We used logistic regression to compare the prevalence of specific antimicrobial resistance patterns among *Salmonella* and *Campylobacter* isolates tested in 2008 with the reference, which was the average prevalence of resistance in the previous 5 years (2003–07). A description of the methods is included in this report (refer to Surveillance and Laboratory Testing Methods).

The differences between the prevalence of resistance in 2008 and the average prevalence of resistance in the previous 5 years (2003–07) (Table 1) were statistically significant for the following:

- Resistance to one or more CLSI classes in non-typhoidal Salmonella (NTS) (OR=0.78, 95% CI [0.69–0.88]), which was lower in 2008 compared with 2003–07
- Resistance to three or more CLSI classes in NTS (OR=0.77, 95% CI [0.66–0.89]), which was lower in 2008 compared with 2003–07
- Nalidixic acid resistance in Salmonella ser. Typhi (OR=1.5, 95% CI [1.20–1.88]), which was higher in 2008 compared with 2003–07

The differences between the prevalence of resistance in 2008 and the average prevalence of resistance in the previous 5 years (2003–07) (Table 1) were not statistically significant for the following:

- Nalidixic acid resistance in NTS (OR=0.95, 95% CI [0.69–1.31])
- Ceftriaxone resistance in NTS (OR=0.87, 95% CI [0.67–1.13])
- Nalidixic acid resistance in Salmonella enterica ser. Enteritidis (OR=1.15, 95% CI [0.75-1.78])
- ACSSuT in Salmonella enterica ser. Typhimurium (OR=1.01, 95% CI [0.78–1.31])
- ACSSuTAuCf in Salmonella enterica ser. Newport (OR=1.24, 95% CI [0.78-1.97])
- Ciprofloxacin resistance in Campylobacter (OR=1.07, 95% CI [0.90–1.26])
- Ciprofloxacin resistance in Campylobacter jejuni (OR=1.06, 95% CI [0.88–1.26])

Table 1. Summary of trend analysis of the prevalence of specific resistance patterns among *Salmonella* and *Campylobacter* isolates, 2008 compared with 2003–2007*

*The reference is the average prevalence of resistance in the previous 5 years, 2003–07. Logistic regression models adjusted for site. The odds ratios (ORs) and 95% confidence intervals (CIs) for 2008 compared with the reference were calculated using unconditional maximum likelihood estimation. ORs that do not include 1.00 in the 95% CIs are reported as statistically significant.

[†] ACSSuT: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline.

[‡] ACSSuTAuCf: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftiofur.

 $^\$$ Antimicrobial classes of agents defined by the Clinical and Laboratory Standards Institute (CLSI) are used.

Antimicrobial Resistance: 1996–2008

The following figures display resistance from 1996–2008 for non-typhoidal *Salmonella*, 1999–2008 for *Salmonella* ser. Typhi, and 1997–2008 for *Campylobacter*.

— Annual percent resistant

Figure 3. Percentage of Salmonella ser. Enteritidis isolates resistant to nalidixic acid, by year, 1996–2008

Figure 4. Percentage of *Salmonella* ser. Typhimurium isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline (ACSSuT), by year, 1996–2008

Figure 5. Percentage of *Salmonella* ser. Newport isolates resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamide, tetracycline, amoxicillin-clavulanic acid, and ceftiofur (ACSSuTAuCf), by year, 1996–2008

— Annual percent resistant

Figure 6. Percentage of non-typhoidal *Salmonella* isolates resistant to 1 or more antimicrobial classes, by year, 1996–2008

Figure 7. Percentage of non-typhoidal *Salmonella* isolates resistant to 3 or more antimicrobial classes, by year, 1996–2008

 [—] Annual percent resistant

Figure 8. Percentage of Salmonella ser. Typhi isolates resistant to nalidixic acid, by year, 1999–2008

— Annual percent resistant

State /Site	Dopulation Size*	Non-t	yphoidal	Тур	hoidal†	Sh	igella	E. co	oli O157	Campylobacter ‡		
State/Site	Population Size	sam	(%)	san	(%)	n (%)		n	(%)	n	(%)	
Alabama	4.661.900	69	(2.9%)	3	(0.6%)	28	n (%)		(1.3%)		(70)	
Alaska	686.293	4	(0.2%)	1	(0.2%)	1	(0.2%)	1	(0.6%)			
Arizona	6.500.180	56	(2.4%)	4	(0.8%)	24	(4.3%)	1	(0.6%)			
Arkansas	2,855,390	36	(1.5%)	2	(0.4%)	16	(2.9%)	1	(0.6%)			
California§	26,894,617	198	(8.3%)	55	(11.0%)	0	(0.0%)	4	(2.5%)	41	(3.5%)	
Colorado	4.939.456	41	(1.7%)	5	(1.0%)	8	(1.4%)	10	(6.3%)	65	(5.6%)	
Connecticut	3,501,252	21	(0.9%)	5	(1.0%)	2	(0.4%)	2	(1.3%)	137	(11.8%)	
Delaw are	873.092	8	(0.3%)	5	(1.0%)	0	(0.0%)	0	(0.0%)	-	()	
District of Columbia	591.833	56	(2.4%)	0	(0.0%)	0	(0.0%)	0	(0.0%)			
Florida	18.328.340	31	(1.3%)	18	(3.6%)	0	(0.0%)	0	(0.0%)			
Georgia	9.685.744	132	(5.5%)	5	(1.0%)	37	(6.7%)	6	(3.8%)	346	(29.9%)	
Haw aii	1.288.198	18	(0.8%)	3	(0.6%)	3	(0.5%)	1	(0.6%)		()	
Houston. Texas [¶]	4.946.443	55	(2.3%)	15	(3.0%)	25	(4.5%)	2	(1.3%)			
ldaho	1.523.816	9	(0.4%)	1	(0.2%)	0	(0.0%)	2	(1.3%)			
Illinois	12.901.563	77	(3.2%)	16	(3.2%)	48	(8.7%)	8	(5.0%)			
Indiana	6,376,792	34	(1.4%)	1	(0.2%)	6	(1.1%)	4	(2.5%)			
low a	3.002.555	19	(0.8%)	6	(1.2%)	6	(1.1%)	5	(3.1%)			
Kansas	2.802.134	18	(0.8%)	2	(0.4%)	2	(0.4%)	2	(1.3%)			
Kentucky	4.269.245	23	(1.0%)	0	(0.0%)	8	(1.4%)	2	(1.3%)			
Los Angeles"	9.862.049	75	(3.2%)	16	(3.2%)	5	(0.9%)	0	(0.0%)			
Louisiana	4,410,796	26	(1.1%)	0	(0.0%)	6	(1.1%)	0	(0.0%)			
Maine	1.316.456	5	(0.2%)	0	(0.0%)	1	(0.2%)	1	(0.6%)			
Maryland	5.633.597	47	(2.0%)	13	(2.6%)	3	(0.5%)	2	(1.3%)	105	(9.1%)	
Massachusetts	6.497.967	68	(2.9%)	27	(5.4%)	9	(1.6%)	4	(2.5%)		(011,0)	
Michigan	10.003.422	43	(1.8%)	16	(3.2%)	11	(2.0%)	5	(3.1%)			
Minnesota	5.220.393	36	(1.5%)	9	(1.8%)	14	(2.5%)	7	(4.4%)	157	(13.5%)	
Mississippi	2.938.618	44	(1.8%)	0	(0.0%)	9	(1.6%)	0	(0.0%)	-	(/	
Missouri	5.911.605	57	(2.4%)	4	(0.8%)	8	(1.4%)	5	(3.1%)			
Montana	967.440	6	(0.3%)	1	(0.2%)	1	(0.2%)	2	(1.3%)			
Nebraska	1.783.432	13	(0.5%)	2	(0.4%)	2	(0.4%)	3	(1.9%)			
Nevada	2.600.167	12	(0.5%)	0	(0.0%)	8	(1.4%)	1	(0.6%)			
New Hampshire	1.315.809	12	(0.5%)	4	(0.8%)	0	(0.0%)	1	(0.6%)			
New Jersev	8.682.661	65	(2.7%)	40	(8.0%)	22	(4.0%)	9	(5.6%)			
New Mexico	1.984.356	26	(1.1%)	0	(0.0%)	5	(0.9%)	1	(0.6%)	53	(4.6%)	
New York ^{††}	11.126.587	77	(3.2%)	17	(3.4%)	17	(3.1%)	5	(3.1%)	121	(10.4%)	
New York Citv ^{‡‡}	8.363.710	73	(3.1%)	76	(15.1%)	29	(5.3%)	4	(2.5%)		(/	
North Carolina	9.222.414	81	(3.4%)	3	(0.6%)	5	(0.9%)	0	(0.0%)			
North Dakota	641.481	5	(0.2%)	3	(0.6%)	1	(0.2%)	1	(0.6%)			
Ohio	11.485.910	75	(3.2%)	13	(2.6%)	28	(5.1%)	9	(5.6%)			
Oklahoma	3.642.361	42	(1.8%)	3	(0.6%)	8	(1.4%)	0	(0.0%)			
Oregon	3.790.060	23	(1.0%)	3	(0.6%)	4	(0.7%)	4	(2.5%)	102	(8.8%)	
Pennsvlvania	12.448.279	94	(4.0%)	28	(5.6%)	10	(1.8%)	5	(3.1%)		(****)	
Rhode Island	1.050.788	8	(0.3%)	1	(0.2%)	1	(0.2%)	1	(0.6%)			
South Carolina	4,479,800	50	(2.1%)	3	(0.6%)	20	(3.6%)	1	(0.6%)			
South Dakota	804.194	8	(0.3%)	1	(0.2%)	1	(0.2%)	2	(1.3%)			
Tennessee	6.214.888	48	(2.0%)	3	(0.6%)	38	(6.9%)	4	(2.5%)	32	(2.8%)	
Texas ^{§§}	19,380,531	150	(6.3%)	17	(3.4%)	14	(2.5%)	3	(1.9%)	-	(-···)	
Utah	2.736.424	17	(0.7%)	1	(0.2%)	1	(0.2%)	2	(1.3%)			
Vermont	621,270	5	(0.2%)	1	(0.2%)	0	(0.0%)	1	(0.6%)			
Virginia	7,769,089	71	(3.0%)	28	(5.6%)	14	(2.5%)	4	(2.5%)			
Washington	6,549,224	34	(1.4%)	12	(2.4%)	4	(0.7%)	6	(3.8%)			
West Virginia	1,814,468	35	(1.5%)	1	(0.2%)	13	(2.4%)	5	(3.1%)			
Wisconsin	5,627,967	36	(1.5%)	9	(1.8%)	25	(4.5%)	7	(4.4%)			
Wyoming	532,668	7	(0.3%)	0	(0.0%)	1	(0.2%)	2	(1.3%)			
Total	304,059,724	2379	(100.0%)	502	(100.0%)	552	(100.0%)	160	(100.0%)	1159	(100.0%)	

Table 2. Population size and number of isolates received and tested, NARMS, 2008

US Census Bureau, 2008

[†] Typhoidal Salmonella includes Typhi, Paratyphi A, Paratyphi B, and Paratyphi C

* Campylobacter isolates are submitted only from FoodNet sites representing a total population 46,298,050. All Campylobacter isolates are received from Georgia, Maryland,

New Mexico, Oregon, and Tennessee and every other isolate from California, Colorado, Connecticut, and New York; and every fifth isolate from Minnesota.

§ Excluding Los Angeles County

[¶] Houston City

" Los Angeles County

⁺⁺ Excluding New York City

⁺⁺ Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

§§ Excluding Houston, Texas

Surveillance Sites and Isolate Submissions

In 2008, NARMS conducted nationwide surveillance among approximately 304 million persons (2008 U.S. Census Bureau estimates). Public health laboratories systematically selected every 20th non-typhoidal *Salmonella*, *Shigella*, and *Escherichia coli* O157 isolate as well as every *Salmonella* ser. Typhi, *Salmonella* ser. Paratyphi A and *Salmonella ser*. Paratyphi C isolate received at their laboratories and forwarded these isolates to CDC for antimicrobial susceptibility testing. *Salmonella ser*. Paratyphi B was included in the every 20th sampling for non-typhoidal *Salmonella*.

Since 2005, public health laboratories of the 10 state health departments that participated in CDC's Foodborne Diseases Active Surveillance Network (FoodNet) have forwarded a representative sample of *Campylobacter* isolates to CDC for susceptibility testing. The FoodNet sites, representing approximately 46 million persons (2008 U.S. Census Bureau estimates), include California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Depending on the burden of *Campylobacter* isolates: all isolates received by Georgia, Maryland, New Mexico, Oregon, and Tennessee; every other isolate from California, Colorado, Connecticut, and New York; and every fifth isolate from Minnesota. From 1997 to 2004, one *Campylobacter* isolate was submitted each week from participating FoodNet sites.

Testing of Salmonella, Shigella, and Escherichia coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and E. coli O157 isolates were tested using broth microdilution (Sensititre[®], Trek Diagnostics, Cleveland, OH) to determine the minimum inhibitory concentration (MIC) for each of 15 antimicrobial agents: amikacin, ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprimsulfamethoxazole (Table 3). Before 2004, sulfamethoxazole was used instead of sulfisoxazole to represent the sulfonamides. Interpretive criteria defined by CLSI were used when available. The resistance breakpoint for amikacin, according to CLSI guidelines, is \geq 64 µg/mL. In 2002 and 2003, a truncated broth microdilution series was used for amikacin testing (0.5-4 µg/mL). For isolates that grew in all amikacin dilutions on the Sensititre panel (MIC>4 µg/mL), ETest[®] (AB BIODISK, Solna, Sweden) was performed to determine amikacin MIC. The amikacin ETest[®] strip range of dilutions was 0.016-256 µg/mL. Since 2004, amikacin had a full range of dilutions (0.5-64 µg/mL) on the Sensititre panel (CMV1AGNF).

In January 2010, CLSI published revised interpretive criteria for ceftriaxone and *Enterobacteriaceae;* the revised resistance breakpoint for ceftriaxone is MIC $\ge 4 \ \mu g/mL$. NARMS used the revised CLSI breakpoint for ceftriaxone resistance for all years in this report. In previous reports, the resistance breakpoint for ceftriaxone was $\ge 64 \ \mu g/mL$.

		Antimicrobial Agent	MIC Interpretive Standard (µg/mL)						
CLSI class	Antimicrobial Agent	Range (µg/mL)	Susceptible	Intermediate	Resistant				
	Amikacin	0.5–64	≤16	32	≥64				
Aminoglygogidag	Gentamicin	0.25–16	≤4	8	≥16				
Aminogrycosides	Kanamycin	8–64	≤16	32	≥64				
	Streptomycin*	32–64	≤32		≥64				
β–lactam / β–lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1/0.5–32/16	≤8/4	16/8	≥32/16				
	Cefoxitin	0.5–32	≤8	16	≥32				
Conhomo	Ceftiofur	0.12–8	≤2	4	≥8				
Cephems	Ceftriaxone [†]	0.25–64	≤1	2	≥4				
	Cephalothin [‡]	2–32	≤8	16	≥32				
	Sulfamethoxazole§	16–512	≤256		≥512				
Folate pathway inhibitors	Sulfisoxazole	16–256	≤256		≥512				
	Trimethoprim- sulfamethoxazole	0.12/2.38-4/76	≤2/38		≥4/76				
Penicillins	Ampicillin	1–32	≤8	16	≥32				
Phenicols	Chloramphenicol	2–32	≤8	16	≥32				
Quinelance	Ciprofloxacin	0.015–4	≤1	2	≥4				
Quinoiones	Nalidixic acid	0.5–32	≤16		≥32				
Tetracyclines	Tetracycline	4–32	≤4	8	≥16				

Table 3. Antimicrobial agents used for susceptibility testing for Salmonella, Shigella, and Escherichia coli 0157 isolates NARMS 2008

 * No CLSI breakpoints; resistance breakpoint used in NARMS is ≥64 µg/mL.
 * CLSI updated the ceftriaxone interpretive standards in January, 2010. Previous standards that were used for NARMS Human Isolate reports from 1996-2007 were susceptible $\leq 8 \ \mu g/mL$, intermediate 16-32 $\mu g/mL$, and resistant $\geq 64 \ \mu g/mL$ [‡] Cephalothin has not been tested since 2003, but was tested in earlier years for *Salmonella*, *Shigella*, and *E. coli* O157.

[§] Sulfamethoxazole, which was tested during 1996–2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Additional Testing of Salmonella Strains

Cephalosporin Retesting of Isolates from 1996-1998

Review of *Salmonella* isolates tested in NARMS during 1996 to 1998 gave conflicting cephalosporin susceptibility results. In particular, some isolates previously reported in NARMS as ceftiofur-resistant exhibited a low ceftriaxone MIC and, in some cases, did not exhibit an elevated MIC to other β -lactams. Because these findings suggested that some previously reported results were inaccurate, we retested, using the 2003 NARMS Sensititre[®] plate, isolates of *Salmonella* tested in NARMS during 1996 to 1998 that exhibited an MIC $\geq 2 \mu g/mL$ to ceftiofur or ceftriaxone. The retest results have been included in the NARMS annual reports since 2003.

Serotype Confirmation/Categorization

Salmonella serotype reported by the submitting laboratory was accepted with few exceptions. *S*erotype was confirmed by CDC for isolates that underwent subsequent molecular analysis for publication. Because of challenges associated with interpretation of tartrate fermentation assays, ability to ferment tartrate was confirmed for isolates reported as *Salmonella* ser. Paratyphi B by the submitting laboratory (serotype Paratyphi B is by definition unable to ferment L(+) tartrate). To distinguish *Salmonella* serotypes Paratyphi B and Paratyphi B var L(+) tartrate+ (formerly serotype Java), CDC performed Jordan's tartrate test and/or Kauffmann's tartrate test on all *Salmonella* ser. Paratyphi B isolates from 1996 to 2008 for which the tartrate result was not reported or was reported to be negative. Isolates negative for tartrate fermentation by both assays were categorized as serotype Paratyphi B. Isolates that were positive for tartrate fermentation by either assay were categorized as serotype Paratyphi B var L(+) tartrate+. Confirmation of other biochemical reactions or somatic and flagellar antigens was not performed at CDC.

Because of increased submissions of *Salmonella* ser. I 4,[5],12:i:- noted in previous years, and recognition of the possibility that this serotype may have been underreported in previous years, isolates reported as serogroup B and tested in NARMS during 1996 to 2008 were reviewed for additional information; isolates that could be clearly identified as serogroup B, first-phase flagellar antigen "i", second phase flagellar antigen absent were categorized in this report as *Salmonella* ser. I 4,[5],12:i:-.

Testing of Campylobacter

Changes in Testing Methods in 2005

Starting in 2005, there were three major changes in the methodology used for *Campylobacter*. First, a surveillance scheme for selecting a representative sample of *Campylobacter* isolates for submission by FoodNet sites was implemented in 2005, which changed from a previous scheme that selected one *Campylobacter* isolate each week for submission during 1997 to 2004. Second, from 2005 through 2008, *Campylobacter* isolates were susceptibility tested using Sensititre® (Trek Diagnostics, Cleveland, OH); isolates had been tested by Etest[®] (AB BIODISK, Solna, Sweden) from 1997 through 2004. Third, florfenicol replaced chloramphenicol as the phenicol subclass representative drug, and telithromycin was added to the NARMS panel of agents tested in 2005.

Identification/Speciation and Antimicrobial Susceptibility Testing

From 2005 through 2008, isolates were confirmed as *Campylobacter* by determination of typical morphology using dark-field microscopy, and reactivity to catalase and oxidase tests. Identification of *C. jejuni* was performed using the hippurate hydrolysis test. Hippurate-positive isolates were identified as *C. jejuni*. Hippurate-negative isolates were further characterized with polymerase chain reaction (PCR) assay with specific targets for C. *jejuni* (*mapA or hipO* gene) or C. *coli*-specific *ceuE* gene (Linton *et al.* 1997, Gonzales et al. 1997, Pruckler *et al.* 2006). The same methodology was used during 1997–2002.

Beginning in 2005, the broth microdilution methodology (Sensititre®, Trek Diagnostics, Cleveland, OH) was used to determine the MICs for nine antimicrobial agents: azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline (Table 4). Florfenicol replaced chloramphenicol in the NARMS panel to represent the phenicol antimicrobial subclass. Similar to the 2004 report, CLSI interpretive criteria for erythromycin, ciprofloxacin, and tetracycline (published in 2006) and revised NARMS criteria for azithromycin were used for all years in this report. In annual reports published before 2004, these CLSI interpretive criteria were not available, and NARMS used resistance breakpoints for azithromycin and

erythromycin that were lower than the new and revised breakpoints. In addition, revised NARMS interpretive criteria, adopted from the FDA-CVM arm of NARMS, have been used for clindamycin, gentamicin, and nalidixic acid since 2004. From 1997 to 2004, Etest® (AB Biomerieux, Solna, Sweden) was used for susceptibility testing of *Campylobacter* isolates.

In 2003 and 2004, putative *Campylobacter* isolates were identified as *C. jejuni* or *C. coli* using BAX® System PCR Assay according to the manufacturer's instructions (DuPont Qualicon, Wilmington, DE). Isolates not identified as *C. jejuni* or *C. coli* were further characterized by other PCR assays (Linton *et al.* 1996) or were characterized by the CDC *Campylobacter* Reference Laboratory.

	Antimiorchiel Agent	Antimicrobial Agent	MIC Interpretive Standard (µg/mL)						
CLSI class	Antimicrobial Agent		Susceptible	Intermediate	Resistant				
Aminoglycosides	Gentamicin	0.12–32 0.016–256 [*]	≤2	4	≥8				
Ketolides	Telithromycin [†]	0.015–8	≤4	8	≥16				
Lincosamides	Clindamycin	0.03–16 0.016–256 [*]	≤2	4	≥8				
Macrolidos	Azithromycin	0.015–64 0.016–256 [*]	≤2	4	≥8				
Macrolides	Erythromycin	0.03–64 0.016–256 [*]	≤8	16	≥32				
Phenicols	Chloramphenicol [‡]	0.016–256 [*]	≤8	16	≥32				
Ketolides Lincosamides Macrolides Phenicols Quinolones Tetracyclines	Florfenicol [§]	0.03–64	≤4	N/A	N/A				
Quinelenee	Ciprofloxacin	0.015–64 0.002–32 [*]	≤1	2	≥4				
Quinoiones	Nalidixic acid	4–64 0.016–256 [*]	≤16	32	≥64				
Tetracyclines	Tetracycline	0.06–64 0.016–256 [*]	≤4	8	≥16				

 Table 4. Antimicrobial agents used for susceptibility testing of Campylobacter isolates, NARMS, 1997–2008

* Etest dilution range used from 1997–2004.

[†] Telithromycin added to NARMS panel in 2005.

[‡] Chloramphenicol, tested from 1997–2004, was replaced by florfenicol in 2005.

[§] Currently only a susceptible breakpoint (≤4 μg/mL) has been established. In this report isolates with a MIC ≥8 μg/mL are categorized as resistant.

Retesting

Known mechanisms of quinolone resistance in *Campylobacter* are expected to confer equivalent susceptibilities to nalidixic acid and ciprofloxacin. Similarly, known mechanisms of macrolide resistance are expected to confer equivalent susceptibilities to erythromycin and azithromycin. Confirmatory testing of isolates with conflicting results was performed by broth microdilution methods (Sensititre[®], Trek Diagnostics, Cleveland, OH). Totals reported here reflect the retest results.

Data Analysis

For all pathogens, MICs were categorized as resistant, intermediate (if applicable), or susceptible. Analysis was restricted to the first isolate received (per genus under surveillance) per patient in the calendar year. If two or more isolates were received for the same patient for *Salmonella* ser. Typhi, the first blood isolate collected would be included in analysis. If no blood isolates were submitted, the first isolate collected would be included in analysis. Where established, CLSI interpretive criteria were used; streptomycin resistance was defined as MIC \geq 64 µg/mL (Table 3). The 95% confidence intervals (CIs) for the percentage of resistant isolates are included in the MIC distribution tables. The 95% CIs were calculated using the Clopper-Pearson exact method.

When describing results for several years, multidrug resistance for *Salmonella, Shigella*, and *E. coli* O157 isolates was limited to the eight CLSI classes tested in all years from 1996 through 2008 represented by 15 agents: amikacin, amoxicillin-clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole. When describing multidrug resistance for several years for *Campylobacter* isolates, multidrug resistance was limited to the five CLSI classes tested in all years from 1997 through 2008, represented by ciprofloxacin, chloramphenicol/florfenicol, clindamycin, erythromycin, nalidixic acid, and tetracycline.

Logistic regression was used to compare the prevalence of antimicrobial resistance among *Salmonella* and *Campylobacter* isolates tested in 2008 with the reference, which was the average prevalence of resistance in the previous 5 years (2003–07). The analysis included the following:

- 1. Non-typhoidal Salmonella: resistance to nalidixic acid, resistance to ceftiofur, resistance to one or more CLSI classes, resistance to three more CLSI classes
- 2. Salmonella ser. Enteritidis: resistance to nalidixic acid
- 3. *Salmonella* ser. Typhimurium: resistance to at least ACSSuT (ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline)
- 4. Salmonella ser. Newport: resistance to at least ACSSuTAuCf (ACSSuT, amoxicillin-clavulanic acid, and ceftiofur)
- 5. Salmonella ser. Typhi: resistance to nalidixic acid
- 6. Campylobacter species: resistance to ciprofloxacin
- 7. Campylobacter jejuni: resistance to ciprofloxacin

To account for site-to-site variation in the prevalence of antimicrobial resistance, we included main effects adjustments for site in the analysis. The final regression models for *Salmonella* adjusted for the submitting site using the nine geographic regions described in the Public Health Laboratory Information System (PHLIS): East North Central, East South Central, Mid-Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. For *Campylobacter*, the final regression models adjusted for the submitting FoodNet site. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation. The adequacy of model fit was assessed in several ways. The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. The Hosmer and Lemeshow goodness-of-fit test was also used. Finally, residual analysis was performed to examine the influence of individual observations. Having assessed that the main effect of year was significant, we reported ORs with 95% CIs (for 2008 compared with reference) that did not include 1.00 as statistically significant.

MIC Distribution Tables and Proportional Figures

An explanation on "how to read a table," showing the distribution of MICs for antimicrobial agents tested, which we refer to as "squashtogram", has been provided to assist the reader with the different parts of each table (Figure 10). Proportional figures visually display data from squashtograms for an immediate comparative summary of resistance in specific pathogens and serotypes. These figures are a categorical visual aid for the interpretation of MIC values. For most antimicrobial agents tested, three categories (susceptible, intermediate, and resistant) are used to interpret MICs. The proportion representing each category is shown in a horizontal proportional bar chart (Figure 11).

		Percent with Intermediate susceptibility	P re	ercent esistant	95% cr for per	onfidenc centres	e interva istant	al								Ν	IIC value	3			
Rank*	CI SI [†] Antimicrobial Class	Antimicrobial Agent	,	% o <mark>f</mark> is d	olates						Perce	nt <mark>of al</mark>	isolate	swith	MIC (µg	J/mL) [↔]	\mathbf{T}				
		, and an obside region	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Ami Critically important antimicrobial agents	0.0	0.0	[0.0-0.2]			-			7.4	70.1	20.8	1.6	0.1						
		Gen	0.1	2.1	[1.5–2.8]		Sum o % sus	sceptibl	ents =	53.5	41.4	2.8	0.1		0.1	0.9	1.2				
		Streptomycin	N/A	10.4	[9.1–11.7]										Surr % in	of perc termed i	ents = ate	6.0			
I	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	4.2	3.3	[2.6–4.1]							84.8	4.9	0.4	2.5	4.2	0.6	2.7			
	Cephems	Ceftiofur	0.0	3.2	[2.6–4.1]				0.3	0.8	27.5	66.7	1.4		0.1	3.1	Sum	ofpercr	ents =		
		Ceftriaxone	2.3	0.4	[0.2-0.8]					96.7				0.1	0.1 0.5 1.4 % resistant						
	Penicillins	Ampicillin	0.0	10.1	[8.9–11.5]							81.2	8.3	0.3	0.1		0.1	10.0			
	Quinolones	Ciprofloxacin	0.0	0.1	[0.0-0.3]	92.9	4.4	0.2	1.3	0.8	0.3				0.1						
		Nalidixic acid	N/A	2.2	[1.7–3.0]						0.1	0.2	34.4	61.9	0.9	0.2		2.2			
	Aminoglycosides	Ka Highly important	< 0.1	2.8	[2.2–3.6]										96.8	0.2	< 0.1	0.2	2.6		
	Cephems	C.	0.7	3.0	[2.3–3.7]						0.2	8.8	70.2	15.8	1.3	0.7	0.9	2.1			
	Folate pathway inhibitors	Sulfisoxazole	N/A	12.3	[11.0–13.8]						<u>.</u>					19.0	53 1	15.0	0.5	01	12.3
		Trimethoprim-sulfamethoxazole	N/A	1.6	[1.1–2.2]				79.7	18.3	suscep	tibility / I diate si	oper limit ower lim iscentibil	of it of itv	1.5		Double line is upper limit of in termediate susceptibility/				
	Phenicols	Chloramphenicol	0.7	7.3	[6.2-8.5]								0.0	41.7	49.5	0.7	0.4	0.0	un resista	100	
	Tetracyclines	Tetracycline	0.1	14.5	[13.0–16.0]									85.4	0.1	0.9	4.2	9.4			

Figure 10. How to read a squashtogram

Figure 11. Proportional chart, a categorical graph of a squashtogram

				% of is	olates			•			Percen	t of all i	isolates	with M	IC (µg/n	nL)"					
капк	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.2]						3.1	48.4	45.9	2.6	< 0.1						
		Gentamicin	0.1	1.5	[1.0 - 2.0]					33.5	61.4	3.4	0.1		0.1	0.4	1.1				
		Streptomycin	N/A	10.0	[8.8 - 11.2]											\sim	90.0	4.1	5.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	4.1	3.0	[2.3 - 3.7]							87.6	2.6	0.4	2.3	4.1	0.5	2.5			
Т	Cephems	Ceftiofur	0.0	2.9	[2.3 - 3.7]				0.2	0.6	32.7	62.1	1.4			2.9	-				
		Ceftriaxone	0.0	2.9	[2.3 - 3.7]					97.0		< 0.1			0.3	1	0.8	0.2	0.1		
	Penicillins	Ampicillin	< 0.1	9.6	[8.5 - 10.9]							84.2	5.8	0.3) 0.1	0.1	9.5			
	Quinolones	Ciprofloxacin	< 0.1	< 0.1	[0.01 - 0.3]	92.4	5.0	0.2	0.9	0.9	0.4	< 0.1	0.1		< 0.1		-				
		Nalidixic acid	N/A	2.0	[1.5 - 2.6]						0.2	0.3	51.3	44.6	1.3	0.3	< 0.1	1.9			
	Aminoglycosides	Kanamycin	< 0.1	2.1	[1.5 - 2.7]										97.6	0.3	< 0.1	< 0.1	2.0		
	Cephems	Cefoxitin	0.2	2.9	[2.3 - 3.7]						0.3	26.8	55.4	11.3	0.9	0.2	1.0	1.9			
	Folate pathway inhibitors	Sulfisoxazole	N/A	10.0	[8.9 - 11.3]							/				16.5	57.0	16.1	0.3	< 0.1	10.0
"		Trimethoprim-sulfamethoxazole	N/A	1.6	[1.1 - 2.1]				80.8	17.2	0.3	< 0.1	< 0.1		1.6		_				
	Phenicols	Chloramphenicol	1.1	6.1	[5.2 - 7.1]								1.2	41.4	60.1	1.1 🕻	< 0.1	6.1)		
	Tetracyclines	Tetracycline	0.2	11.5	[10.2 - 12.8]									88.3	0.2	0.3	3.	7.7			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSI: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant

9 Percent or solates that were resistant [9 5% confidence intervals (0) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented ** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for s areas indicate the percentages of isolates with MICS greater than the highest concentrations on the Sensititre plate. Numbers listed for the b the low set tested concentration. CLSI breakpoints were used when available. o summarize uncertainly in the obs ved resistance (F sceptibility, while double vertical ba est tested concentrations represe s for resistance. Numbers in the shaded s indicate breakp he precentage solates with MICs equal to or less than

Antimicrobial Agent Susceptible, Intermediate, and Resistant Proportion Amikacin Gentamicin Streptomycin Amoxicillin-clavulanic Acid Ceftiofur Ceftriaxone Ampicillin Ciprofloxacin Nalidixic Acid Kanamycin Cefoxitin Sulfisoxazole Trimethoprim-sulfamethoxazole Chloramphenicol Tetracycline

> SI R

Results

1. Non-typhoidal Salmonella

Table 5. Minimum inhibitory concentrations (MICs) and resistance of non-typhoidal Salmonella isolates to antimicrobial agents, 2008 (N=2,379)

Rank [*]				% of is	olates						Percen	t of all i	solates	with M	IC (µg/n	۱L) ^{:::}					
Ralik		Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.2]						3.1	48.4	45.9	2.6	< 0.1						
		Gentamicin	0.1	1.5	[1.0 - 2.0]					33.5	61.4	3.4	0.1		0.1	0.4	1.1				
		Streptomycin	N/A	10.0	[8.8 - 11.2]												90.0	4.1	5.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	4.1	3.0	[2.3 - 3.7]							87.6	2.6	0.4	2.3	4.1	0.5	2.5			
Т	Cephems	Ceftiofur	0.0	2.9	[2.3 - 3.7]				0.2	0.6	32.7	62.1	1.4			2.9					
		Ceftriaxone	0.0	2.9	[2.3 - 3.7]					97.0		< 0.1			0.3	1.6	0.8	0.2	0.1		
	Penicillins	Ampicillin	< 0.1	9.6	[8.5 - 10.9]							84.2	5.8	0.3		< 0.1	0.1	9.5			
	Quinolones	Ciprofloxacin	< 0.1	< 0.1	[0.01 - 0.3]	92.4	5.0	0.2	0.9	0.9	0.4	< 0.1	< 0.1		< 0.1						
		Nalidixic acid	N/A	2.0	[1.5 - 2.6]						0.2	0.3	51.3	44.6	1.3	0.3	< 0.1	1.9			
	Aminoglycosides	Kanamycin	< 0.1	2.1	[1.5 - 2.7]										97.6	0.3	< 0.1	< 0.1	2.0		
	Cephems	Cefoxitin	0.2	2.9	[2.3 - 3.7]						0.3	28.8	55.4	11.3	0.9	0.2	1.0	1.9			
II	Folate pathway inhibitors	Sulfisoxazole	N/A	10.0	[8.9 - 11.3]											16.5	57.0	16.1	0.3	< 0.1	10.0
		Trimethoprim-sulfamethoxazole	N/A	1.6	[1.1 - 2.1]				80.8	17.2	0.3	< 0.1	< 0.1		1.6						
	Phenicols	Chloramphenicol	1.1	6.1	[5.2 - 7.1]								1.2	41.4	50.1	1.1	< 0.1	6.1			
	Tetracyclines	Tetracycline	0.2	11.5	[10.2 - 12.8]									88.3	0.2	0.3	3.5	7.7			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

9 95% control decidence intervals (C) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
** The unshaded areas indicate the dilution range of the Sensitive plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded

areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 12. Antimicrobial resistance pattern for non-typhoidal Salmonella, 2008

1333.	-2000											
Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		1493	1372	1410	1998	1855	1782	2034	2173	2144	2379
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	1	0	0	0	0	0	1	0	0	0
		Gentamicin	2.1%	2.7%	1.9%	1.4%	1.4%	1.3%	2.2%	2.0%	2.1%	1.5%
		(MIC ≥ 16)	32	37	27	27	26	24	44	44	45	35
		Streptomycin	16.7%	16.3%	17.1%	13.2%	15.0%	11.9%	11.1%	10.7%	10.4%	10.0%
		(MIC ≥ 64)	250	223	241	264	279	212	225	233	222	237
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.3%	3.9%	4.7%	5.3%	4.6%	3.8%	3.2%	3.7%	3.3%	3.0%
	combinations	(MIC ≥ 32/16)	34	54	66	106	86	67	65	81	70	71
	Cephems	Ceftiofur	2.0%	3.2%	4.1%	4.4%	4.5%	3.4%	2.9%	3.6%	3.3%	2.9%
		(MIC ≥ 8)	30	44	58	87	83	61	60	79	70	70
		Ceftriaxone	2.0%	3.2%	3.7%	4.4%	4.4%	3.4%	2.9%	3.7%	3.3%	2.9%
		(MIC ≥ 4)	30	44	52	87	81	60	59	80	70	70
	Penicillins	Ampicillin	15.5%	15.9%	17.5%	13.0%	13.6%	12.1%	11.4%	11.0%	10.1%	9.6%
		(MIC ≥ 32)	232	218	247	259	253	216	232	238	217	229
	Quinolones	Ciprofloxacin	0.1%	0.4%	0.2%	0.1%	0.2%	0.2%	0.0%	0.1%	0.1%	0.1%
		(MIC ≥ 4)	1	5	3	1	3	4	1	2	2	2
		Nalidixic acid	0.9%	2.3%	2.3%	1.6%	1.9%	2.2%	1.9%	2.4%	2.2%	2.0%
		(MIC ≥ 32)	14	32	32	32	36	39	38	52	48	47
	Aminoglycosides	Kanamycin	4.4%	5.6%	4.8%	3.8%	3.5%	2.8%	3.4%	2.9%	2.8%	2.1%
		(MIC ≥ 64)	65	77	68	76	64	50	70	63	61	49
	Cephems	Cefoxitin	Not	3.2%	3.4%	4.3%	4.3%	3.5%	3.0%	3.5%	2.9%	2.9%
		(MIC ≥ 32)	Tested	44	48	86	79	62	62	77	63	70
		Cephalothin	3.5%	4.0%	4.0%	5.1%	5.3%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	53	55	57	101	99	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	18.0%	17.1%	17.8%	12.9%	15.1%	13.2%	12.6%	12.1%	12.3%	10.0%
		(MIC ≥ 512)	269	234	251	258	280	236	256	263	264	239
		Trimethoprim-sulfamethoxazole	2.0%	2.0%	2.0%	1.4%	1.9%	1.7%	1.7%	1.7%	1.5%	1.6%
		(MIC ≥ 4/76)	30	28	28	28	36	31	34	36	33	37
	Phenicols	Chloramphenicol	9.2%	10.1%	11.6%	8.6%	10.1%	7.6%	7.8%	6.4%	7.3%	6.1%
		(MIC ≥ 32)	137	138	164	172	187	135	159	139	156	145
	Tetracyclines	Tetracycline	19.4%	18.7%	19.9%	14.9%	16.3%	13.5%	13.9%	13.5%	14.5%	11.5%
		(MIC ≥ 16)	289	256	280	298	303	241	282	293	310	273

Table 6. Percentage and number of non-typhoidal Salmonella isolates resistant to antimicrobial agents, 1999-2008

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important CLSI: Clinical and Laboratory Standards Institute
 \$2000 Supervised Standards Supervised Standards Supervised Standards
 \$2000 Su

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	1493	1372	1410	1998	1855	1782	2034	2173	2144	2379
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	74.1%	74.5%	72.5%	79.1%	78.0%	80.0%	80.9%	80.5%	81.1%	84.0%
	1107	1022	1022	1580	1447	1425	1646	1749	1738	1999
Resistance ≥ 1 CLSI class*	25.9%	25.5%	27.5%	20.9%	22.0%	20.0%	19.1%	19.5%	18.9%	16.0%
	386	350	388	418	408	357	388	424	406	380
Resistance ≥ 2 CLSI classes*	20.2%	20.0%	22.1%	15.8%	17.5%	15.0%	14.8%	14.7%	14.2%	12.4%
	302	275	311	315	325	267	302	319	305	294
Resistance ≥ 3 CLSI classes*	14.7%	15.6%	16.7%	12.3%	14.2%	11.4%	12.0%	11.8%	11.1%	9.4%
	220	214	236	245	263	204	244	256	239	223
Resistance ≥ 4 CLSI classes*	11.9%	12.7%	13.5%	9.8%	11.4%	9.2%	9.1%	8.1%	8.2%	7.4%
	177	174	191	195	211	164	185	177	176	176
Resistance ≥ 5 CLSI classes*	8.5%	9.5%	10.3%	8.2%	9.8%	7.9%	7.2%	6.3%	6.9%	6.6%
	127	131	145	164	182	141	146	137	149	156
At least ACSSuT [†]	8.4%	8.9%	10.1%	7.8%	9.3%	7.2%	6.9%	5.6%	6.3%	5.8%
	125	122	142	156	173	128	141	121	136	137
At least ACT/S [‡]	0.9%	0.9%	0.5%	1.1%	1.2%	0.6%	0.9%	0.7%	0.7%	0.5%
	14	13	7	21	23	10	18	15	16	11
At least ACSSuTAuCf [§]	1.5%	2.6%	2.6%	3.4%	3.2%	2.4%	2.0%	2.0%	2.1%	1.8%
	23	36	36	67	60	42	41	43	46	43
At least ceftiofur and nalidixic acid resistant	0.1%	0.1%	0.1%	0.2%	0.1%	0.1%	0.1%	0.1%	0.2%	0.0%
	1	1	2	4	2	2	2	3	5	0

Table 7 Resistance patterns of non-typhoidal Salmonella isolates 1999–2008

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

	NARMS		
		lso	olates
Rank	Serotype	n	(%)
1	Enteritidis	439	(18.5%)
2	Typhimurium	397	(16.7%)
3	Newport	252	(10.6%)
4	Javiana	118	(5.0%)
5	Saintpaul	108	(4.5%)
6	I 4,[5],12:i:-	83	(3.5%)
7	Heidelberg	75	(3.2%)
8	Montevideo	68	(2.9%)
9	Braenderup	56	(2.4%)
10	Infantis	51	(2.1%)
11	Muenchen	51	(2.1%)
12	Oranienburg	50	(2.1%)
13	Agona	39	(1.6%)
14	Thompson	32	(1.3%)
15	Mississippi	31	(1.3%)
16	Poona	26	(1.1%)
17	Schwarzengrund	24	(1.0%)
18	Litchfield	23	(1.0%)
19	Paratyphi B var. L(+) tartrate+	23	(1.0%)
20	Hadar	19	(0.8%)
	Subtotal	1965	(82.6%)
	All other serotypes	349	(14.7%)
	Unknown serotype	35	(1.5%)
	Partially serotyped	14	(0.6%)
	Rough/Nonmotile isolates	16	(0.7%)
	Subtotal	414	(17.4%)
	Grand Total	2379	(100.0%)

Table 8. Twenty most common non-typhoidal Salmonella serotypes in NARMS, 2008

A. Salmonella ser. Enteritidis

Table 9. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2008 (N=439)

Rank [*] C Α β ir	CL SIT Antimicrobial Class	Antimicrobiol Agent		% of is	olates						Percen	t of all i	solates	with M	IC (µg/n	nL)"					
Rdiik	CESI [®] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI]¶	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.8]						8.9	77.0	13.2	0.7	0.2						
		Gentamicin	0.0	0.2	[0.00 - 1.3]					68.1	29.4	2.1	0.2				0.2				
		Streptomycin	N/A	0.5	[0.05 - 1.6]												99.5	0.2	0.2		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.5	0.0	[0.0 - 0.8]							92.9	3.2	0.2	3.2	0.5					
1	Cephems	Ceftiofur	0.0	0.0	[0.0 - 0.8]				0.2	0.7	6.2	91.8	1.1								
		Ceftriaxone	0.0	0.0	[0.0 - 0.8]					100.0					•						
	Penicillins	Ampicillin	0.2	3.6	[2.1 - 5.9]							84.1	10.9	1.1		0.2		3.6			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 0.8]	77.9	15.3	0.2	3.9	2.5	0.2										
		Nalidixic acid	N/A	6.6	[4.5 - 9.3]						0.2	0.2	21.9	69.2	1.6	0.2	0.2	6.4			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 0.8]										100.0						
	Cephems	Cefoxitin	0.5	0.0	[0.0 - 0.8]						0.7	17.1	78.6	2.5	0.7	0.5					
II	Folate pathway inhibitors	Sulfisoxazole	N/A	1.1	[0.4 - 2.6]											10.5	72.9	15.0	0.5		1.1
		Trimethoprim-sulfamethoxazole	N/A	0.9	[0.2 - 2.3]				82.2	16.6		0.2			0.9						
	Phenicols	Chloramphenicol	0.2	0.5	[0.05 - 1.6]								0.5	44.4	54.4	0.2		0.5			
	Tetracyclines	Tetracycline	0.2	1.6	[0.6 - 3.3]									98.2	0.2	0.2	0.2	1.1			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important, Rank 2, Highly Important

+ CLSI: Clinical and Laboratory Standards Institute

C1: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, N/4 if no MIC range of intermediate susceptibility exists
 Percent of isolates with intermediate susceptibility, N/4 if no MIC range of intermediate susceptibility exists
 Second of isolates with intervals (C) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
 ** The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs equal to or less than the low est tested concentrations. CLSI breakpoints were used when available.

Figure 13. Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

SIR

Table 10. Percentage and number of Salmonella ser	. Enteritidis isolates resistant to antimicrobial agents,
1999–2008	

Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		269	319	277	337	257	271	384	413	385	439
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.3%	0.0%	0.3%	0.4%	0.4%	0.8%	0.2%	0.0%	0.2%
		(MIC ≥ 16)	0	1	0	1	1	1	3	1	0	1
		Streptomycin	2.2%	0.0%	1.4%	1.5%	1.2%	2.2%	1.0%	1.2%	0.5%	0.5%
		(MIC ≥ 64)	6	0	4	5	3	6	4	5	2	2
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.4%	0.0%	1.4%	0.6%	0.0%	0.0%	0.8%	0.5%	0.5%	0.0%
	combinations	(MIC ≥ 32/16)	1	0	4	2	0	0	3	2	2	0
	Cephems	Ceftiofur	0.4%	0.0%	2.2%	0.0%	0.0%	0.0%	0.5%	0.5%	0.3%	0.0%
		(MIC ≥ 8)	1	0	6	0	0	0	2	2	1	0
		Ceftriaxone	0.4%	0.0%	1.4%	0.0%	0.0%	0.0%	0.3%	0.5%	0.3%	0.0%
		(MIC ≥ 4)	1	0	4	0	0	0	1	2	1	0
	Penicillins	Ampicillin	10.8%	7.5%	8.7%	6.8%	2.3%	4.1%	2.9%	4.4%	2.1%	3.6%
		(MIC ≥ 32)	29	24	24	23	6	11	11	18	8	16
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	2.2%	2.2%	4.3%	3.9%	4.7%	6.6%	4.7%	7.0%	5.7%	6.6%
		(MIC ≥ 32)	6	7	12	13	12	18	18	29	22	29
	Aminoglycosides	Kanamycin	0.4%	0.3%	0.7%	0.3%	0.0%	0.7%	0.3%	0.2%	0.5%	0.0%
		(MIC ≥ 64)	1	1	2	1	0	2	1	1	2	0
	Cephems	Cefoxitin	Not	0.0%	0.4%	0.0%	0.0%	0.0%	1.0%	0.5%	0.3%	0.0%
		(MIC ≥ 32)	Tested	0	1	0	0	0	4	2	1	0
		Cephalothin	1.9%	0.9%	1.1%	0.6%	1.2%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	5	3	3	2	3	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	3.0%	0.9%	2.2%	1.5%	1.2%	1.8%	1.6%	1.5%	1.6%	1.1%
		(MIC ≥ 512)	8	3	6	5	3	5	6	6	6	5
		Trimethoprim-sulfamethoxazole	0.7%	0.0%	0.7%	0.6%	0.8%	0.0%	0.5%	0.5%	1.0%	0.9%
		(MIC ≥ 4/76)	2	0	2	2	2	0	2	2	4	4
	Phenicols	Chloramphenicol	0.4%	0.0%	0.0%	0.3%	0.4%	0.4%	0.5%	0.0%	0.5%	0.5%
		(MIC ≥ 32)	1	0	0	1	1	1	2	0	2	2
	Tetracyclines	Tetracycline	8.2%	1.9%	1.8%	4.2%	1.6%	3.3%	2.3%	1.7%	3.9%	1.6%
		(MIC ≥ 16)	22	6	5	14	4	9	9	7	15	7

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSI: Clinical and Laboratory Standards Institute
 \$ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 11.	Resistance	patterns of	Salmonella ser.	Enteritidis isolates,	1999-2008
-----------	------------	-------------	-----------------	-----------------------	-----------

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	269	319	277	337	257	271	384	413	385	439
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	83.6%	89.0%	86.6%	87.5%	91.8%	87.1%	91.4%	88.6%	90.4%	87.9%
	225	284	240	295	236	236	351	366	348	386
Resistance ≥ 1 CLSI class*	16.4%	11.0%	13.4%	12.5%	8.2%	12.9%	8.6%	11.4%	9.6%	12.1%
	44	35	37	42	21	35	33	47	37	53
Resistance ≥ 2 CLSI classes*	8.6%	1.9%	4.7%	3.9%	2.3%	3.0%	3.6%	2.9%	3.4%	1.6%
	23	6	13	13	6	8	14	12	13	7
Resistance ≥ 3 CLSI classes*	1.1%	0.3%	2.9%	2.1%	0.4%	1.1%	1.6%	1.7%	1.0%	0.2%
	3	1	8	7	1	3	6	7	4	1
Resistance ≥ 4 CLSI classes*	0.4%	0.0%	1.1%	0.6%	0.4%	0.7%	1.0%	0.7%	0.3%	0.0%
	1	0	3	2	1	2	4	3	1	0
Resistance ≥ 5 CLSI classes*	0.4%	0.0%	0.4%	0.0%	0.4%	0.7%	0.5%	0.2%	0.3%	0.0%
	1	0	1	0	1	2	2	1	1	0
At least ACSSuT [†]	0.4%	0.0%	0.0%	0.0%	0.4%	0.4%	0.5%	0.0%	0.3%	0.0%
	1	0	0	0	1	1	2	0	1	0
At least ACT/S [‡]	0.4%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%
	1	0	0	0	1	0	0	0	0	0
At least ACSSuTAuCf [§]	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.0%
	1	0	0	0	0	0	1	0	1	0
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.0%
	0	0	0	0	0	0	1	0	1	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

B. Salmonella ser. Typhimurium

Table 12. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2008 (N=397)

Bank	CI SIT Antimicrobial Class	Antimicrobiol Agent		% of is	olates						Percen	t of all i	solates	with M	IC (µg/r	nL)"					
Rdiik	CLSI Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.9]						1.0	33.2	62.7	2.8	0.3						
		Gentamicin	0.0	1.5	[0.6 - 3.3]					18.4	74.3	5.8				0.5	1.0				
		Streptomycin	N/A	28.5	[24.1 - 33.2]											•	71.5	13.4	15.1		
	β-lactam / β-lactamase	Amoxicillin-clavulanic acid	20.9	3.3	[1.8 - 5.5]							72.3	1.5	0.3	1.8	20.9		3.3			
Т	Cephems	Ceftiofur	0.0	3.3	[1.8 - 5.5]						29.7	65.2	1.8			3.3					
		Ceftriaxone	0.0	3.3	[1.8 - 5.5]					96.7					1.0	1.8	0.3	0.3			
	Penicillins	Ampicillin	0.0	26.2	[21.9 - 30.8]							69.8	4.0				0.3	25.9			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 0.9]	94.0	3.3	0.3		1.0	1.5										
		Nalidixic acid	N/A	1.3	[0.4 - 2.9]						0.3		65.0	31.2	1.5	0.8		1.3			
	Aminoglycosides	Kanamycin	0.0	2.3	[1.0 - 4.3]										97.7				2.3		
	Cephems	Cefoxitin	0.3	3.3	[1.8 - 5.5]							33.2	54.4	7.8	1.0	0.3	2.0	1.3			
II	Folate pathway inhibitors	Sulfisoxazole	N/A	30.2	[25.7 - 35.0]											9.6	57.2	3.0			30.2
		Trimethoprim-sulfamethoxazole	N/A	1.8	[0.7 - 3.6]				72.3	25.7			0.3		1.8						
	Phenicols	Chloramphenicol	0.5	23.2	[19.1 - 27.6]								1.8	38.0	36.5	0.5		23.2			
	Tetracyclines	Tetracycline	0.3	27.5	[23.1 - 32.1]									72.3	0.3	1.0	17.6	8.8			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSt: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

Percent of isolates whit miterifectuate susceptionity, NA in the MC large of intermediate susceptionity exits
 Percent of isolates that were resistant
 If 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
 The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for resistance intervals (CI) for percent resistance (R%).
 The unshaded areas indicate the percentages of isolates with MCS equal to or less than the low est tested concentrations. CLSI breakpoints were used when available.

Figure 14. Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	
	SIR

Table 13. Percentage and number of Salmonella ser.	Typhimurium isolates resistant to antimicrobial
agents, 1999–2008	

Year		1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	
Total Isolates		363	304	325	394	408	382	438	409	403	397	
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	2.2%	2.6%	1.5%	2.3%	2.0%	2.1%	1.8%	2.7%	2.5%	1.5%
		(MIC ≥ 16)	8	8	5	9	8	8	8	11	10	6
		Streptomycin	43.3%	39.5%	40.0%	32.0%	35.5%	31.7%	28.1%	29.3%	32.3%	28.5%
		(MIC ≥ 64)	157	120	130	126	145	121	123	120	130	113
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.8%	6.3%	6.2%	7.6%	5.6%	4.7%	3.2%	4.4%	6.5%	3.3%
	combinations	(MIC ≥ 32/16)	10	19	20	30	23	18	14	18	26	13
	Cephems	Ceftiofur	1.9%	3.6%	3.1%	4.3%	4.9%	4.5%	2.5%	4.2%	6.2%	3.3%
		(MIC ≥ 8)	7	11	10	17	20	17	11	17	25	13
		Ceftriaxone	1.9%	3.3%	3.1%	4.3%	4.9%	4.5%	2.5%	4.2%	6.2%	3.3%
		(MIC ≥ 4)	7	10	10	17	20	17	11	17	25	13
	Penicillins	Ampicillin	41.3%	42.1%	42.5%	33.8%	36.3%	31.9%	29.0%	28.1%	31.5%	26.2%
		(MIC ≥ 32)	150	128	138	133	148	122	127	115	127	104
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%
		(MIC ≥ 4)	0	0	1	0	0	0	0	1	0	0
		Nalidixic acid	0.0%	1.3%	0.6%	1.3%	1.2%	0.5%	0.9%	0.7%	1.5%	1.3%
		(MIC ≥ 32)	0	4	2	5	5	2	4	3	6	5
11	Aminoglycosides	Kanamycin	12.9%	13.2%	8.3%	7.6%	7.1%	5.8%	5.7%	5.1%	5.7%	2.3%
		(MIC ≥ 64)	47	40	27	30	29	22	25	21	23	9
	Cephems	Cefoxitin	Not	3.6%	3.1%	4.3%	4.4%	4.7%	2.5%	3.9%	5.5%	3.3%
		(MIC ≥ 32)	Tested	11	10	17	18	18	11	16	22	13
		Cephalothin	4.4%	4.3%	3.1%	5.6%	6.1%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	16	13	10	22	25	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	45.7%	45.4%	43.1%	32.2%	38.7%	35.9%	32.0%	33.3%	37.2%	30.2%
		(MIC ≥ 512)	166	138	140	127	158	137	140	136	150	120
		Trimethoprim-sulfamethoxazole	2.8%	3.6%	2.5%	2.3%	3.4%	2.6%	2.7%	2.2%	2.2%	1.8%
		(MIC ≥ 4/76)	10	11	8	9	14	10	12	9	9	7
	Phenicols	Chloramphenicol	28.9%	30.9%	31.7%	23.4%	28.2%	24.1%	24.4%	22.0%	25.3%	23.2%
		(MIC ≥ 32)	105	94	103	92	115	92	107	90	102	92
	Tetracyclines	Tetracycline	41.9%	43.4%	43.4%	32.0%	38.2%	30.1%	30.4%	31.5%	36.7%	27.5%
	1	(MIC ≥ 16)	152	132	141	126	156	115	133	129	148	109

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.
| Table 14. | Resistance | patterns of | Salmonella ser. | Typhimurium | isolates. | 1999-2008 |
|-----------|--------------|-------------|-----------------|-------------|-----------|-----------|
| | 1.0010101100 | pattorno or | Gaintonia Con | | 10010100 | 1000 2000 |

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	363	304	325	394	408	382	438	409	403	397
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	50.4%	49.3%	49.2%	59.9%	54.7%	60.7%	65.1%	62.6%	57.6%	68.0%
	183	150	160	236	223	232	285	256	232	270
Resistance ≥ 1 CLSI class*	49.6%	50.7%	50.8%	40.1%	45.3%	39.3%	34.9%	37.4%	42.4%	32.0%
	180	154	165	158	185	150	153	153	171	127
Resistance ≥ 2 CLSI classes*	46.0%	46.4%	47.4%	36.3%	41.4%	36.9%	33.3%	34.0%	39.2%	31.2%
	167	141	154	143	169	141	146	139	158	124
Resistance ≥ 3 CLSI classes*	43.0%	43.4%	41.5%	32.5%	37.3%	31.4%	30.1%	30.3%	34.2%	27.7%
	156	132	135	128	152	120	132	124	138	110
Resistance ≥ 4 CLSI classes*	38.6%	39.8%	37.8%	28.4%	32.4%	27.5%	27.4%	26.9%	29.8%	24.7%
	140	121	123	112	132	105	120	110	120	98
Resistance ≥ 5 CLSI classes*	28.1%	29.6%	29.5%	23.1%	27.7%	24.1%	22.8%	20.8%	24.8%	23.7%
	102	90	96	91	113	92	100	85	100	94
At least ACSSuT [†]	27.8%	28.0%	29.5%	21.6%	26.5%	23.3%	22.4%	19.6%	22.6%	22.9%
	101	85	96	85	108	89	98	80	91	91
At least ACT/S [‡]	2.2%	1.6%	0.9%	2.0%	3.2%	1.6%	2.1%	0.7%	1.7%	0.5%
	8	5	3	8	13	6	9	3	7	2
At least ACSSuTAuCf [§]	0.6%	2.0%	1.2%	1.8%	2.2%	2.6%	1.8%	2.9%	3.5%	2.0%
	2	6	4	7	9	10	8	12	14	8
At least ceftiofur and nalidixic acid resistant	0.0%	0.3%	0.3%	0.5%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%
	0	1	1	2	0	0	0	0	1	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

C. Salmonella ser. Newport

Table 15. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2008 (N=252)

Bank	CL SI ^t Antimicrobiol Close	Antimiorphial Agent		% of is	olates						Percen	t of all i	solates	with M	IC (µg/r	nL)"					
Nalik		Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 1.5]						0.4	42.1	54.4	3.2							
		Gentamicin	0.0	0.4	[0.01 - 2.2]					21.4	74.2	3.6	0.4				0.4	•			
		Streptomycin	N/A	13.5	[9.5 - 18.3]										-		86.5	0.8	12.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.4	12.3	[8.5 - 17.0]							82.9	2.8	0.4	1.2	0.4	3.2	9.1			
Т	Cephems	Ceftiofur	0.0	12.3	[8.5 - 17.0]						30.6	55.6	1.6			12.3					
		Ceftriaxone	0.0	12.3	[8.5 - 17.0]					87.7					0.8	6.7	4.0	0.8			
	Penicillins	Ampicillin	0.0	14.3	[10.2 - 19.2]							81.3	4.4					14.3			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 1.5]	97.6	2.0		0.4												
		Nalidixic acid	N/A	0.4	[0.01 - 2.2]								50.8	48.0	0.8			0.4			
	Aminoglycosides	Kanamycin	0.0	3.2	[1.4 - 6.2]										96.8				3.2		
	Cephems	Cefoxitin	0.0	12.3	[8.5 - 17.0]							34.9	48.0	4.8			2.8	9.5			
	Folate pathway inhibitors	Sulfisoxazole	N/A	13.1	[9.2 - 17.9]											3.2	52.0	31.0	0.4	0.4	13.1
"		Trimethoprim-sulfamethoxazole	N/A	3.2	[1.4 - 6.2]				79.0	17.5	0.4				3.2						
	Phenicols	Chloramphenicol	0.8	11.9	[8.2 - 16.6]								2.8	59.5	25.0	0.8		11.9			
	Tetracyclines	Tetracycline	0.0	13.9	[9.9 - 18.8]									86.1			0.8	13.1			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

C.St: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

 * Precent of isolates wan internetuale susceptionary, it is in to inclusing of internetuale susceptionary exists
 § Percent of isolates that were resistant
 ¶ 95% confidence intervals (C) for percent resistant (%R) were calculated using the Copper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
 * The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate threakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 15. Antimicrobial resistance pattern for Salmonella ser. Newport, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Prope	ortion
Amikacin		
Gentamicin		
Streptomycin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Ampicillin		
Ciprofloxacin		
Nalidixic acid		
Kanamycin		
Cefoxitin		
Sulfisoxazole		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Tetracycline		
	SIR	

Table 16. Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents,1999–2008

Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	olates		99	121	124	241	223	191	207	217	220	252
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	2.5%	3.2%	3.3%	3.1%	0.5%	1.0%	0.9%	0.9%	0.4%
		(MIC ≥ 16)	0	3	4	8	7	1	2	2	2	1
		Streptomycin	19.2%	24.0%	31.5%	25.3%	24.2%	15.7%	14.0%	13.8%	10.0%	13.5%
		(MIC ≥ 64)	19	29	39	61	54	30	29	30	22	34
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	18.2%	22.3%	26.6%	22.8%	21.5%	15.2%	12.6%	12.4%	7.7%	12.3%
	combinations	(MIC ≥ 32/16)	18	27	33	55	48	29	26	27	17	31
	Cephems	Ceftiofur	18.2%	22.3%	27.4%	22.8%	22.0%	15.2%	12.6%	12.4%	7.7%	12.3%
		(MIC ≥ 8)	18	27	34	55	49	29	26	27	17	31
		Ceftriaxone	18.2%	22.3%	25.8%	22.8%	21.5%	14.7%	12.6%	12.9%	7.7%	12.3%
		(MIC ≥ 4)	18	27	32	55	48	28	26	28	17	31
	Penicillins	Ampicillin	18.2%	23.1%	29.8%	24.9%	22.9%	15.7%	14.0%	15.2%	9.5%	14.3%
		(MIC ≥ 32)	18	28	37	60	51	30	29	33	21	36
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.0%	0.8%	0.0%	0.8%	0.4%	0.5%	0.0%	0.5%	0.0%	0.4%
		(MIC ≥ 32)	0	1	0	2	1	1	0	1	0	1
	Aminoglycosides	Kanamycin	1.0%	5.0%	7.3%	10.0%	4.5%	2.6%	1.9%	2.3%	0.9%	3.2%
		(MIC ≥ 64)	1	6	9	24	10	5	4	5	2	8
	Cephems	Cefoxitin	Not	22.3%	25.8%	22.4%	21.5%	15.2%	12.6%	12.9%	7.7%	12.3%
		(MIC ≥ 32)	Tested	27	32	54	48	29	26	28	17	31
		Cephalothin	18.2%	22.3%	26.6%	22.8%	22.4%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	18	27	33	55	50	Tested	Tested	Tested	Tested	Tested
п	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	22.2%	23.1%	32.3%	25.7%	24.7%	16.8%	15.5%	15.2%	10.0%	13.1%
		(MIC ≥ 512)	22	28	40	62	55	32	32	33	22	33
		Trimethoprim-sulfamethoxazole	2.0%	4.1%	1.6%	4.1%	0.9%	2.1%	1.9%	3.2%	1.8%	3.2%
		(MIC ≥ 4/76)	2	5	2	10	2	4	4	7	4	8
	Phenicols	Chloramphenicol	18.2%	23.1%	28.2%	25.3%	22.4%	15.2%	13.5%	12.4%	9.1%	11.9%
	L	(MIC ≥ 32)	18	28	35	61	50	29	28	27	20	30
	Tetracyclines	Tetracycline	19.2%	23.1%	30.6%	25.7%	24.2%	16.8%	14.5%	14.3%	9.5%	13.9%
		(MIC ≥ 16)	19	28	38	62	54	32	30	31	21	35

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 17.	Resistance	patterns of	Salmonella ser.	New	port isolates	, 1999–2008
-----------	------------	-------------	-----------------	-----	---------------	-------------

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	99	121	124	241	223	191	207	217	220	252
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	75.8%	75.2%	65.3%	72.2%	73.5%	82.2%	84.1%	82.9%	89.5%	85.3%
	75	91	81	174	164	157	174	180	197	215
Resistance ≥ 1 CLSI class*	24.2%	24.8%	34.7%	27.8%	26.5%	17.8%	15.9%	17.1%	10.5%	14.7%
	24	30	43	67	59	34	33	37	23	37
Resistance ≥ 2 CLSI classes*	18.2%	23.1%	32.3%	25.3%	25.1%	17.3%	15.0%	16.6%	10.5%	13.5%
	18	28	40	61	56	33	31	36	23	34
Resistance ≥ 3 CLSI classes*	18.2%	23.1%	31.5%	25.3%	23.3%	16.2%	14.5%	15.2%	10.5%	13.5%
	18	28	39	61	52	31	30	33	23	34
Resistance ≥ 4 CLSI classes*	18.2%	23.1%	31.5%	25.3%	22.9%	15.7%	14.0%	13.4%	9.1%	13.5%
	18	28	39	61	51	30	29	29	20	34
Resistance ≥ 5 CLSI classes*	18.2%	23.1%	26.6%	23.7%	22.4%	14.7%	12.6%	12.9%	8.2%	12.7%
	18	28	33	57	50	28	26	28	18	32
At least ACSSuT [†]	18.2%	23.1%	25.8%	23.7%	22.0%	14.7%	12.6%	12.0%	8.2%	11.5%
	18	28	32	57	49	28	26	26	18	29
At least ACT/S [‡]	2.0%	4.1%	0.8%	3.7%	0.9%	1.0%	1.9%	2.3%	0.5%	2.8%
	2	5	1	9	2	2	4	5	1	7
At least ACSSuTAuCf [§]	18.2%	22.3%	25.0%	22.8%	21.1%	14.7%	12.6%	10.6%	7.7%	11.5%
	18	27	31	55	47	28	26	23	17	29
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.4%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%
	0	0	0	1	0	1	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

D. Salmonella ser. I 4,[5],12:i:-

Table 18. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:isolates to antimicrobial agents, 2008 (N=83)

Dambé		A - 41-1 - 1 - 1 4		% of is	olates						Percen	t of all i	solates	with M	IC (µg/r	nL)"					
капк	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 4.3]						1.2	31.3	63.9	3.6							
		Gentamicin	0.0	3.6	[0.7 - 10.2]					20.5	71.1	4.8				2.4	1.2	_			
		Streptomycin	N/A	10.8	[5.1 - 19.6]											-	89.2	2.4	8.4		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.2	3.6	[0.7 - 10.2]							90.4		2.4	2.4	1.2	1.2	2.4			
1	Cephems	Ceftiofur	0.0	3.6	[0.7 - 10.2]					1.2	34.9	60.2				3.6					
		Ceftriaxone	0.0	3.6	[0.7 - 10.2]					96.4					1.2	2.4					
	Penicillins	Ampicillin	0.0	8.4	[3.4 - 16.6]							84.3	6.0	1.2				8.4			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 4.3]	98.8				1.2											
		Nalidixic acid	N/A	1.2	[0.02 - 6.5]								81.9	16.9				1.2			
	Aminoglycosides	Kanamycin	0.0	1.2	[0.02 - 6.5]										98.8		[]		1.2		
	Cephems	Cefoxitin	0.0	3.6	[0.7 - 10.2]							42.2	48.2	4.8	1.2		2.4	1.2			
	Folate pathway inhibitors	Sulfisoxazole	N/A	13.3	[6.8 - 22.5]											7.2	71.1	8.4			13.3
		Trimethoprim-sulfamethoxazole	N/A	4.8	[1.3 - 11.9]				72.3	22.9					4.8						
	Phenicols	Chloramphenicol	0.0	6.0	[2.0 - 13.5]									43.4	50.6			6.0			
	Tetracyclines	Tetracycline	0.0	16.9	[9.5 - 26.7]									83.1		1.2	2.4	13.3			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

C.St: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

 Precent of isolates that were resistant
 § Percent of isolates that were resistant
 § Sercent of isolates is with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs qual to or less than the low est tested concentration. CLSI breakpoints w ere used w hen available.

Figure 16. Antimicrobial resistance pattern for Salmonella ser. 14,[5],12:i:-, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Table 19. Percentage and number of Salmonella ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 1999-2008

Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		8	13	14	35	37	36	33	105	73	83
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	7.1%	0.0%	5.4%	5.6%	0.0%	4.8%	1.4%	3.6%
		(MIC ≥ 16)	0	0	1	0	2	2	0	5	1	3
		Streptomycin	0.0%	7.7%	14.3%	2.9%	8.1%	5.6%	3.0%	3.8%	8.2%	10.8%
		(MIC ≥ 64)	0	1	2	1	3	2	1	4	6	9
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.0%	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%	1.4%	3.6%
	combinations	(MIC ≥ 32/16)	0	0	0	1	2	1	1	4	1	3
	Cephems	Ceftiofur	0.0%	0.0%	7.1%	2.9%	5.4%	2.8%	3.0%	3.8%	2.7%	3.6%
		(MIC ≥ 8)	0	0	1	1	2	1	1	4	2	3
		Ceftriaxone	0.0%	0.0%	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%	2.7%	3.6%
		(MIC ≥ 4)	0	0	0	1	2	1	1	4	2	3
	Penicillins	Ampicillin	0.0%	7.7%	7.1%	8.6%	8.1%	5.6%	6.1%	6.7%	5.5%	8.4%
		(MIC ≥ 32)	0	1	1	3	3	2	2	7	4	7
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.0%	0.0%	0.0%	0.0%	2.7%	2.8%	0.0%	1.0%	1.4%	1.2%
		(MIC ≥ 32)	0	0	0	0	1	1	0	1	1	1
	Aminoglycosides	Kanamycin	0.0%	0.0%	7.1%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	1.2%
		(MIC ≥ 64)	0	0	1	0	0	0	0	0	1	1
	Cephems	Cefoxitin	Not	Not	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%	1.4%	3.6%
		(MIC ≥ 32)	Tested	Tested	0	1	2	1	1	4	1	3
		Cephalothin	0.0%	0.0%	7.1%	2.9%	5.4%	0.0%	Not	Not	Not	Not
		(MIC ≥ 32)	0	0	1	1	2	0	Tested	Tested	Tested	Tested
п	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	12.5%	0.0%	14.3%	2.9%	5.4%	11.1%	0.0%	8.6%	4.1%	13.3%
		(MIC ≥ 512)	1	0	2	1	2	4	0	9	3	11
		Trimethoprim-sulfamethoxazole	0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	0.0%	1.4%	4.8%
		(MIC ≥ 4/76)	0	0	1	1	0	1	0	0	1	4
	Phenicols	Chloramphenicol	0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	1.9%	1.4%	6.0%
		(MIC ≥ 32)	0	0	1	1	0	1	0	2	1	5
	Tetracyclines	Tetracycline	0.0%	7.7%	7.1%	5.7%	0.0%	11.1%	3.0%	8.6%	9.6%	16.9%
1		(MIC ≥ 16)	0	1	1	2	0	4	1	9	7	14

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 20	Resistance	natterns o	of Salmone	lla ser 14	[5] 12	·i·- isolates	1999.	-2008
	Resistance	patterns c		<i>na</i> 301. i 4	,[0], [2		, 1333-	-2000

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	8	13	14	35	37	36	2000	105	73	83
	%	%	0/c	%	%	%	00 %	105 %	%	00 %
	n	n	70 n	n	n	70 n	n	n	n n	n n
No resistance detected	87.5%	02.3%	78.6%	01.4%	78.4%	80.6%	87.0%	85.7%	82.2%	77 1%
	7	12	10.070	32	20	20	20	Q0.770	60	64
Resistance > 1 CLSL class*	12.5%	7.7%	21.4%	8.6%	21.6%	19.4%	12.1%	14.3%	17.8%	22.9%
	1	1	3	3	8	7	4	15	13	19
Resistance ≥ 2 CLSI classes*	0.0%	7.7%	14.3%	8.6%	10.8%	13.9%	3.0%	11.4%	6.8%	16.9%
	0	1	2	3	4	5	1	12	5	14
Resistance ≥ 3 CLSI classes*	0.0%	7.7%	7.1%	5.7%	5.4%	8.3%	3.0%	9.5%	5.5%	9.6%
	0	1	1	2	2	3	1	10	4	8
Resistance ≥ 4 CLSI classes*	0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	3.8%	2.7%	7.2%
	0	0	1	1	0	1	0	4	2	6
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	2.9%	1.4%	4.8%
	0	0	1	1	0	1	0	3	1	4
At least ACSSuT [†]	0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	1.9%	1.4%	3.6%
	0	0	1	1	0	1	0	2	1	3
At least ACT/S [‡]	0.0%	0.0%	7.1%	2.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	1	1	0	0	0	0	0	0
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.4%
	0	0	0	0	0	0	0	0	0	2
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

E. Salmonella ser. Heidelberg

Table 21. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2008 (N=75)

Develo		A - 41		% of is	olates						Percen	t of all i	solates	with M	IIC (µg/n	nL)"					
капк	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	% I ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 4.8]						6.7	56.0	34.7	2.7							
		Gentamicin	1.3	14.7	[7.5 - 24.7]					41.3	40.0	2.7			1.3	4.0	10.7	_			
		Streptomycin	N/A	30.7	[20.5 - 42.4]											-	69.3	16.0	14.7		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	4.0	8.0	[3.0 - 16.6]							72.0		1.3	14.7	4.0		8.0			
Т	Cephems	Ceftiofur	0.0	8.0	[3.0 - 16.6]						50.7	40.0	1.3			8.0					
		Ceftriaxone	0.0	8.0	[3.0 - 16.6]					92.0					1.3	5.3		1.3			
	Penicillins	Ampicillin	0.0	28.0	[18.2 - 39.6]							69.3	2.7	•				28.0			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 4.8]	98.7	1.3														
		Nalidixic acid	N/A	0.0	[0.0 - 4.8]							1.3	38.7	60.0							
	Aminoglycosides	Kanamycin	0.0	26.7	[17.1 - 38.1]										69.3	4.0	[]	1.3	25.3		
	Cephems	Cefoxitin	0.0	8.0	[3.0 - 16.6]							53.3	33.3	5.3			4.0	4.0			
	Folate pathway inhibitors	Sulfisoxazole	N/A	12.0	[5.6 - 21.6]											42.7	41.3	4.0			12.0
"		Trimethoprim-sulfamethoxazole	N/A	2.7	[0.3 - 9.3]				74.7	22.7					2.7						
	Phenicols	Chloramphenicol	0.0	1.3	[0.02 - 7.2]									40.0	58.7			1.3			
	Tetracyclines	Tetracycline	1.3	36.0	[25.2 - 47.9]									62.7	1.3		-	36.0			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

C.St: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

 Precent of isolates that were resistant
 § Percent of isolates that were resistant
 § Sercent of isolates is with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs qual to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 17. Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Table 22. Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 1999–2008

Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		88	79	102	105	96	93	125	102	98	75
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)			1				'			
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	14.8%	8.9%	7.8%	3.8%	5.2%	4.3%	6.4%	4.9%	16.3%	14.7%
		(MIC ≥ 16)	13	7	8	4	5	4	8	5	16	11
		Streptomycin	23.9%	22.8%	25.5%	17.1%	12.5%	15.1%	13.6%	11.8%	12.2%	30.7%
		(MIC ≥ 64)	21	18	26	18	12	14	17	12	12	23
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	1.1%	3.8%	2.9%	9.5%	5.2%	10.8%	8.8%	9.8%	7.1%	8.0%
	combinations	(MIC ≥ 32/16)	1	3	3	10	5	10	11	10	7	6
	Cephems	Ceftiofur	0.0%	3.8%	2.9%	7.6%	5.2%	9.7%	8.8%	9.8%	7.1%	8.0%
'		(MIC ≥ 8)	0	3	3	8	5	9	11	10	7	6
		Ceftriaxone	0.0%	3.8%	2.9%	7.6%	5.2%	9.7%	8.8%	9.8%	7.1%	8.0%
		(MIC ≥ 4)	0	3	3	8	5	9	11	10	7	6
	Penicillins	Ampicillin	6.8%	10.1%	9.8%	12.4%	10.4%	25.8%	20.0%	18.6%	18.4%	28.0%
		(MIC ≥ 32)	6	8	10	13	10	24	25	19	18	21
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	1.1%	1.3%	0.0%	0.0%	1.0%	0.0%	0.8%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	1	1	0	0	1	0	1	0	0	0
	Aminoglycosides	Kanamycin	9.1%	15.2%	19.6%	10.5%	8.3%	8.6%	12.8%	8.8%	11.2%	26.7%
		(MIC ≥ 64)	8	12	20	11	8	8	16	9	11	20
	Cephems	Cefoxitin	Not	2.5%	2.9%	8.6%	5.2%	8.6%	8.8%	8.8%	7.1%	8.0%
		(MIC ≥ 32)	Tested	2	3	9	5	8	11	9	7	6
		Cephalothin	3.4%	5.1%	3.9%	10.5%	7.3%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	3	4	4	11	7	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	18.2%	11.4%	8.8%	6.7%	7.3%	7.5%	8.0%	4.9%	18.4%	12.0%
		(MIC ≥ 512)	16	9	9	7	7	7	10	5	18	9
		Trimethoprim-sulfamethoxazole	1.1%	1.3%	2.0%	1.0%	2.1%	0.0%	0.8%	0.0%	0.0%	2.7%
		(MIC ≥ 4/76)	1	1	2	1	2	0	1	0	0	2
	Phenicols	Chloramphenicol	1.1%	1.3%	1.0%	1.0%	0.0%	1.1%	0.8%	0.0%	3.1%	1.3%
		(MIC ≥ 32)	1	1	1	1	0	1	1	0	3	1
	Tetracyclines	Tetracycline	18.2%	21.5%	24.5%	19.0%	16.7%	19.4%	18.4%	13.7%	22.4%	36.0%
		(MIC ≥ 16)	16	17	25	20	16	18	23	14	22	27

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Fable 23. Resistance	patterns of	Salmonella ser.	Heidelberg	isolates	, 1999–2008
-----------------------------	-------------	-----------------	------------	----------	-------------

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	88	79	102	105	96	93	125	102	98	75
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	68.2%	63.3%	64.7%	67.6%	68.8%	55.9%	62.4%	67.6%	58.2%	57.3%
	60	50	66	71	66	52	78	69	57	43
Resistance ≥ 1 CLSI class*	31.8%	36.7%	35.3%	32.4%	31.3%	44.1%	37.6%	32.4%	41.8%	42.7%
	28	29	36	34	30	41	47	33	41	32
Resistance ≥ 2 CLSI classes*	26.1%	26.6%	28.4%	25.7%	17.7%	23.7%	24.8%	23.5%	28.6%	40.0%
	23	21	29	27	17	22	31	24	28	30
Resistance ≥ 3 CLSI classes*	10.2%	7.6%	7.8%	12.4%	10.4%	14.0%	15.2%	12.7%	17.3%	28.0%
	9	6	8	13	10	13	19	13	17	21
Resistance ≥ 4 CLSI classes*	3.4%	3.8%	2.0%	1.9%	0.0%	4.3%	4.8%	2.0%	5.1%	13.3%
	3	3	2	2	0	4	6	2	5	10
Resistance ≥ 5 CLSI classes*	0.0%	2.5%	1.0%	1.9%	0.0%	3.2%	1.6%	2.0%	4.1%	6.7%
	0	2	1	2	0	3	2	2	4	5
At least ACSSuT [†]	0.0%	1.3%	1.0%	1.0%	0.0%	1.1%	0.0%	0.0%	3.1%	1.3%
	0	1	1	1	0	1	0	0	3	1
At least ACT/S [‡]	0.0%	0.0%	0.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	1	0	0	0	0	0	0
At least ACSSuTAuCf [§]	0.0%	1.3%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	1	1	1	0	0	0	0	0	0
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole
 § ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

F. Specific Drug Resistance Phenotypes

Table 24. Number and percentage of ACSSuT-, ACSSuTAuCf-, Nalidixic Acid-, and Ceftiofur-resistant
isolates among the 20 most common non-typhoidal Salmonella serotypes isolated in NARMS, 2008

			A	CSSuT*	ACS	SuTAuCf [†]	Nali	dixic Acid	С	eftiofur
Rank	Serotype	Ν	n	(%)	n	(%)	n	(%)	n	(%)
1	Enteritidis	439	0	(0.0%)	0	(0.0%)	29	(61.7%)	0	(0.0%)
2	Typhimurium	397	91	(66.4%)	8	(53.3%)	5	(10.6%)	13	(18.6%)
3	Newport	252	29	(21.2%)	1	(6.7%)	1	(2.1%)	31	(44.3%)
4	Javiana	118	0	(0.0%)	0	(0.0%)	1	(2.1%)	1	(1.4%)
5	Saintpaul	108	1	(0.7%)	1	(6.7%)	0	(0.0%)	4	(5.7%)
6	l 4,[5],12:i:-	83	3	(2.2%)	2	(13.3%)	1	(2.1%)	3	(4.3%)
7	Heidelberg	75	1	(0.7%)	0	(0.0%)	0	(0.0%)	6	(8.6%)
8	Montevideo	68	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
9	Braenderup	56	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
10	Infantis	51	1	(0.7%)	0	(0.0%)	1	(2.1%)	0	(0.0%)
11	Muenchen	51	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
12	Oranienburg	50	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
13	Agona	39	0	(0.0%)	0	(0.0%)	1	(2.1%)	4	(5.7%)
14	Thompson	32	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
15	Mississippi	31	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
16	Poona	26	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
17	Schwarzengrund	24	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
18	Litchfield	23	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
19	Paratyphi B var. L(+) tartrate+	23	1	(0.7%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
20	Hadar	19	0	(0.0%)	0	(0.0%)	1	(2.1%)	0	(0.0%)
	Subtotal	1965	127	(92.7%)	12	(80.0%)	40	(85.1%)	62	(88.6%)
	All other serotypes	349	7	(5.1%)	2	(13.3%)	5	(10.6%)	7	(10.0%)
	Unknown serotype	35	0	(0.0%)	0	(0.0%)	1	(2.1%)	0	(0.0%)
	Partiallyserotyped	14	2	(1.5%)	1	(6.7%)	0	(0.0%)	1	(1.4%)
	Rough/Nonmotile isolates	16	1	(0.7%)	0	(0.0%)	1	(2.1%)	0	(0.0%)
	Total	2379	137	(100.0%)	15	(100.0%)	47	(100.0%)	70	(100.0%)

 ${}^{*} ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfis oxazole, tetracycline$

[†]ACSSuTAuCf = ACSSuT, amoxicillin-clavulanic acid, and ceftiofur

2. Typhoidal Salmonella

A. Salmonella ser. Typhi

Table 25. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2008 (N=410)

Bonk	CL SIT Antimicrobial Class	Antimicrobiol Acont		% of is	olates						Percen	t of all i	solates	with M	IC (µg/r	nL)"					
Ralik	CLSI [,] Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.9]						28.0	66.3	5.1	0.5							
		Gentamicin	0.0	0.0	[0.0 - 0.9]					91.2	8.8										
		Streptomycin	N/A	11.5	[8.5 - 15.0]												88.5	0.2	11.2		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.7	0.0	[0.0 - 0.9]							86.3	1.0	2.9	9.0	0.7					
Т	Cephems	Ceftiofur	0.0	0.0	[0.0 - 0.9]				1.2	7.3	79.5	12.0									
		Ceftriaxone	0.0	0.0	[0.0 - 0.9]					99.8		0.2		.	•						
	Penicillins	Ampicillin	0.0	13.2	[10.1 - 16.8]							85.6	1.2					13.2			
	Quinolones	Ciprofloxacin	0.7	0.0	[0.0 - 0.9]	37.6	0.5	3.9	19.0	35.9	2.4		0.7								
		Nalidixic acid	N/A	59.0	[54.1 - 63.8]							4.4	31.7	3.4	1.5		3.4	55.6			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 0.9]										100.0						
	Cephems	Cefoxitin	0.5	0.0	[0.0 - 0.9]						7.8	40.2	9.8	36.1	5.6	0.5					
	Folate pathway inhibitors	Sulfisoxazole	N/A	13.2	[10.1 - 16.8]											61.2	19.3	4.4	1.5	0.5	13.2
н		Trimethoprim-sulfamethoxazole	N/A	12.7	[9.6 - 16.3]				80.0	7.1			0.2		12.7						
	Phenicols	Chloramphenicol	0.0	12.9	[9.8 - 16.6]								5.1	73.4	8.5			12.9			
	Tetracyclines	Tetracycline	0.2	4.6	[2.8 - 7.1]									95.1	0.2			4.6			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSt. Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant

** The unshaded areas indicate the dilution range of the Sensitive plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded

areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 18. Antimicrobial resistance pattern for Salmonella ser. Typhi, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proport	ion
Amikacin		
Gentamicin		
Streptomycin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Ampicillin		
Ciprofloxacin		
Nalidixic acid		
Kanamycin		
Cefoxitin		
Sulfisoxazole		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Tetracycline		

Year	2000		1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		166	177	197	195	333	304	318	323	398	410
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	0	0	0	0	0	0	0
		Streptomycin	13.9%	9.0%	20.3%	7.2%	14.4%	11.8%	13.2%	18.9%	15.6%	11.5%
		(MIC ≥ 64)	23	16	40	14	48	36	42	61	62	47
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.3%	0.0%
	combinations	(MIC ≥ 32/16)	0	0	0	0	0	0	0	1	1	0
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
1		(MIC ≥ 8)	0	0	0	0	1	0	0	0	0	0
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	1	0	0	0	0	0
	Penicillins	Ampicillin	12.7%	9.0%	20.3%	5.6%	15.9%	11.8%	13.2%	20.4%	17.1%	13.2%
		(MIC ≥ 32)	21	16	40	11	53	36	42	66	68	54
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.9%	1.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	1	0	1	3	4	0
		Nalidixic acid	19.3%	22.0%	29.9%	23.6%	37.8%	41.8%	48.4%	54.2%	62.3%	59.0%
		(MIC ≥ 32)	32	39	59	46	126	127	154	175	248	242
	Aminoglycosides	Kanamycin	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	1	0	0	0	0	0	0	0
	Cephems	Cefoxitin	Not	0.6%	0.5%	0.0%	0.6%	0.0%	0.0%	0.3%	0.5%	0.0%
		(MIC ≥ 32)	Tested	1	1	0	2	0	0	1	2	0
		Cephalothin	1.8%	1.1%	0.5%	1.5%	0.3%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	3	2	1	3	1	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	16.3%	11.3%	20.8%	6.2%	17.1%	11.8%	14.2%	20.7%	17.6%	13.2%
		(MIC ≥ 512)	27	20	41	12	57	36	45	67	70	54
		Trimethoprim-sulfamethoxazole	13.3%	9.0%	20.8%	6.7%	16.8%	13.2%	14.5%	20.7%	16.3%	12.7%
		(MIC ≥ 4/76)	22	16	41	13	56	40	46	67	65	52
	Phenicols	Chloramphenicol	12.7%	10.7%	20.8%	6.2%	16.5%	13.2%	13.2%	19.5%	15.8%	12.9%
		(MIC ≥ 32)	21	19	41	12	55	40	42	63	63	53
	Tetracyclines	Tetracycline	9.6%	9.6%	20.8%	6.7%	15.6%	8.9%	10.1%	8.4%	6.3%	4.6%
I		(MIC > 16)	16	17	41	13	52	27	32	27	25	19

Table 26. Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents,1999–2008

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 27. Resistance patterns of Salmonella ser. Typhi isolates, 1999–2008

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	166	177	197	195	333	304	318	323	398	410
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	71.7%	72.3%	58.9%	74.4%	56.5%	56.6%	48.1%	40.6%	35.4%	38.0%
	119	128	116	145	188	172	153	131	141	156
Resistance ≥ 1 CLSI class*	28.3%	27.7%	41.1%	25.6%	43.5%	43.4%	51.9%	59.4%	64.6%	62.0%
	47	49	81	50	145	132	165	192	257	254
Resistance ≥ 2 CLSI classes*	14.5%	10.7%	22.8%	7.2%	17.7%	13.2%	14.5%	21.7%	18.1%	14.4%
	24	19	45	14	59	40	46	70	72	59
Resistance ≥ 3 CLSI classes*	12.7%	9.6%	21.8%	6.7%	16.8%	12.8%	13.8%	20.7%	17.6%	13.4%
	21	17	43	13	56	39	44	67	70	55
Resistance ≥ 4 CLSI classes*	12.7%	9.0%	21.3%	6.2%	16.5%	12.5%	12.9%	19.2%	17.1%	12.9%
	21	16	42	12	55	38	41	62	68	53
Resistance ≥ 5 CLSI classes*	11.4%	7.9%	16.8%	5.6%	14.1%	11.8%	11.9%	16.7%	14.8%	10.7%
	19	14	33	11	47	36	38	54	59	44
At least ACSSuT [†]	9.6%	7.9%	16.8%	5.6%	12.6%	7.9%	9.1%	5.9%	3.8%	2.4%
	16	14	33	11	42	24	29	19	15	10
At least ACT/S [‡]	12.7%	9.0%	17.8%	5.6%	15.6%	11.8%	12.9%	18.6%	15.3%	12.2%
	21	16	35	11	52	36	41	60	61	50
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

B. Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C

Table 28. Frequency of Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C isolated in NARMS, 2007

Species	2008						
	n	(%)					
Paratyphi A	90	(97.8%)					
Paratyphi B	2	(2.2%)					
Paratyphi C	0	(0.0%)					
Total	92	(100.0%)					

Table 29. Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C isolates to antimicrobial agents, 2008 (N=92)

Bank*	CI SI ^t Antimicrobial Class	Antimiorphial Agent		% of is	olates						Percer	t of all i	isolates	with M	IC (µg/n	nL) [⊷]					
Nalik		Antimicrobial Agent	% l ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 3.9]						90.2	3.3	6.5								
		Gentamicin	0.0	0.0	[0.0 - 3.9]					93.5	5.4	1.1									
		Streptomycin	N/A	1.1	[0.01 - 5.9]											_	98.9		1.1		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	1.1	[0.01 - 5.9]							39.1	57.6	2.2				1.1			
Т	Cephems	Ceftiofur	0.0	1.1	[0.01 - 5.9]					1.1	3.3	92.4	2.2			1.1					
		Ceftriaxone	0.0	1.1	[0.01 - 5.9]					98.9				1	1.1						
	Penicillins	Ampicillin	0.0	1.1	[0.01 - 5.9]							7.6	87.0	3.3	1.1			1.1			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 3.9]	12.0	1.1	1.1	1.1	7.6	77.2										
		Nalidixic acid	N/A	85.9	[77.0 - 92.3]								4.3	8.7		1.1	1.1	84.8			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 3.9]										100.0						
	Cephems	Cefoxitin	1.1	1.1	[0.01 - 5.9]							1.1	7.6	69.6	19.6	1.1		1.1			
	Folate pathway inhibitors	Sulfisoxazole	N/A	1.1	[0.01 - 5.9]											50.0	46.7	2.2			1.1
		Trimethoprim-sulfamethoxazole	N/A	0.0	[0.0 - 3.9]				81.5	18.5											
	Phenicols	Chloramphenicol	18.5	1.1	[0.01 - 5.9]								1.1	3.3	76.1	18.5		1.1			
	Tetracyclines	Tetracycline	0.0	2.2	[0.2 - 7.6]									97.8			-	2.2			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

9 PS% confidence intervals (Q) for percent resistant (%R) were calculated using the Copper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
** The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 19. Antimicrobial resistance pattern for Salmonella ser. Paratyphi A, Paratyphi B, and Paratyphi C, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Table 30.	Percentage and numbe	r of Salmonella ser.	Paratyphi A,	Paratyphi B,	and Paratyphi C	isolates
resistant to	o antimicrobial agents,	1999–2008				

Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	olates		2	5	9	10	8	11	18	16	17	92
	CLSI [†] Antimicrobial	Antibiotic										
Rank [*]	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	0	0	0	0	0	0	0
		Streptomycin	0.0%	20.0%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
		(MIC ≥ 64)	0	1	0	1	0	0	0	0	0	1
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
	combinations	(MIC ≥ 32/16)	0	0	0	0	0	0	0	0	0	1
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
		(MIC ≥ 8)	0	0	0	0	0	0	0	0	0	1
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	1
	Penicillins	Ampicillin	0.0%	20.0%	0.0%	0.0%	12.5%	0.0%	0.0%	0.0%	0.0%	1.1%
		(MIC ≥ 32)	0	1	0	0	1	0	0	0	0	1
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.0%	40.0%	55.6%	40.0%	75.0%	72.7%	66.7%	50.0%	94.1%	85.9%
		(MIC ≥ 32)	0	2	5	4	6	8	12	8	16	79
	Aminoglycosides	Kanamycin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
	Cephems	Cefoxitin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
		(MIC ≥ 32)	Tested	0	0	0	0	0	0	0	0	1
		Cephalothin	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	0	0	0	0	0	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
		(MIC ≥ 512)	0	1	0	0	0	0	0	0	0	1
		Trimethoprim-sulfamethoxazole	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4/76)	0	1	0	0	0	0	0	0	0	0
	Phenicols	Chloramphenicol	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
		(MIC ≥ 32)	0	1	0	0	0	0	0	0	0	1
	Tetracyclines	Tetracycline	0.0%	0.0%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.2%
		(MIC ≥ 16)	0	0	0	1	0	0	0	0	0	2

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important
 † CLSI: Clinical and Laboratory Standards Institute
 ‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 31.	Resistance patterns of	Salmonella ser.	Paratyphi A,	Paratyphi B	, and Paratyphi	C isolates,
1999–200	8					

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	2	5	9	10	8	11	18	16	17	92
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	100.0%	40.0%	44.4%	50.0%	12.5%	27.3%	33.3%	50.0%	5.9%	12.0%
	2	2	4	5	1	3	6	8	1	11
Resistance ≥ 1 CLSI class*	0.0%	60.0%	55.6%	50.0%	87.5%	72.7%	66.7%	50.0%	94.1%	88.0%
	0	3	5	5	7	8	12	8	16	81
Resistance ≥ 2 CLSI classes*	0.0%	20.0%	0.0%	10.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
	0	1	0	1	0	0	0	0	0	1
Resistance ≥ 3 CLSI classes*	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
	0	1	0	0	0	0	0	0	0	1
Resistance ≥ 4 CLSI classes*	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
	0	1	0	0	0	0	0	0	0	1
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
	0	0	0	0	0	0	0	0	0	1
At least ACSSuT [†]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
	0	0	0	0	0	0	0	0	0	1
At least ACT/S [‡]	0.0%	20.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	1	0	0	0	0	0	0	0	0
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%
	0	0	0	0	0	0	0	0	0	1
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

Box 2. Identification of the aminoglycoside resistance determinants, *armA* and *rmtC*, among human non-typhoidal *Salmonella* isolated in the United States

Aminoglycosides are an important class of antimicrobial agents for the treatment of life-threatening bacterial infections. Several mechanisms for aminoglycoside resistance have been described. Among these mechanisms, 16S rRNA methyltransferases are especially troublesome due to their wide target range and their ability to confer high levels of resistance.

From 1996-2007, 20,331 isolates of non-typhoidal *Salmonella* were collected and tested by CDC. Two isolates displayed resistance to three aminoglycosides; defined as \geq 64 µg/ml amikacin, \geq 16 µg/ml gentamicin, and \geq 64 µg/ml kanamycin. AM04864 was *Salmonella enterica* serotype Stanley, submitted in 1999. Additional information from the patient was not available. AM23818 was *Salmonella enterica* serotype Virchow, submitted in 2005. The patient was an 11-month-old Asian male from Hartford, Connecticut. Prior to illness onset, he visited a farm in India and had exposure to farm animals. The patient became ill with non-bloody diarrhea in India. Upon return to the United States, he obtained medical care. Oral antibiotics were prescribed following specimen collection; the antibiotic name could not be recalled. The patient was ill with diarrhea for six weeks, during which he sought medical care two additional times.

Screening for methyltransferase genes was performed by PCR, using previously described primers for six genes; *armA*, *rmtA*, *rmtB*, *rmtC*, *rmtD*, and *npmA*. AM04864 was positive for *armA*, while AM23818 was positive for *rmtC*. Sequence analysis confirmed that *armA* was identical to that observed in *Acinetobacter baumannii* (EU014811) and *Salmonella enterica* ser. Oranienburg (DQ177329). Sequence analysis confirmed that *armA* was located between *tnpU* and *tnpD*, genes associated with the Tn*1548* transposon. Tn*1548* typically contains additional genes which confer resistance to azithromycin, streptomycin-spectinomycin, sulfonamides, and trimethoprim, which may explain the additional resistance phenotype of AM04864. Sequence analysis of the *rmtC* gene confirmed that the gene was identical to that observed in *Proteus mirabilis* (EU144360). At the time of this report, *rmtC* has not been identified outside of *P. mirabilis*. Upstream of the *rmtC* sequence, we identified the 3' end of the IS*Ecp1* element along with one of the inverted repeat regions (IRR). IS*Ecp1* has been shown to promote expression and transposition of *rmtC*.

Although ArmA is one of the most widespread methyltransferases in the world, it has only been identified in *A. baumannii* in the United States. RmtC has not previously been observed in the United States. All of the *rmtC*-positive isolates reported have been *Proteus mirabilis* isolates from patients in Japan, with the exception of a single isolate in Australia. The patient infected with *Salmonella* with the *rmtC* gene recently traveled to India, suggesting that the infection originated in India. Identification of methyltransferase genes among non-typhoidal *Salmonella* isolated from humans in the United States suggests the existence of a potential reservoir for these resistance mechanisms.

Box 3. Plasmid-Mediated Quinolone Resistance among non-Typhi Salmonella isolated in the United States

Although gastroenteritis due to *Salmonella* often is self-limited, antibiotic therapy is necessary for the management of invasive infections. The recommended regimen used to include either amoxicillin or trimethoprim-sulfamethoxazole, but due to increased resistance levels to these drugs, current recommendations suggest an extended-spectrum cephalosporin, such as ceftriaxone, or a fluoroquinolone, such as ciprofloxacin.

Endogenous topoisomerase mutations are an important source of fluoroquinolone resistance in *Enterobacteriaceae*. However, three plasmid-mediated mechanisms have recently been described to confer decreased susceptibility to ciprofloxacin; QNR proteins, QepA efflux and AAC(6')-Ib-cr. The first *qnr* gene described, *qnrA*, was found on a conjugative plasmid of a clinical *Klebsiella pneumoniae* isolate in 1998. This gene encodes a protein protecting type II topoisomerases and is associated with low-level ciprofloxacin resistance. Since the discovery of *qnrA* several *qnr*-variants have been identified, including *qnrB*, *S*, *C* and *D*. The QepA protein is an efflux pump that originally was described in a clinical isolate of *Escherichia coli*. Finally, the AAC(6')-Ib-cr is a mutant aminoglycoside acetyltransferase (AAC(6')-Ib) which modifies ciprofloxacin and norfloxacin. Here we summarize the prevalence of *aac(6')-Ib-cr*, *qepA* and *qnr* genes among non-Typhi *Salmonella* submitted to NARMS 1996-2006.

A study by Gay et al reported ten (0.08%) *qnr*-positive *Salmonella* among isolates submitted to NARMS in 1996-2003. Among isolates submitted to NARMS in 2004 to 2006, Sjolund-Karlsson et al reported 17 (0.3%) *qnr*-positive isolates; 11 isolates harbored *qnrS*, five *qnrB* and one isolate *qnrA*. The fact that 14 of these were collected in 2006 and originated from ten different states suggests *qnr* genes may be increasing among *Salmonella* in the United States. This is further supported by the expansion of serotypes carrying *qnr* genes; among the ten *qnr*-positive isolates from 1996-2003, four serotypes were represented (Berta, Mbandaka, Bovismorbificans, Anatum) whereas in 2004-2006 nine additional serotypes were detected (Typhimurium, Corvallis, Saintpaul, Montevideo, Telelkebir, Kiambu, Enteritidis, Aqua, Cubana).

Among all non-Typhi Salmonella submitted to NARMS 1996-2006, a single isolate harbored the *aac(6')-lb-cr* gene. This isolate was a Typhimurium var O:5- submitted in 2005. The *qepA* gene has not yet been detected among NARMS Salmonella isolates.

Plasmid-mediated quinolone resistance in *Salmonella* has important public health implications since patients infected with resistant isolates may respond poorly to therapy. In order to limit further spread of plasmid-mediated quinolone resistance among *Enterobacteriaceae*, judicious use of antimicrobial agents in both human and veterinary medicine will be crucial.

3. Shigella

Table 32. Frequency of Shigella species isolated in NARMS, 2008

Species		2008
	n	(%)
Shigella sonnei	496	(89.9%)
Shigella flexneri	48	(8.7%)
Shigella boydii	5	(0.9%)
Other	3	(0.5%)
Total	552	(100.0%)

Table 33. Minimum inhibitory concentrations (MICs) and resistance of Shigella isolates to antimicrobial agents, 2008 (N=552)

Pank.	CL SI [†] Antimicrobial Class	Antimicrobial Agent		% of is	olates						Percen	t of all i	solates	with M	IC (µg/n	nL)"					
NdTK		Antimici obiai Agent	% i ‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.7]						0.4	2.2	48.9	45.3	3.1	0.2					
		Gentamicin	0.0	0.5	[0.1 - 1.6]					2.4	26.3	66.3	4.5			0.2	0.4	-			
		Streptomycin	N/A	80.6	[77.1 - 83.8]											-	19.4	44.0	36.6		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	31.5	3.4	[2.1 - 5.3]							1.8	2.0	31.5	29.7	31.5	3.3	0.2			
Т	Cephems	Ceftiofur	0.0	0.2	[0.00 - 1.0]				6.0	83.2	10.3	0.4				0.2	•				
		Ceftriaxone	0.0	0.2	[0.00 - 1.0]					99.8								0.2			
	Penicillins	Ampicillin	0.4	62.5	[58.3 - 66.6]							3.4	26.1	7.2	0.4	0.4	0.2	62.3			
	Quinolones	Ciprofloxacin	0.0	0.9	[0.3 - 2.1]	96.4	1.1	0.5	0.4	0.7				0.5	0.4		_				
		Nalidixic acid	N/A	2.2	[1.1 - 3.8]						6.2	79.5	11.2	0.7	0.2		0.5	1.6			
	Aminoglycosides	Kanamycin	0.0	0.5	[0.1 - 1.6]										99.3	0.2		0.2	0.4		
	Cephems	Cefoxitin	0.2	0.0	[0.0 - 0.7]						0.4	9.1	75.4	14.5	0.5	0.2					
	Folate pathway inhibitors	Sulfisoxazole	N/A	28.8	[25.1 - 32.8]											66.1	4.2	0.9			28.8
		Trimethoprim-sulfamethoxazole	N/A	41.1	[37.0 - 45.4]				9.2	4.3	6.7	25.2	13.4	6.3	34.8						•
	Phenicols	Chloramphenicol	0.2	7.2	[5.2 - 9.7]								18.3	71.9	2.4	0.2	1.1	6.2			
	Tetracyclines	Tetracycline	0.0	24.3	[20.8 - 28.1]									75.7		0.2	8.9	15.2			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

9 Percent of isolates into were resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
** The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MCs equal to or less than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MCs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 20. Antimicrobial resistance pattern for Shigella, 2008

S I R

Table 34. Percentage and number of *Shigella* isolates resistant to antimicrobial agents, 1999–2008

Year	r			2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		375	450	344	620	495	316	396	402	482	552
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.3%	0.2%	0.0%	0.2%	0.0%	0.0%	1.0%	0.2%	0.8%	0.5%
		(MIC ≥ 16)	1	1	0	1	0	0	4	1	4	3
		Streptomycin	55.7%	57.1%	53.2%	54.4%	57.0%	60.8%	68.7%	60.7%	73.0%	80.6%
		(MIC ≥ 64)	209	257	183	337	282	192	272	244	352	445
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	1.1%	2.2%	4.4%	2.6%	1.4%	1.6%	1.0%	1.5%	0.4%	3.4%
	combinations	(MIC ≥ 32/16)	4	10	15	16	7	5	4	6	2	19
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.2%	0.2%	0.3%	0.5%	0.2%	0.0%	0.2%
		(MIC ≥ 8)	0	0	0	1	1	1	2	1	0	1
		Ceftriaxone	0.0%	0.0%	0.0%	0.2%	0.2%	0.3%	0.5%	0.2%	0.0%	0.2%
		(MIC ≥ 4)	0	0	0	1	1	1	2	1	0	1
	Penicillins	Ampicillin	77.6%	79.1%	79.7%	76.6%	79.4%	77.5%	70.7%	62.2%	63.5%	62.5%
		(MIC ≥ 32)	291	356	274	475	393	245	280	250	306	345
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.2%	0.2%	0.9%
		(MIC ≥ 4)	0	0	1	0	0	0	0	1	1	5
		Nalidixic acid	1.6%	0.9%	1.7%	1.6%	1.0%	1.6%	1.5%	3.5%	1.9%	2.2%
		(MIC ≥ 32)	6	4	6	10	5	5	6	14	9	12
	Aminoglycosides	Kanamycin	0.5%	1.3%	0.6%	0.8%	0.4%	0.0%	0.8%	0.0%	0.2%	0.5%
		(MIC ≥ 64)	2	6	2	5	2	0	3	0	1	3
	Cephems	Cefoxitin	Not	0.2%	1.2%	0.3%	0.0%	0.3%	0.3%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	Tested	1	4	2	0	1	1	0	0	0
		Cephalothin	3.2%	8.0%	9.0%	6.6%	9.3%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	12	36	31	41	46	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	56.0%	55.8%	56.4%	31.8%	33.9%	52.5%	57.6%	40.3%	25.7%	28.8%
		(MIC ≥ 512)	210	251	194	197	168	166	228	162	124	159
		Trimethoprim-sulfamethoxazole	51.5%	52.9%	46.8%	37.3%	38.6%	51.6%	58.6%	58.2%	34.6%	41.1%
		(MIC ≥ 4/76)	193	238	161	231	191	163	232	234	167	227
	Phenicols	Chloramphenicol	17.3%	14.0%	21.5%	7.6%	8.5%	15.2%	10.9%	10.9%	8.3%	7.2%
		(MIC ≥ 32)	65	63	74	47	42	48	43	44	40	40
	Tetracyclines	Tetracycline	57.3%	44.9%	59.3%	30.6%	29.1%	49.4%	38.4%	34.6%	25.5%	24.3%
		(MIC ≥ 16)	215	202	204	190	144	156	152	139	123	134

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Resistance natterns of Shigella isolates 1999-2008 abla 25

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	375	450	344	620	495	316	396	402	482	552
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	9.1%	7.3%	4.9%	8.2%	8.5%	4.4%	4.5%	5.2%	7.3%	4.3%
	34	33	17	51	42	14	18	21	35	24
Resistance ≥ 1 CLSI class*	90.9%	92.7%	95.1%	91.8%	91.5%	95.6%	95.5%	94.8%	92.7%	95.7%
	341	417	327	569	453	302	378	381	447	528
Resistance ≥ 2 CLSI classes*	63.2%	64.7%	68.6%	55.2%	57.8%	66.8%	74.0%	70.6%	68.5%	71.7%
	237	291	236	342	286	211	293	284	330	396
Resistance ≥ 3 CLSI classes*	59.7%	61.3%	60.2%	41.6%	40.2%	62.3%	61.4%	48.5%	33.2%	41.3%
	224	276	207	258	199	197	243	195	160	228
Resistance ≥ 4 CLSI classes*	44.5%	31.8%	45.3%	24.4%	24.8%	32.9%	19.4%	15.4%	11.6%	10.9%
	167	143	156	151	123	104	77	62	56	60
Resistance ≥ 5 CLSI classes*	9.9%	6.7%	8.4%	2.9%	3.6%	7.0%	4.8%	5.2%	4.6%	3.1%
	37	30	29	18	18	22	19	21	22	17
At least ACSSuT [†]	8.5%	5.6%	6.4%	1.8%	3.2%	6.0%	4.0%	5.0%	3.7%	2.4%
	32	25	22	11	16	19	16	20	18	13
At least ACT/S [‡]	9.9%	6.9%	7.0%	2.7%	3.6%	6.6%	6.3%	6.0%	3.9%	3.3%
	37	31	24	17	18	21	25	24	19	18
At least AT/S§	44.3%	44.4%	37.5%	29.8%	33.7%	37.7%	39.9%	34.1%	18.9%	22.8%
	166	200	129	185	167	119	158	137	91	126
At least ANT/S [¶]	0.3%	0.0%	0.6%	0.3%	0.8%	0.6%	0.5%	0.5%	0.8%	0.4%
	1	0	2	2	4	2	2	2	4	2
At least ACSSuTAuCf**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.3%	0.2%	0.0%	0.2%
	0	0	0	0	1	1	1	1	0	1

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, naladixic acid

** ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

Table 36. Minimum inhibitory concentrations (MICs) and resistance of Shigella sonnei isolates to antimicrobial agents, 2008 (N=498)

Product				% of is	olates						Percen	t of all i	solates	with M	IC (µg/r	nL) [∺]					
капк	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI]¶	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 0.7]						0.4	1.8	52.2	42.6	2.8	0.2					
		Gentamicin	0.0	0.6	[0.1 - 1.7]					1.8	25.9	66.9	4.8			0.2	0.4	-			
		Streptomycin	N/A	82.5	[78.9 - 85.8]												17.5	47.0	35.5		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	29.5	3.4	[2.0 - 5.4]							1.6	0.8	33.1	31.5	29.5	3.2	0.2			
1	Cephems	Ceftiofur	0.0	0.2	[0.00 - 1.1]				3.0	85.5	10.8	0.4				0.2	•				
		Ceftriaxone	0.0	0.2	[0.00 - 1.1]					99.8					-			0.2			
	Penicillins	Ampicillin	0.4	61.6	[57.2 - 65.9]							2.0	27.7	7.8	0.4	0.4	0.2	61.4			
	Quinolones	Ciprofloxacin	0.0	0.8	[0.2 - 2.0]	97.0	1.0	0.6	0.4	0.2				0.6	0.2		•				
		Nalidixic acid	N/A	2.0	[1.0 - 3.7]						6.2	80.9	10.2	0.6			0.6	1.4			
	Aminoglycosides	Kanamycin	0.0	0.6	[0.1 - 1.7]										99.2	0.2		0.2	0.4		
	Cephems	Cefoxitin	0.2	0.0	[0.0 - 0.7]						0.2	10.0	78.7	10.6	0.2	0.2					
	Folate pathway inhibitors	Sulfisoxazole	N/A	25.3	[21.5 - 29.4]											69.1	4.6	1.0			25.3
		Trimethoprim-sulfamethoxazole	N/A	40.4	[36.0 - 44.8]				7.2	2.6	7.2	27.9	14.7	7.0	33.3						
	Phenicols	Chloramphenicol	0.0	1.4	[0.6 - 2.9]								16.5	79.7	2.4		0.2	1.2			
	Tetracyclines	Tetracycline	0.0	17.5	[14.2 - 21.1]									82.5			8.8	8.6			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

CLSI: Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant

y revenue sources wai were resistant 19 95% confidence intervals (C) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%). * The unshaded areas indicate the dilution range of the Sansilite rate used to test indicate the standard base indicate the standard bas

The unshaded areas indicate the dilution range of the Sensitive plate used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitive plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 21. Antimicrobial resistance pattern for Shigella sonnei, 2008

able	able 37. Percentage and number of Shigella			Isola	tes res	sistan	t to an	timicr	odiai a	agents	, 1999 [,]	-2008
Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		275	366	239	536	434	241	340	321	416	498
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%	1.0%	0.6%
		(MIC ≥ 16)	1	1	0	0	0	0	4	0	4	3
		Streptomycin	52.0%	56.0%	54.0%	55.4%	56.5%	58.1%	70.3%	61.7%	76.4%	82.5%
		(MIC ≥ 64)	143	205	129	297	245	140	239	198	318	411
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.4%	1.9%	4.6%	2.2%	1.4%	1.7%	1.2%	1.9%	0.5%	3.4%
	combinations	(MIC ≥ 32/16)	1	7	11	12	6	4	4	6	2	17
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.6%	0.0%	0.0%	0.2%
		(MIC ≥ 8)	0	0	0	0	0	1	2	0	0	1
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.6%	0.0%	0.0%	0.2%
		(MIC ≥ 4)	0	0	0	0	0	1	2	0	0	1
	Penicillins	Ampicillin	79.6%	80.6%	82.8%	77.6%	79.7%	79.3%	70.6%	62.3%	63.7%	61.6%
		(MIC ≥ 32)	219	295	198	416	346	191	240	200	265	307
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	4
		Nalidixic acid	1.5%	1.1%	0.8%	1.5%	0.5%	1.7%	1.2%	2.8%	1.4%	2.0%
		(MIC ≥ 32)	4	4	2	8	2	4	4	9	6	10
	Aminoglycosides	Kanamycin	0.7%	1.6%	0.4%	0.4%	0.0%	0.0%	0.0%	0.0%	0.2%	0.6%
		(MIC ≥ 64)	2	6	1	2	0	0	0	0	1	3
	Cephems	Cefoxitin	Not	0.3%	1.7%	0.4%	0.0%	0.4%	0.3%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	Tested	1	4	2	0	1	1	0	0	0
		Cephalothin	2.9%	8.7%	12.6%	7.3%	10.1%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	8	32	30	39	44	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	54.5%	56.0%	54.4%	29.9%	31.3%	49.0%	57.9%	33.3%	20.0%	25.3%
		(MIC ≥ 512)	150	205	130	160	136	118	197	107	83	126
		Trimethoprim-sulfamethoxazole	53.1%	54.9%	50.6%	37.9%	38.5%	53.1%	61.2%	57.9%	32.2%	40.4%
		(MIC ≥ 4/76)	146	201	121	203	167	128	208	186	134	201
	Phenicols	Chloramphenicol	1.8%	2.7%	1.3%	0.2%	1.2%	2.5%	2.4%	0.9%	1.2%	1.4%
		(MIC ≥ 32)	5	10	3	1	5	6	8	3	5	7
	Tetracyclines	Tetracycline	46.2%	34.4%	44.8%	23.5%	22.1%	36.1%	29.4%	22.7%	16.1%	17.5%
	1	(MIC ≥ 16)	127	126	107	126	96	87	100	73	67	87

Table 27 п 4 f Chinalla . . . 4000 0000

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 38. Re	esistance patter	ns of Shigella	sonnei isolates	, 1999–2008
--------------	------------------	----------------	-----------------	-------------

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	275	366	239	536	434	241	340	321	416	498
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	10.5%	7.7%	5.4%	7.1%	8.5%	5.0%	4.4%	4.7%	7.0%	4.4%
	29	28	13	38	37	12	15	15	29	22
Resistance ≥ 1 CLSI class*	89.5%	92.3%	94.6%	92.9%	91.5%	95.0%	95.6%	95.3%	93.0%	95.6%
	246	338	226	498	397	229	325	306	387	476
Resistance ≥ 2 CLSI classes*	55.6%	60.7%	59.8%	51.9%	54.1%	59.8%	72.9%	67.3%	66.6%	69.7%
	153	222	143	278	235	144	248	216	277	347
Resistance ≥ 3 CLSI classes*	53.1%	56.8%	51.9%	36.6%	35.3%	54.8%	58.5%	41.7%	27.6%	36.7%
	146	208	124	196	153	132	199	134	115	183
Resistance ≥ 4 CLSI classes*	39.3%	25.4%	37.7%	19.8%	20.5%	25.7%	12.4%	8.1%	5.0%	6.2%
	108	93	90	106	89	62	42	26	21	31
Resistance ≥ 5 CLSI classes*	0.7%	1.6%	1.3%	0.7%	0.5%	0.8%	0.9%	0.0%	1.2%	0.8%
	2	6	3	4	2	2	3	0	5	4
At least ACSSuT [†]	0.4%	0.8%	0.0%	0.0%	0.2%	0.0%	0.3%	0.0%	0.5%	0.4%
	1	3	0	0	1	0	1	0	2	2
At least ACT/S [‡]	1.8%	1.9%	0.8%	0.2%	0.9%	1.7%	2.4%	0.9%	0.5%	1.2%
	5	7	2	1	4	4	8	3	2	6
At least AT/S [§]	45.1%	46.2%	41.0%	30.2%	33.6%	39.4%	40.6%	32.1%	16.3%	21.9%
	124	169	98	162	146	95	138	103	68	109
At least ANT/S [¶]	0.0%	0.0%	0.0%	0.2%	0.2%	0.8%	0.3%	0.0%	0.7%	0.4%
	0	0	0	1	1	2	1	0	3	2
At least ACSSuTAuCf**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.3%	0.0%	0.0%	0.2%
	0	0	0	0	0	1	1	0	0	1

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, naladixic acid ** ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

Table 39. Minimum inhibitory concentrations and resistance of Shigella flexneri isolates to antimicrobial agents, 2008 (N=46)

Develo		A _ 4i		% of is	olates						Perce	ent of al	lisolate	eswith	MIC (µç	/mL)"					
капк	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 7.7]							6.5	21.7	67.4	4.3						
		Gentamicin	0.0	0.0	[0.0 - 7.7]					8.7	34.8	54.3	2.2					•			
		Streptomycin	N∕A	60.9	[45.4 - 74.9]												39.1	17.4	43.5		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	54.3	4.3	[0.5 - 14.8]							4.3	15.2	8.7	13.0	54.3	4.3	•			
Т	Cephems	Ceftiofur	0.0	0.0	[0.0 - 7.7]				34.8	58.7	6.5										
		Ceftriaxone	0.0	0.0	[0.0 - 7.7]					100.0					-						
	Penicillins	Ampicillin	0.0	73.9	[58.9 - 85.7]							19.6	6.5	-				73.9			
	Quinolones	Ciprofloxacin	0.0	2.2	[0.03 - 11.5]	95.7				2.2					2.2						
		Nalidixic acid	N/A	4.3	[0.5 - 14.8]						6.5	67.4	21.7	-				4.3			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 7.7]										100.0						
	Cephems	Cefoxitin	0.0	0.0	[0.0 - 7.7]						2.2		41.3	52.2	4.3			-			
	Folate pathway inhibitors	Sulfisoxazole	N/A	60.9	[45.4 - 74.9]											39.1					60.9
		Trimethoprim-sulfamethoxazole	N/A	47.8	[32.9 - 63.1]				26.1	21.7	2.2		2.2		47.8						-
	Phenicols	Chloramphenicol	2.2	67.4	[52.0 - 80.5]								28.3	-	2.2	2.2	10.9	56.5			
	Tetracyclines	Tetracycline	0.0	84.8	[71.1 - 93.7]									15.2		2.2	6.5	76.1			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards hstitute

‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

95% confidence intervals (Cl) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% Cl is presented to summarize uncertainly in the observed resistance (R%). ** The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the

shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 22. Antimicrobial resistance pattern for Shigella flexneri, 2008

Table 40.	Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents,	1999–
2008		

Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	solates		87	75	91	73	51	62	52	74	61	46
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	1	0	0	0	1	0	0
		Streptomycin	63.2%	61.3%	47.3%	43.8%	60.8%	71.0%	57.7%	58.1%	52.5%	60.9%
		(MIC ≥ 64)	55	46	43	32	31	44	30	43	32	28
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	3.4%	4.0%	4.4%	5.5%	2.0%	1.6%	0.0%	0.0%	0.0%	4.3%
	combinations	(MIC ≥ 32/16)	3	3	4	4	1	1	0	0	0	2
	Cephems	Ceftiofur	0.0%	0.0%	0.0%	1.4%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%
		(MIC ≥ 8)	0	0	0	1	1	0	0	1	0	0
		Ceftriaxone	0.0%	0.0%	0.0%	1.4%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	1	1	0	0	1	0	0
	Penicillins	Ampicillin	77.0%	77.3%	72.5%	75.3%	84.3%	80.6%	75.0%	63.5%	63.9%	73.9%
		(MIC ≥ 32)	67	58	66	55	43	50	39	47	39	34
	Quinolones	Ciprofloxacin	0.0%	0.0%	1.1%	0.0%	0.0%	0.0%	0.0%	1.4%	1.6%	2.2%
		(MIC ≥ 4)	0	0	1	0	0	0	0	1	1	1
		Nalidixic acid	1.1%	0.0%	3.3%	2.7%	5.9%	1.6%	3.8%	5.4%	4.9%	4.3%
		(MIC ≥ 32)	1	0	3	2	3	1	2	4	3	2
	Aminoglycosides	Kanamycin	0.0%	0.0%	1.1%	4.1%	3.9%	0.0%	3.8%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	1	3	2	0	2	0	0	0
	Cephems	Cefoxitin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	Tested	0	0	0	0	0	0	0	0	0
		Cephalothin	4.6%	2.7%	1.1%	2.7%	3.9%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	4	2	1	2	2	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	58.6%	53.3%	57.1%	41.1%	52.9%	66.1%	55.8%	68.9%	62.3%	60.9%
		(MIC ≥ 512)	51	40	52	30	27	41	29	51	38	28
		Trimethoprim-sulfamethoxazole	48.3%	42.7%	34.1%	28.8%	39.2%	46.8%	44.2%	59.5%	49.2%	47.8%
		(MIC ≥ 4/76)	42	32	31	21	20	29	23	44	30	22
	Phenicols	Chloramphenicol	64.4%	69.3%	74.7%	63.0%	68.6%	61.3%	65.4%	54.1%	55.7%	67.4%
		(MIC ≥ 32)	56	52	68	46	35	38	34	40	34	31
	Tetracyclines	Tetracycline	92.0%	92.0%	94.5%	78.1%	82.4%	95.2%	94.2%	83.8%	83.6%	84.8%
		(MIC ≥ 16)	80	69	86	57	42	59	49	62	51	39

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important CLSI: Clinical and Laboratory Standards Institute
 \$\$ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 41 Resistance patterns of Shinella flexneri isolates 1999-2008

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	87	75	91	73	51	62	52	74	61	46
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	4.6%	4.0%	3.3%	15.1%	7.8%	0.0%	5.8%	5.4%	9.8%	4.3%
	4	3	3	11	4	0	3	4	6	2
Resistance ≥ 1 CLSI class*	95.4%	96.0%	96.7%	84.9%	92.2%	100.0%	94.2%	94.6%	90.2%	95.7%
	83	72	88	62	47	62	49	70	55	44
Resistance ≥ 2 CLSI classes*	83.9%	82.7%	89.0%	76.7%	86.3%	93.5%	80.8%	85.1%	80.3%	91.3%
	73	62	81	56	44	58	42	63	49	42
Resistance ≥ 3 CLSI classes*	79.3%	81.3%	79.1%	75.3%	80.4%	90.3%	78.8%	75.7%	68.9%	82.6%
	69	61	72	55	41	56	41	56	42	38
Resistance ≥ 4 CLSI classes*	63.2%	64.0%	62.6%	57.5%	62.7%	64.5%	65.4%	47.3%	55.7%	56.5%
	55	48	57	42	32	40	34	35	34	26
Resistance ≥ 5 CLSI classes*	37.9%	32.0%	25.3%	19.2%	31.4%	29.0%	30.8%	28.4%	27.9%	28.3%
	33	24	23	14	16	18	16	21	17	13
At least ACSSuT [†]	33.3%	29.3%	22.0%	15.1%	29.4%	27.4%	28.8%	27.0%	26.2%	23.9%
	29	22	20	11	15	17	15	20	16	11
At least ACT/S [‡]	34.5%	32.0%	23.1%	21.9%	27.5%	24.2%	32.7%	28.4%	26.2%	26.1%
	30	24	21	16	14	15	17	21	16	12
At least AT/S§	44.8%	38.7%	25.3%	27.4%	37.3%	35.5%	38.5%	43.2%	36.1%	32.6%
	39	29	23	20	19	22	20	32	22	15
At least ANT/S [¶]	1.1%	0.0%	1.1%	1.4%	5.9%	0.0%	1.9%	2.7%	1.6%	0.0%
	1	0	1	1	3	0	1	2	1	0
At least ACSSuTAuCf**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	0	0
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	2.0%	0.0%	0.0%	1.4%	0.0%	0.0%
	0	0	0	0	1	0	0	1	0	0

* CLSI: Clinical and Laboratory Standards Institute
 † ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline
 ‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ AT/S: resistance to ampicillin, trimethoprim-sulfamethoxazole

¶ ANT/S: resistance to AT/S, naladixic acid
 ** ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

Box 4. Identification and characterization of CTX-M-producing *Shigella* isolates in the United States

Shigellosis is a major source of gastroenteritis throughout the world. Extended-spectrum β-lactamases (ESBLs), including cefotaximases (CTX-M), confer resistance to extended-spectrum cephalosporins (ESC) and significantly compromise the treatment options for shigellosis. Numerous ESBL's have been described among *Enterobacteriaceae*, however, only a single CTX-M-producing *Shigella* isolate has been reported in the United States.

From 1999 to 2007, 3880 *Shigella* isolates were screened for antimicrobial susceptibility to 14-17 antimicrobials by broth microdilution (Sensititre®, Trek Diagnostics, Westlake, OH). Six isolates displayed decreased susceptibility (MIC≥2 μ g/ml) to ceftriaxone. The six case-patients included three males and two females and the median age was 3 years (range 1 to 8 years). Additional details were available for five patients. Three of the five (60%) were hospitalized, and one was admitted twice. One patient had an adopted sibling from Russia but had not traveled herself. The second patient traveled to a neighboring state prior to illness onset and the third reported no travel. Of the non-hospitalized patients, one was an asymptomatic adoptee from China and the second reported no travel. Two patients received antimicrobial therapy; ceftriaxone, cefotaxime and trimethoprim-sulfamethoxazole for one patient, azithromycin for the other patient.

PCR analysis was used to screen the six isolates for 13 different classes or groups of β -lactamase genes, and PCR results were confirmed by DNA sequencing. Four isolates were positive for the *bla*_{CTX-M-15} gene while two were positive for the *bla*_{CTX-M-14} gene. All four *bla*_{CTX-M-15} isolates were PCR positive for non-ESBL *bla*_{TEM-1} genes. Both *bla*_{CTX-M-14} isolates were PCR positive for non-ESBL *bla*_{CTX-M-14} genes. But *bla*_{CTX-M-14} isolates were PCR positive for non-ESBL *bla*_{CTX-M-14} genes. But *bla*_{CTX-M-14} isolates were PCR positive for non-ESBL *bla*_{CTX-M-14} genes and a single isolate was positive for both *bla*_{TEM-1} and *bla*_{OXA-1}. By pulsed-field gel electrophoresis (PFGE) analysis, all three *S. sonnei* and all three *S. flexneri* demonstrated distinct patterns.

All six *bla*_{CTX-M} genes were determined to be plasmid encoded. The non-ESBL β-lactamases (OXA-1, TEM-1) did not transfer and were not encoded by the same CTX-M plasmids. All three *S. sonnei* plasmids and two of the *flexneri* plasmids harbored only the CTX-M-associated resistance. The remaining *S. flexneri* plasmid contained additional determinants conferring resistance to trimethoprim-sulfamethoxazole and gentamicin.

All three *S. sonnei* plasmids were incompatibility type Incl1 and approximately 90 kb in size (plasmid pulsed-field gel electrophoresis). Plasmid multi-locus sequence typing (pMLST) identified them as novel sequence types designated as ST31 complex. The plasmid from AM22451 contained several point mutations in one allele necessitating the ST32 designation within the ST31 clonal complex (http://pubmlst.org/plasmid). Of the three *S. flexneri* plasmids, the *bla*_{CTX-M-15}-positive was a 165 kb IncA/C plasmid, while the two *bla*_{CTX-M-14}-positive plasmids were identical 75 kb IncFII plasmids. CTX-M-14 and CTX-M-15 are the most common types of cefotaximases identified among *Shigella* isolates and Incl1 plasmids carrying CTX-M-15 have been already described in *Escherichia coli* and *Salmonella* from Australia, France and the UK.

The emergence of CTX-M-producing *Shigella* isolates in the United States is concerning and necessitates continued resistance surveillance.

4. Escherichia coli O157

Table 42. Minimum inhibitory concentrations (MICs) and resistance of Escherichia coli O157 isolates to antimicrobial agents, 2008 (N=160)

Pank [*]	CI SIT Antimicrobial Class	Antimicrobial Agont		% of is	olates						Perce	ent of a	l isolate	eswith	MIC (µg	/mL)"					
Nalik		Antimicrobial Agent	%l [‡]	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 2.3]						3.8	26.3	65.6	3.8	0.6						
		Gentamicin	0.0	1.3	[0.1 - 4.4]					15.6	78.1	4.4	0.6			0.6	0.6	•			
		Streptomycin	N∕A	1.9	[0.4 - 5.4]										•		98.1		1.9		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0	0.6	[0.01 - 3.4]							2.5	10.0	81.3	5.6			0.6			
Т	Cephems	Ceftiofur	0.0	0.6	[0.01 - 3.4]				1.3	13.8	81.3	2.5	0.6			0.6					
		Ceftriaxone	0.0	1.3	[0.1 - 4.4]					98.1	0.6				0.6	0.6					
	Penicillins	Ampicillin	0.0	3.8	[1.4 - 8.0]							3.8	70.0	21.9	0.6		0.6	3.1			
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0 - 2.3]	96.3	1.3	0.6		1.3	0.6										
		Nalidixic acid	N/A	1.9	[0.4 - 5.4]						0.6		87.5	8.8	1.3			1.9			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0 - 2.3]										100.0						
	Cephems	Cefoxitin	1.3	1.3	[0.1 - 4.4]						0.6	1.9	7.5	73.8	13.8	1.3	0.6	0.6			
	Folate pathway inhibitors	Sulfisoxazole	N/A	3.8	[1.4 - 8.0]											84.4	10.6	0.6		0.6	3.8
		Trimethoprim-sulfamethoxazole	N/A	1.3	[0.1 - 4.4]				90.0	8.8					1.3						Ī
	Phenicols	Chloramphenicol	1.3	0.6	[0.01 - 3.4]								3.1	27.5	67.5	1.3		0.6			
	Tetracyclines	Tetracycline	0.0	2.5	[0.7 - 6.3]									97.5		0.6	0.6	1.3			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

† CLSI: Clinical and Laboratory Standards Institute ‡ Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant

9 For the source interval (%)
9 For the source interval (%)
9 5% confidence intervals (Q) for percent resistant (%)
Percent resistant (%)
• The unshaded areas indicate the dilution range of the Sensitive plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitive plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to the source of isolates with MICs and the percentages of isolates with MICs equal to the source of isolates with MICs equal to the source of isolates with MICs and the percentages of isolates with MICs equal to the source of isolates with MICs and the percentages of isolates with MICs equal to the source of isolates with MICs and the percentages of isolates with MICs and the percentages of isolates with MICs equal to the source of the percentages of isolates with MICs and the percentages of isolates with the percentages of isolates with MICs and the percentages of isolates with the percentages of isol or less than the low est tested concentration. CLSI breakpoints were used when available

Figure 23. Antimicrobial resistance pattern for Escherichia coli O157, 2008 Suscentible Intermediate and Resistant Proportion Antimicrobial Agent

Antimicropial Agent	Susceptible, intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

1999	-2008											
Year Total I	solates		1999 292	2000 407	2001 277	2002 399	2003 158	2004 169	2005 194	2006 233	2007 190	2008 160
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.3%	0.5%	0.4%	0.0%	0.0%	0.6%	0.5%	0.0%	0.0%	1.3%
		(MIC ≥ 16)	1	2	1	0	0	1	1	0	0	2
		Streptomycin	2.7%	5.2%	1.8%	2.3%	1.9%	1.8%	2.1%	2.6%	2.1%	1.9%
		(MIC ≥ 64)	8	21	5	9	3	3	4	6	4	3
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.3%	1.0%	0.7%	0.0%	1.3%	0.0%	0.0%	1.3%	0.5%	0.6%
	combinations	(MIC ≥ 32/16)	1	4	2	0	2	0	0	3	1	1
	Cephems	Ceftiofur	0.0%	1.0%	1.1%	0.0%	1.3%	0.0%	0.0%	1.3%	0.0%	0.6%
· ·		(MIC ≥ 8)	0	4	3	0	2	0	0	3	0	1
		Ceftriaxone	0.0%	1.0%	0.7%	0.0%	1.3%	0.0%	0.0%	1.3%	0.0%	1.3%
		(MIC ≥ 4)	0	4	2	0	2	0	0	3	0	2
	Penicillins	Ampicillin	1.4%	2.7%	2.2%	1.5%	3.2%	1.2%	4.1%	2.6%	2.1%	3.8%
		(MIC ≥ 32)	4	11	6	6	5	2	8	6	4	6
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.5%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	1	1	0
		Nalidixic acid	0.7%	0.5%	1.1%	1.0%	0.6%	1.8%	1.5%	2.1%	2.1%	1.9%
		(MIC ≥ 32)	2	2	3	4	1	3	3	5	4	3
	Aminoglycosides	Kanamycin	0.7%	1.0%	0.0%	0.5%	0.0%	0.0%	0.5%	0.4%	0.0%	0.0%
		(MIC ≥ 64)	2	4	0	2	0	0	1	1	0	0
	Cephems	Cefoxitin	Not	1.0%	0.7%	0.0%	1.3%	0.6%	0.0%	1.3%	0.0%	1.3%
		(MIC ≥ 32)	Tested	4	2	0	2	1	0	3	0	2
		Cephalothin	0.7%	1.2%	1.4%	1.5%	3.2%	Not	Not	Not	Not	Not
		(MIC ≥ 32)	2	5	4	6	5	Tested	Tested	Tested	Tested	Tested
	Folate pathway inhibitors	Sulfamethoxazole/Sulfisoxazole [‡]	8.2%	5.9%	5.1%	3.5%	3.8%	1.8%	6.7%	3.0%	2.6%	3.8%
		(MIC ≥ 512)	24	24	14	14	6	3	13	7	5	6
1		Trimethoprim-sulfamethoxazole	1.4%	0.7%	0.7%	0.5%	0.6%	0.0%	0.5%	0.4%	1.1%	1.3%

Table 43. Percentage and number of *Escherichia coli* O157 isolates resistant to antimicrobial agents, 1999–2008

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important † CLSI: Clinical and Laboratory Standards Institute

0.0%

0

3.4%

10

3

3.7%

15

7.1%

29

2

1.4%

4

5.4%

15

2

1.3%

5

3.0%

12

1

1.3%

2

5.7%

9

0

0.6%

1

1.8%

3

1.0%

2

8.8%

17

1.3%

3

4.7%

11

2

0.5%

1

4.7%

9

2

0.6%

1

2.5%

4

‡ Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

(MIC ≥ 4/76)

. (MIC ≥ 32)

Tetracycline (MIC ≥ 16)

Chloramphenicol

Phenicols

Tetracyclines

Table 44. Resistance patterns of Escherichia coli O157 isolates, 1999–2008

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	292	407	277	399	158	169	194	233	190	160
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	89.7%	90.4%	91.3%	94.0%	90.5%	94.7%	87.6%	91.8%	92.1%	91.3%
	262	368	253	375	143	160	170	214	175	146
Resistance ≥ 1 CLSI class*	10.3%	9.6%	8.7%	6.0%	9.5%	5.3%	12.4%	8.2%	7.9%	8.8%
	30	39	24	24	15	9	24	19	15	14
Resistance ≥ 2 CLSI classes*	3.4%	6.6%	5.4%	3.8%	5.1%	2.4%	6.7%	4.7%	3.2%	3.8%
	10	27	15	15	8	4	13	11	6	6
Resistance ≥ 3 CLSI classes*	2.7%	4.7%	2.2%	2.0%	3.2%	1.2%	5.2%	3.4%	2.1%	3.1%
	8	19	6	8	5	2	10	8	4	5
Resistance ≥ 4 CLSI classes*	0.7%	3.4%	1.4%	0.8%	1.3%	0.6%	1.0%	2.1%	1.1%	1.9%
	2	14	4	3	2	1	2	5	2	3
Resistance ≥ 5 CLSI classes*	0.0%	1.2%	0.4%	0.0%	0.0%	0.0%	0.0%	0.9%	0.5%	0.0%
	0	5	1	0	0	0	0	2	1	0
At least ACSSuT [†]	0.0%	1.2%	0.4%	0.0%	0.0%	0.0%	0.0%	0.9%	0.0%	0.0%
	0	5	1	0	0	0	0	2	0	0
At least ACT/S [‡]	0.0%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%
	0	1	0	0	0	0	0	0	0	1
At least ACSSuTAuCf [§]	0.0%	1.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	4	1	0	0	0	0	0	0	0
At least ceftiofur and nalidixic acid resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%
	0	0	0	0	0	0	0	1	0	0

* CLSI: Clinical and Laboratory Standards Institute

† ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur

5. Campylobacter

Table 45.	Frequency	y of	Camp	ylobacter	species	isolated	in N	ARMS,	2008
-----------	-----------	------	------	-----------	---------	----------	------	-------	------

Species	2	2008
	Ν	(%)
Campylobacter jejuni	1055	(91.0%)
Campylobacter coli	101	(8.7%)
Other	3	(0.3%)
Total	1159	(100.0%)

Table 46. Minimum inhibition concentrations (MICs) and resistance of *Campylobacter* isolates to antimicrobial agents, 2008 (N=1159)

Death				% of is	olates						Perce	ent of al	lisolate	eswith	MIC (µg	/mL)**					
Nalik	CESI [®] Antimicrobial Class	Antimicrobial Agent	%l‡	%R§	[95% CI] [¶]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.1	[0.6 - 1.9]				2.9	35.8	53.7	6.3	0.2					1.1			
	Ketolide	Telithromycin	0.6	2.5	[1.7 - 3.6]				0.5	7.4	27.8	38.1	19.5	3.6	0.6	2.5					
	Macrolides	Azithromycin	0.0	3.0	[2.1 - 4.2]	0.8	17.6	43.6	26.8	7.9	< 0.1	< 0.1	0.2						3.0		
'		Erythromycin	0.0	3.0	[2.1 - 4.2]			0.2	2.2	22.4	40.9	23.2	6.9	1.2					3.0		
	Quinolones	Ciprofloxacin	< 0.1	23.0	[20.6 - 25.6]		2.4	34.4	31.8	6.9	1.2	< 0.1	< 0.1	0.8	9.3	7.6	3.5	1.1	0.7		
		Nalidixic acid	< 0.1	23.6	[21.1 - 26.1]									63.4	11.0	1.9	< 0.1	3.3	20.3		
	Phenicols	Florfenicol ^{††}	0.0	0.5	[0.0 - 0.3]				< 0.1	0.3	19.1	65.2	12.3	2.5	0.5						
"	Tetracyclines	Tetracycline	0.4	43.7	[40.9 - 46.7]			4.6	24.8	16.8	6.0	3.2	0.3	< 0.1	0.4	0.8	2.5	10.3	30.2		
	Lincosamides	Clindamycin	0.5	2.8	[1.9 - 3.9]		1.5	16.5	43.6	24.8	7.4	2.6	0.4	0.5	0.9	0.9	0.9				

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Orlically Important; Rank 2, Highly Important; Rank 3, Important

CLSt Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant

9 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
** The unshaded areas indicate the dilution range of the Sensitive plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in

* The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

† Only a susceptible breakpoint (≤ 4 µg/ml) has been established. In this report, isolates with an MIC ≥ 8 µg/ml are categorized as resistant

Figure 24. Antimicrobial resistance pattern for Campylobacter, 2008

Table 47. Percentage and number of Campylobacter isolates resistant to antimicrobial agents, 1999–2008

Year			1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Is	olates		317	324	384	354	328	347	890	816	1100	1159
	CLSI [†] Antimicrobial	Antibiotic										
Rank	Class	(Resistance breakpoint)										
	Aminoglycosides	Gentamicin	0.0%	0.3%	0.0%	0.0%	0.3%	0.3%	0.7%	0.1%	0.6%	1.1%
		(MIC ≥ 8)	0	1	0	0	1	1	6	1	7	13
	Ketolides	Telithromycin	Not	Not	Not	Not	Not	Not	1.0%	1.6%	1.5%	2.5%
		(MIC ≥ 16)	Tested	Tested	Tested	Tested	Tested	Tested	9	13	16	29
	Macrolides	Azithromycin	2.2%	1.9%	2.1%	2.0%	0.9%	0.6%	1.9%	1.7%	2.0%	3.0%
		(MIC ≥ 8)	7	6	8	7	3	2	17	14	22	35
		Erythromycin	1.9%	1.2%	2.1%	1.4%	0.9%	0.3%	1.8%	1.7%	2.0%	3.0%
		(MIC ≥ 32)	6	4	8	5	3	1	16	14	22	35
	Quinolones	Ciprofloxacin	18.3%	14.8%	19.5%	20.1%	17.7%	19.0%	21.7%	19.6%	26.0%	23.0%
		(MIC ≥ 4)	58	48	75	71	58	66	193	160	286	267
		Nalidixic acid	21.1%	16.7%	20.3%	20.6%	18.9%	19.6%	22.4%	20.1%	26.5%	23.6%
		(MIC ≥ 64)	67	54	78	73	62	68	199	164	291	273
	Phenicols	Chloramphenicol	0.6%	0.0%	0.3%	0.3%	0.0%	1.4%	Not	Not	Not	Not
		(MIC ≥ 32)	2	0	1	1	0	5	Tested	Tested	Tested	Tested
п		Florfenicol [‡]	Not	Not	Not	Not	Not	Not	0.6%	0.0%	0.0%	0.5%
		Susceptible breakpoint: (MIC \leq 4)	Tested	Tested	Tested	Tested	Tested	Tested	5	0	0	6
	Tetracyclines	Tetracycline	43.8%	38.3%	40.9%	41.2%	38.4%	46.1%	40.6%	46.0%	44.4%	43.7%
		(MIC ≥ 16)	139	124	157	146	126	160	361	375	488	507
	Lincosamides	Clindamycin	1.3%	0.9%	2.1%	2.0%	0.6%	2.0%	1.5%	2.0%	1.7%	2.8%
		(MIC ≥ 8)	4	3	8	7	2	7	13	16	19	32

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Only a susceptible breakpoint (≤ 4 μg/ml) has been established. In this report, isolates with an MIC ≥ 8 μg/ml are categorized as resistant

Table 48. Resistance patterns of Campylobacter isolates, 1999–2008

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Total Isolates	317	324	384	354	328	347	890	816	1100	1159
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	47.3%	52.2%	49.2%	48.3%	50.9%	46.1%	48.4%	43.9%	45.2%	45.8%
	150	169	189	171	167	160	431	358	497	531
Resistance ≥ 1 CLSI class*	52.7%	47.8%	50.8%	51.7%	49.1%	53.9%	51.6%	56.1%	54.8%	54.2%
	167	155	195	183	161	187	459	458	603	628
Resistance ≥ 2 CLSI classes*	13.6%	8.0%	13.3%	12.7%	8.5%	14.1%	13.6%	12.0%	17.5%	15.6%
	43	26	51	45	28	49	121	98	192	181
Resistance ≥ 3 CLSI classes*	1.6%	0.9%	1.6%	1.1%	0.9%	1.2%	1.5%	1.5%	1.7%	2.5%
	5	3	6	4	3	4	13	12	19	29
Resistance ≥ 4 CLSI classes*	0.9%	0.3%	0.3%	0.0%	0.3%	0.3%	0.3%	0.5%	0.9%	1.1%
	3	1	1	0	1	1	3	4	10	13
Resistance ≥ 5 CLSI classes*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%
	0	0	0	0	0	0	0	0	0	3

* CLSI: Clinical and Laboratory Standards Institute

Table 49. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter jejuni isolates to antimicrobial agents, 2008 (N=1055)

Death		A		% of is	olates						Perce	ent of al	l isolate	eswith	MIC (µg	/m L)"					
капк	CLSI ¹ Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI]¶	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.1	[0.6 - 2.0]				3.2	37.3	53.6	4.6	< 0.1					1.1			
	Ketolide	Telithromycin	4.5	2.2	[1.4 - 3.3]				0.6	7.2	28.9	39.4	19.6	1.9	0.2	2.2					
	Macrolides	Azithromycin	0.0	2.3	[1.5 - 3.4]	0.9	18.8	46.2	25.9	5.7	< 0.1	< 0.1	0.2						2.3		
		Erythromycin	0.0	2.3	[1.5 - 3.4]			0.2	2.3	24.3	42.4	23.0	5.0	0.6	-				2.3		
	Quinolones	Ciprofloxacin	< 0.1	22.4	[19.9 - 25.0]		2.7	36.3	31.8	6.0	0.8	< 0.1	< 0.1	0.8	9.3	6.9	3.6	1.0	0.8		
		Nalidixic acid	< 0.1	22.8	[20.3 - 25.5]									65.5	10.1	1.4	< 0.1	2.9	19.9		
	Phenicols	Florfenicol ^{††}	0.6	0.0	[0.0 - 0.3]				< 0.1	0.3	20.3	66.1	10.3	2.4	0.6						
	Tetracyclines	Tetracycline	0.5	44.3	[41.2 - 47.3]			4.8	25.9	15.8	5.4	2.8	0.4	< 0.1	0.5	0.8	2.7	10.9	29.9		
	Lincosamides	Clindamycin	0.3	2.1	[1.3 - 3.1]		1.6	17.7	46.8	24.4	5.6	1.3	0.2	0.3	0.7	0.6	0.9				

Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1. Critically Important; Rank 2. Highly Important; Rank 3. Important

† CLSI: Clinical and Laboratory Standards Institute ‡ Percent of isolates with intermediate susceptibility, N/A if no MIC range of intermediate susceptibility exists

§ Percent of isolates that were resistant

9 95% confidence intervise (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).
** The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitive plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

↑ Only a susceptible breakpoint (≤ 4 µg/ml) has been established. In this report, isolates with an MIC ≥ 8 µg/ml are categorized as resistant

Figure 25. Antimicrobial resistance pattern for Campylobacter jejuni, 2008

Antimicrobial

Table 50. Percentage and number of *Campylobacter jejuni* isolates resistant to antimicrobial agents, 1999–2008

Year Total Is	solates		1999 293	2000 306	2001 365	2002 329	2003 303	2004 320	2005 791	2006 709	2007 992	2008 1055
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%	0.7%	1.1%
	Ketolides	Telithromycin	Not	Not	Not	Not	Not	Not	0.6%	0.8%	1.0% 10	2.2%
	Macrolides	$\begin{array}{l} \text{Azithromycin} \\ \text{(MIC} \ge 8) \end{array}$	1.7%	1.6% 5	1.9% 7	1.8%	0.3%	0.6%	1.8% 14	0.8%	1.6% 16	2.3% 24
I		Erythromycin (MIC ≥ 32)	1.4% 4	1.0% 3	1.9% 7	1.2% 4	0.3% 1	0.3% 1	1.6% 13	0.8% 6	1.6% 16	2.3% 24
	Quinolones	Ciprofloxacin (MIC ≥ 4)	17.7% 52	14.7% 45	18.4% 67	20.7% 68	17.2% 52	18.1% 58	21.5% 170	19.5% 138	25.8% 256	22.4% 236
		Nalidixic acid (MIC ≥ 64)	20.1% 59	16.0% 49	18.9% 69	21.3% 70	17.8% 54	18.4% 59	21.9% 173	19.0% 135	26.1% 259	22.8% 241
	Phenicols	Chloramphenicol (MIC ≥ 32)	0.7% 2	0.0% 0	0.3% 1	0.3% 1	0.0% 0	1.6% 5	Not Tested	Not Tested	Not Tested	Not Tested
Ш		Florfenicol [‡] Susceptible breakpoint: (MIC ≤ 4)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	0.5% 4	0.0% 0	0.0% 0	0.6% 6
	Tetracyclines	Tetracycline (MIC ≥ 16)	45.4% 133	39.2% 120	40.3% 147	41.3% 136	38.3% 116	46.9% 150	41.8% 331	47.4% 336	44.8% 444	44.3% 467
Ш	Lincosamides	Clindamycin (MIC ≥ 8)	0.7% 2	0.7% 2	1.9% 7	1.8% 6	0.0% 0	2.2% 7	1.1% 9	1.0% 7	1.3% 13	2.1% 22

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important

† CLSI: Clinical and Laboratory Standards Institute

‡ Only a susceptible breakpoint (≤ 4 μg/ml) has been established. In this report, isolates with an MIC ≥ 8 μg/ml are categorized as resistant

Table 51. Minimum inhibitory concentrations (MICs) and resistance of Campylobacter coli isolates to antimicrobial agents, 2008 (N=101)

				% of is	olates						Perce	ent of al	lisolate	eswith	MIC (µç	ı/mL) [™]					
капк	CLSI ⁺ Antimicrobial Class	s Antimicrobial Agent	%l‡	%R§	[95% CI]¶	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.0	[0.01 - 5.4]					19.8	54.5	23.8	1.0					1.0			
	Ketolide	Telithromycin	16.8	5.9	[2.2 - 12.5]					9.9	16.8	22.8	18.8	20.8	5.0	5.9					
	Macrolides	Azithromycin	0.0	10.9	[5.6 - 18.7]		5.9	16.8	36.6	29.7									10.9		
		Erythromycin	0.0	10.9	[5.6 - 18.7]				1.0	4.0	26.7	23.8	25.7	7.9					10.9		
	Quinolones	Ciprofloxacin	0.0	30.7	[21.9 - 40.7]			15.8	31.7	15.8	5.9			1.0	9.9	14.9	3.0	2.0			
		Nalidixic acid	0.0	30.7	[21.9 - 40.7]								-	41.6	20.8	6.9		6.9	23.8		
	Phenicols	Florfenicol ^{††}	0.0	0.0	[0.0 - 3.6]						6.9	56.4	32.7	4.0			•	-			
"	Tetracyclines	Tetracycline	0.0	39.6	[30.0 - 49.8]			2.0	13.9	26.7	11.9	5.9				1.0		4.0	34.7		
Ш	Lincosamides	Clindamycin	3.0	9.9	[4.8 - 17.5]			4.0	9.9	29.7	24.8	15.8	3.0	3.0	4.0	5.0	1.0				

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important

† CLSI: Clinical and Laboratory Standards Institute Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists § Percent of isolates that were resistant

¶ 95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method. The 95% CI is presented to summarize uncertainly in the observed resistance (R%).

The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitive plate. Numbers listed for the low est tested concentrations represent the precentages of isolates with MICs equal to or less than the low est tested concentration. CLSI breakpoints were used when available.

† Only a susceptible breakpoint (≤ 4 µg/m) has been established. In this report, isolates with an MIC ≥ 8 µg/ml are categorized as resistant

Figure 26. Antimicrobial resistance pattern for Campylobacter coli, 2008

Antimicrobial

Table 52. Percentage and number of Campylobacter coli isolates resistant to antimicrobial agents, 1999-2008

Year Total Is	plates		1999 20	2000 12	2001 17	2002 25	2003 22	2004 26	2005 98	2006 97	2007 105	2008 101
Rank	CLSI [†] Antimicrobial Class	Antibiotic (Resistance breakpoint)								•		
	Aminoglycosides	Gentamicin (MIC ≥ 8)	0.0% 0	8.3% 1	0.0% 0	0.0%	4.5% 1	0.0% 0	2.0% 2	1.0% 1	0.0% 0	1.0% 1
	Ketolides	Telithromycin (MIC > 16)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	4.1%	7.2%	5.7%	5.9%
I	Macrolides	Azithromycin (MIC \geq 8)	10.0%	8.3%	5.9%	4.0%	9.1%	0.0%	3.1%	8.2% 8	5.7% 6	10.9% 11
		Erythromycin (MIC \ge 32)	 10.0% 2	8.3% 1	5.9% 1	4.0%	9.1% 2	0.0%	3.1% 3	8.2% 8	5.7% 6	10.9% 11
	Quinolones	Ciprofloxacin (MIC ≥ 4)	30.0% 6	25.0% 3	47.1% 8	12.0% 3	22.7% 5	30.8% 8	23.5% 23	21.6% 21	28.6% 30	30.7% 31
		Nalidixic acid (MIC ≥ 64)	30.0% 6	25.0% 3	47.1% 8	12.0% 3	22.7% 5	34.6% 9	26.5% 26	23.7% 23	30.5% 32	30.7% 31
	Phenicols	Chloramphenicol $(MIC \ge 32)$	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	Not Tested	Not Tested	Not Tested	Not Tested
П		Florfenicol [‡] Susceptible breakpoint: (MIC ≤ 4)	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	1.0% 1	0.0% 0	0.0% 0	0.0% 0
	Tetracyclines	Tetracycline (MIC ≥ 16)	30.0% 6	25.0% 3	58.8% 10	40.0% 10	45.5% 10	38.5% 10	30.6% 30	39.2% 38	41.9% 44	39.6% 40
Ш	Lincosamides	Clindamycin (MIC ≥ 8)	10.0% 2	8.3% 1	5.9% 1	4.0% 1	9.1% 2	0.0% 0	4.1% 4	9.3% 9	5.7% 6	9.9% 10

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important; Rank 3, Important

t CLSI: Clinical and Laboratory Standards Institute ‡ Only a susceptible breakpoint (≤ 4 µg/ml) has been established. In this report, isolates with an MIC ≥ 8 µg/ml are categorized as resistant

References

CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2005 Human Isolates Final Report. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2007.

Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria: Approved Guideline. CLSI Document M45-A. CLSI, Wayne, Pennsylvania, 2006.

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Nineteenth Informational Supplement. CLSI Document M100-S19. CLSI, Wayne, Pennsylvania, 2010.

Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Eighth Edition. CLSI Document M07-A8. CLSI, Wayne, Pennsylvania, 2009.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard-Third Edition. CLSI Document M31-A3. CLSI, Wayne, Pennsylvania, 2008.

Fleiss JL, Levin B, Paik MC. Statistical Methods in for Rates and Proportions. In: Shewart WA, Wilks SS, eds. Wiley Series in Probability and Statistics. Published Online; 2004.

Folster JP, Pecic G, Krueger A, Rickert R, Burger K, Carattoli A, Whichard JM. Identification and characterization of CTX-M-producing *Shigella* isolates in the United States. Antimicrobial Agents and Chemotherapy 2010; Mar 8. [Epub ahead of print]

Folster JP, Rickert R, Barzilay EJ, Whichard JM. Identification of the Aminoglycoside resistance determinants *armA* and *rmtC* among non-Typhi *Salmonella* isolates from humans in the United States. Antimicrobial Agents and Chemotherapy 2009;53:4563-4.

Gonzalez, I, Grant KA, Richardson PT, Park SF, Collins MD. Specific identification of the enteropathogens *Campylobacter jejuni* and *Campylobacter coli* by using a PCR test based on the *ceuE* gene encoding a putative virulence determinant. Journal of Clinical Microbiology 1997;35:759-63.

Linton D, Lawson AJ, Owen RJ, Stanley J. PCR detection, identification to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. Journal of Clinical Microbiology 1997;35:2568-72.

Linton D, Owen RJ, Stanley J. Rapid Indentification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Research in Microbiology 1996;147:707-718.

Pruckler, J., et al., Comparison of four real-time PCR methods for the identification of the genus Campylobacter and speciation of C. jejuni and C. coli. ASM 106th General meeting; Poster C282.

Sjolund-Karlsson M, Folster JP, Pecic G, Joyce K, Medalla F, Rickert R, Whichard JM. Emergence of plasmid-mediated quinolone resistance among non-Typhi *Salmonella* enterica isolates from humans in the United States. Antimicrobial Agents and Chemotherapy 2009;53:2142-4.

World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine. Report of the Second WHO Expert Meeting. Switzerland, 2007.

NARMS Publications in 2008

Crump JA, Kretsinger K, Gay K, Hoekstra RM, Vugia DJ, Hurd S, Segler SD, Megginson M, Luedeman LJ, Shiferaw B, Hanna SS, Joyce KW, Mintz ED, Angulo FJ; Emerging Infections Program FoodNet and NARMS Working Groups. Clinical response and outcome of infectionwith *Salmonella* enterica serotype Typhi with decreased susceptibility to fluoroquinolones: a United States foodnet multicenter retrospective cohort study. J Antimicrob Chemother 2008 Apr;52(4): 1278-84.

Egorova S, Timinouni M, Demartin M, Granier SA, Whichard JM, Sangal V, Fabre L, Delaune A, Pardos M, Millemann Y, Espie E, Achtman M, Grimont PA, Weill FX. Ceftriaxone-resistant *Salmonella* enterica serotype Newport, France. Emerg Infect Dis. 2008 June;14(6):954-7.

Greene SK, Stuart AM, Medalla FM, Whichard JM, Hoekstra RM, and Chiller TM. Distribution of Multidrug-Resistant Human Isolates of MDR-ACSSuT *Salmonella* Typhimurium and MDR-AmpC *Salmonella* Newport in the United States, 2003–2005. Foodborne Pathogens and Disease 2008 Oct; 5(5): 669-680.

Gupta SK, Medalla F, Omondi MW, Whichard JM, Fields PI, Gerner-Smidt P, Patel NJ, Cooper KL, Chiller TM, Mintz ED. Laboratory-based surveillance of paratyphoid fever in the United States: travel and antimicrobial resistance. Clinical Infectious Diseases 2008 June;46(11):1656-63.

Petrov P, Hendriksen RS, Kantardjiev T, Asseva G, Sorensen G, Fields P, Mikoleit M, Whichard J, McQuiston JR, Torpdahl M, Aarestrup FM, Angulo FJ. Occurrence and characterization of *Salmonella enterica* serovar 9,12,I,v:-strains from Bulgaria, Denmark and the United States. European Journal of Clinical Microbiology & Infectious Diseases 2008 Nov 8; [Epub ahead of print].

Sjölund M, Yam J, Schwenk J, Joyce K, Medalla F, Barzilay E, Whichard JM. Human *Salmonella* infection yielding CTX-M beta-lactamase, United States. Emerg Infect Dis. 2008 Dec;14(12):1957-9.

Zioga, A., J.M. Whichard, K.Joyce, E. Tzelepi, L.S. Tzouvelekis, V. Miriagou. Evidence for chromosomal and plasmid location of CMY-2 cephalosporinase gene in *Salmonella* serotype Typhimurium. J Antimicrob Chemother 2008 61(6):1389-90.

E. COLI WORKING GROUP Centers for Disease Control and Prevention Frederick Angulo, Ezra Barzilay, Patricia Griffin, Amy Krueger, Rebecca Howie, Kathryn Lupoli, Andre McCullough, Kevin Joyce, Felicita Medalla Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases National Center for Infectious Diseases

INTRODUCTION

Escherichia coli is a Gram–negative coccobacillus bacterium that is part of the intestinal flora of humans and other animals. Because antimicrobial resistance genes commonly reside in mobile genetic elements that can be transferred horizontally to other bacteria, antimicrobial–resistant bacteria of the intestinal flora, including *E. coli*, constitute an important reservoir of resistance genes for pathogenic bacteria of humans and other animals. Furthermore, when introduced into a normally sterile site, *E. coli* is an important cause of infections, including septicemia, urinary tract infections, and wound infections. The human intestinal tract is the predominant source of *E. coli* causing these infections. Antimicrobial resistance among *E. coli* causing such infections complicates treatment options.

The use of antimicrobial agents creates a selective pressure for the emergence and dissemination of resistant bacteria. Use of antimicrobial agents in food animals selects resistant bacteria, including resistant *E. coli* in the intestinal tract of food animals. These resistant bacteria can be transmitted to humans through the food supply. Therefore, monitoring resistance in *E. coli* isolated from the intestinal flora of humans and animals is important to determining the role of these bacteria as human pathogens and as reservoirs of resistance determinants for human pathogens. The *E. coli* Resistance Surveillance Pilot is designed to determine the prevalence of resistance to clinically important antimicrobial agents among *E. coli* isolated from persons in the community.

SUMMARY OF 2008 SURVEILLANCE DATA

Background

Beginning in 2004, NARMS began to prospectively monitor the prevalence of antimicrobial resistance of *E. coli* isolated from human stool samples in two sites: Maryland and Michigan.

SURVEILLANCE AND LABORATORY TESTING METHODS

In 2008, Michigan was the sole participant in the study. Michigan cultured 10 human stool samples, from outpatients, each month for *E. coli* using Eosin Methylene Blue agar. One *E. coli* isolate, if present, from each

stool sample was sent to CDC for susceptibility testing to antimicrobial agents using broth microdilution (Sensititre[®]) to determine the minimum inhibitory concentration (MIC) for each of 15 antimicrobial agents: amikacin, ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfonamides, tetracycline, and trimethoprim-sulfamethoxazole (Table 53).

Interpretive criteria from the Clinical and Laboratory Standards Institute (CLSI) were used when available (<u>Table</u> <u>53</u>). The 95% CIs for the percentage of resistant isolates calculated using the Clopper-Pearson exact method, are included in the MIC distribution tables. Similarly, multiclass resistance by CLSI antimicrobial class was defined as resistance to two or more classes.

RESULTS

In 2008, CDC received 58 isolates; of these, 57 (98.3%) were viable *E. coli* isolates. MIC was determined for *E. coli* isolates for 15 antimicrobial agents (<u>Table 54</u>). Of the 57 *E. coli* isolates, 26.3% were resistant to ampicillin, 14.0% to sulfonamides, 14.0% to tetracycline, and 12.3% to nalidixic acid (<u>Table 55</u>).

Multidrug-Resistant E. coli

Multidrug resistance is described in NARMS by the number of antimicrobial classes and also by specific coresistant phenotypes. Antimicrobial classes of agents defined by CLSI are used in this report.

- 12.3% (7/57) of E. coli isolates were resistant to three or more classes of antimicrobial agents (<u>Table 56</u>).
- 7.0% (4/57) of *E. coli* isolates were resistant to five or more classes of antimicrobial agents (Table 56).

Clinically Important Resistance

Antimicrobial agents commonly used to treat serious *E. coli* infections in humans include third-generation cephalosporins and fluoroquinolones.

- 1.8% (1/57) of *E. coli* isolates were resistant to ceftriaxone (<u>Table 55</u>).
- 10.5% (6/57) of E. coli isolates were resistant to ciprofloxacin (<u>Table 55</u>).

REFERENCES

- 1. Levy SB, Fitzgerald GB, Macone AB. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. The New England Journal of Medicine 1976;295:583–8.
- 2. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. The American Journal of Medicine 1991;91(Suppl 3B):3B-72S–5S.
- 3. Van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics: links between animals and humans. International Journal of Antimicrobial Agents 2000;14:327–35.
- 4. Corpet DE. Antibiotic resistance from food. The New England Journal of Medicine 1988;318:1206–7.
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement. CLSI Document M100-S19. CLSI, Wayne, Pennsylvania, 2010.

Table 53. Antimicrobial agents used for susceptibility testing of Escherichia coli 2008

CLSI class	Antimicrobial Agent	Antimicrobial Agent	MIC Interpr	etive Standard	d (µg/mL)
		Concentration	Susceptible	Intermediate	Resistant
		Range (µg/mL)			
Aminoglycosides	Amikacin	0.5 – 64	≤16	32	≥64
	Gentamicin	0.25 – 16	≤4	8	≥16
	Kanamycin	8 – 64	≤16	32	≥64
	Streptomycin	32 – 64	≤32		≥64
β –lactam / β-lactamase inhibitor					
combinations	Amoxicillin–Clavulanic acid	1/0.5 – 32/16	≤8/4	16/8	≥32/16
Cephems	Cefoxitin	0.5 – 32	≤8	16	≥32
	Ceftiofur	0.12-8	≤2	4	≥8
	Ceftriaxone	0.25 – 64	≤1	2	≥4
Folate pathway inhibitors	Sulfisoxazole	16 – 256	≤256		≥512
	Trimethoprim-Sulfamethoxazole	0.12/2.38 – 4/76	≤2/38		≥4/76
Penicillins	Ampicillin	1 – 32	≤8	16	≥32
Phenicols	Chloramphenicol	2 – 32	≤8	16	≥32
Quinolones	Ciprofloxacin	0.015 – 4	≤1	2	≥4
	Nalidixic acid	0.5 – 32	≤16		≥32
Tetracyclines	Tetracycline	4 – 32	≤4	8	≥16

* The resistance breakpoint for amikacin, according to Clinical and Laboratory Standards Institute (CLSI) guidelines, is 64µg/mL. For isolates that grew in all amikacin dilutions on the Sensititre panel (minimum inhibitory concentration [MIC] >4 µg/mL), E-Test (AB BIODISK, Solna, Sweden) was performed in order to determine amikacin MIC. The amikacin E-Test strip range of dilutions is 0.016-256 µg/mL.

Table 54. Minimum inhibition concentrations (MICs) and resistance of Escherichia coli isolates to antimicrobial agents, 2008 (N=57)

Bank [*]	CI SIt Antimicrohial Class	Antimiarchial Agent		% of is	olates						Perce	ent of a	llisolate	eswith	MIC (µg	/mL)**					
NdIIK	CLOP Antimicrobial Class	Antimicrobial Agent	% l ‡	%R§	[95% CI]¶	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0 - 6.3]							8.8	71.9	19.3							
		Gentamicin	3.5	0.0	[0.0 - 6.3]					3.5	70.2	22.8			3.5						
		Streptomycin	N/A	8.8	[2.9 - 19.3]											-	91.2		8.8		
	β-lactam / β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.8	3.5	[0.4 - 12.1]								22.8	49.1	22.8	1.8	3.5				
Т	Cephems	Ceftiofur	0.0	1.8	[0.02 - 9.4]				1.8	57.9	38.6				1.8						
		Ceftriaxone	0.0	1.8	[0.02 - 9.4]					98.2						1.8					
	Penicillins	Ampicillin	1.8	26.3	[15.5 - 39.7]							5.3	52.6	14.0	•	1.8	1.8	24.6			
	Quinolones	Ciprofloxacin	0.0	10.5	[3.9 - 21.5]	86.0				1.8	1.8			1.8	8.8						
		Nalidixic acid	N/A	12.3	[5.1 - 23.7]							31.6	52.6	1.8		1.8		12.3			
	Aminoglycosides	Kanamycin	1.8	1.8	[0.02 - 9.4]										96.5		1.8		1.8		
	Cephems	Cefoxitin	3.5	0.0	[0.0 - 6.3]							1.8	38.6	50.9	5.3	3.5					
	Folate pathway inhibitors	Sulfisoxazole	N/A	14.0	[6.2 - 25.8]											78.9	7.0				14.0
		Trimethoprim-sulfamethoxazole	N/A	12.3	[5.1 - 23.7]				77.2	7.0	3.5				12.3						
	Phenicols	Chloramphenicol	1.8	5.3	[1.1 - 14.6]									49.1	43.9	1.8		5.3			
	Tetracyclines	Tetracycline	0.0	14.0	[6.2 - 25.8]									86.0			1.8	12.3			

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I): Rank 1, Critically Important; Rank 2, Highly Important

C.St. Clinical and Laboratory Standards Institute
 Percent of isolates with intermediate susceptibility, NA if no MC range of intermediate susceptibility exists

 Precent of isolates that were resistant
 Precent of isolates
 Precent of or less than the low est tested concentration. CLSI breakpoints were used when available.

Figure 27. Antibiotic resistance pattern for *Escherichia coli*, 2008

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ampicillin	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Sulfisoxazole	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Tetracycline	

Year			2004	2005	2006	2007	2008
Total Is	solates		151	119	82	66	57
	CLSI [†] Antimicrobial	Antibiotic					
$Rank^*$	Class	(Resistance breakpoint)					
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0
		Gentamicin	2.0%	3.4%	3.7%	3.0%	0.0%
		(MIC ≥ 16)	3	4	3	2	0
		Streptomycin	10.6%	14.3%	7.3%	13.6%	8.8%
		(MIC ≥ 64)	16	17	6	9	5
	β-lactam/β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.6%	4.2%	3.7%	0.0%	3.5%
	combinations	(MIC ≥ 32)	4	5	3	0	2
	Cephems	Ceftiofur	0.0%	0.8%	0.0%	0.0%	1.8%
'		(MIC ≥ 8)	0	1	0	0	1
		Ceftriaxone	0.0%	0.8%	0.0%	0.0%	1.8%
		(MIC ≥ 4)	0	1	0	0	1
	Penicillins	Ampicillin	24.5%	26.1%	28.0%	21.2%	26.3%
		(MIC ≥ 32)	37	31	23	14	15
	Quinolones	Ciprofloxacin	3.3%	7.6%	4.9%	7.6%	10.5%
		(MIC ≥ 4)	5	9	4	5	6
		Nalidixic Acid	9.3%	9.2%	11.0%	10.6%	12.3%
		(MIC ≥ 32)	14	11	9	7	7
	Aminoglycosides	Kanamycin	2.0%	0.0%	0.0%	1.5%	1.8%
		(MIC ≥ 64)	3	0	0	1	1
	Cephems	Cefoxitin	2.6%	0.8%	1.2%	0.0%	0.0%
		(MIC ≥ 32)	4	1	1	0	0
	Folate pathway inhibitors	Sulfisoxazole [‡]	17.9%	18.4%	17.1%	24.2%	14.0%
		(MIC ≥ 512)	27	21	14	16	8
		Trimethoprim-sulfamethoxazole:	11.3%	14.9%	12.2%	15.2%	12.3%
		(MIC ≥ 4)	17	17	10	10	7
	Phenicols	Chloramphenicol	1.3%	2.5%	3.7%	3.0%	5.3%
		(MIC ≥ 32)	2	3	3	2	3
	Tetracyclines	Tetracycline	13.2%	19.3%	14.6%	21.2%	14.0%
		(MIC ≥ 16)	20	23	12	14	8

Table 55. Percentage and number of *Escherichia coli* isolates resistant to antimicrobial agents, 2004–2008

* Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I):
| Year | 2004 | 2005 | 2006 | 2007 | 2008 |
|---|-------|-------|-------|-------|-------|
| Total Isolates | 151 | 119 | 82 | 66 | 57 |
| | % | % | % | % | % |
| | n | n | n | n | n |
| No resistance detected | 62.9% | 63.0% | 62.2% | 63.6% | 64.9% |
| | 95 | 75 | 51 | 42 | 37 |
| Resistance ≥1CLSI class* | 37.7% | 37.0% | 37.8% | 36.4% | 35.1% |
| | 57 | 44 | 31 | 24 | 20 |
| Resistance ≥2 CLSI classes* | 21.9% | 23.5% | 23.2% | 24.2% | 22.8% |
| | 33 | 28 | 19 | 16 | 13 |
| Resistance ≥3 CLSI classes* | 14.6% | 17.6% | 18.3% | 18.2% | 12.3% |
| | 22 | 21 | 15 | 12 | 7 |
| Resistance ≥4 CLSI classes* | 6.0% | 9.2% | 11.0% | 10.6% | 8.8% |
| | 9 | 11 | 9 | 7 | 5 |
| Resistance ≥5 CLSI classes* | 3.3% | 7.6% | 1.2% | 4.5% | 7.0% |
| | 5 | 9 | 1 | 3 | 4 |
| At least ACSSuT [†] | 1.3% | 0.8% | 0.0% | 0.0% | 1.8% |
| | 2 | 1 | 0 | 0 | 1 |
| At least ACT/S [‡] | 1.3% | 0.8% | 1.2% | 1.5% | 3.5% |
| | 2 | 1 | 1 | 1 | 2 |
| At least ACSSuTAuCl [§] | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
| | 0 | 0 | 0 | 0 | 0 |
| At least ceftiofur and nalidixic acid resistant | 0.0% | 0.0% | 0.0% | 0.0% | 1.8% |
| | 0 | 0 | 0 | 0 | 1 |

Table 56. Resistance patterns of Escherichia coli isolates. 2004–2008

* CLSI: Clinical and Laboratory Standards Institute

+ ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

‡ ACT/S: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ ACSSuTAuCf: resistance to ACSSuT, amoxicillin-clavulanic acid, ceftiofur