

National Antimicrobial Resistance Monitoring System: Enteric Bacteria

2006

Human Isolates Final Report

<u>CDC</u>

Table of Contents

List of Tables	2
List of Figures	5
List of Abbreviations and Acronyms	6
NARMS Working Group	7
Introduction	11
Summary of NARMS 2006 Surveillance Data	12
Population Multidrug Resistance World Health Organization's Categorization of Antimicrobials of Critical Importance to Human Medicine	12 13 13
Surveillance and Laboratory Testing Methods	17
Results	23
1. Non-Typhi Salmonella A. Salmonella ser. Enteritidis Resistance to nalidixic acid and decreased susceptibility to ciprofloxacin in Salmonella ser. Enteritidis, NARMS, 1006, 2006	23 28
 NARMS, 1996-2006. B. Salmonella ser. Typhimurium. C. Salmonella ser. Newport. D. Salmonella ser. I 4,[5],12:i: E. Salmonella ser. Heidelberg 2. Salmonella ser. Typhi. 3. Shigella. 4. Escherichia coli O157. 5. Campylobacter 	31 33 35 38 40 44 46 53 56
REFERENCES	61
NARMS Publications in 2006	62
APPENDIX A	63
Summary of Escherichia coli Resistance Surveillance Pilot Study, 2006	63

List of Tables

<u>Table I:</u>	World Health Organization's categorization of antimicrobials of critical importance to human medicine
Table II:	Population size and number of isolates received and tested, by site, NARMS, 2006 15
Table III:	Summary of trend analysis of the proportion of specific resistance phenotypes among <i>Campylobacter</i> , non-Typhi <i>Salmonella</i> , and <i>Salmonella</i> ser. Typhi isolates, 2006
Table IV:	Antimicrobial agents used for susceptibility testing for <i>Salmonella, Shigella, Escherichia coli</i> O157, and <i>Campylobacter</i> isolates, NARMS, 2006
Table V:	Antimicrobial agents used for susceptibility testing for <i>Campylobacter</i> isolates, NARMS, 1997–2006
Table 1.01:	Minimum inhibitory concentrations (MICs) and resistance of non-Typhi Salmonella isolates to antimicrobial agents, 2006 (N=2,184)
Table 1.02:	Percentage and number of non-Typhi Salmonella isolates resistant to antimicrobial agents, 1996–2006
Table 1.03:	Resistance patterns of non-Typhi Salmonella isolates, 1996–2006
Table 1.04:	Twenty most common non-Typhi Salmonella serotypes in NARMS and the Public Health Laboratory Information System, 2006
Table 1.05:	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Enteritidis isolates to antimicrobial agents, 2006 (N=412)
Table 1.06:	_Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 1996–2006
<u>Table 1.07:</u>	Resistance patterns of Salmonella ser. Enteritidis isolates, 1996–2006
Table 1.08:	Minimum inhibitory concentrations (MICs) and resistance of <i>Salmonella</i> ser. Typhimurium isolates to antimicrobial agents, 2006 (N=407)
<u>Table 1.09:</u>	_Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 1996–2006
Table 1.10:	_Resistance patterns of <i>Salmonella</i> ser. Typhimurium isolates, 1996–2006
Table 1.11:	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2006 (N=217)
Table 1.12:	Percentage and number of <i>Salmonella</i> ser. Newport isolates resistant to antimicrobial agents, 1996–2006
Table 1.13:	Resistance patterns of <i>Salmonella</i> ser. Newport isolates, 1996–2006
Table 1.14:	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. I 4,[5],12:i:- isolates to antimicrobial agents, 2006 (N=105)
Table 1.15:	Percentage and number of <i>Salmonella</i> ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 1996–2006
Table 1.16:	Resistance patterns of Salmonella ser. I 4,[5],12:i:- isolates, 1996–2006

<u>Table 1.17:</u>	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2006 (N=102)	41
Table 1.18:	Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents, 1996–2006	42
Table 1.19:	Resistance patterns of Salmonella ser. Heidelberg isolates, 1996–2006	42
Table 1.20:	Number and percentage of ACSSuT-, MDR-AmpC-, nalidixic acid-, and ceftiofur-resistant isolates among the 20 most common non-Typhi Salmonella serotypes isolated in NARMS, 2006	43
Table 2.01:	Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhi isolates to antimicrobial agents, 2006 (N=324)	44
Table 2.02:	Percentage and number of Salmonella ser. Typhi isolates resistant to antimicrobial agents, 1999–2006	45
Table 2.03:	Resistance patterns of Salmonella ser. Typhi isolates, 1999–2006	46
Table 3.01:	Frequency of Shigella species isolated in NARMS, 2006	47
Table 3.02:	Minimum inhibitory concentrations (MICs) and resistance of <i>Shigella</i> isolates to antimicrobial agent 2006 (N=402)	s, 47
Table 3.03:	Minimum inhibitory concentrations (MICs) and resistance of <i>Shigella sonnei</i> isolates to antimicrobia agents, 2006 (N=321)	al 48
<u>Table 3:04:</u>	Minimum inhibitory concentrations and resistance of <i>Shigella flexneri</i> isolates to antimicrobial agent 2006 (N=74)	ts, 49
Table 3.05:	Percentage and number of Shigella isolates resistant to antimicrobial agents, 1999–2006	50
Table 3.06:	Percentage and number of Shigella sonnei isolates resistant to antimicrobial agents, 1999–2006.	50
Table 3.07:	Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents, 1999–2006.	51
Table 3.08:	Resistance patterns of Shigella isolates, 1999–2006	51
<u>Table 3.09:</u>	Resistance patterns of Shigella sonnei isolates, 1999–2006	52
Table 3.10:	Resistance patterns of Shigella flexneri isolates, 1999–2006	52
Table 4.01:	Minimum inhibitory concentrations (MICs) and resistance of <i>Escherichia coli</i> O157 isolates to antimicrobial agents, 2006 (N=233)	54
Table 4.02:	Percentage and number of <i>Escherichia coli</i> O157 isolates resistant to antimicrobial agents, 1996–2006	55
Table 4.03:	Resistance patterns of Escherichia coli O157 isolates, 1996–2006	55
Table 5.01:	Frequency of Campylobacter species isolated in NARMS, 2006	56
Table 5.02:	Minimum inhibition concentrations (MICs) and resistance of <i>Campylobacter</i> isolates to antimicrobial agents, 2006 (N=816)	57
<u>Table 5.03:</u>	Percentage and number of <i>Campylobacter</i> isolates resistant to antimicrobial agents, 1997–2006	57

Table 5.04:	Resistance patterns of <i>Campylobacter</i> isolates, 1997–2006	58
<u>Table 5.05:</u>	Minimum inhibitory concentrations (MICs) and resistance of <i>Campylobacter jejuni</i> isolates to antimicrobial agents, 2006, (N=709)	58
<u>Table 5.06:</u>	Percentage and number of <i>Campylobacter jejuni</i> isolates resistant to antimicrobial agents, 1997–2006	59
<u>Table 5.07:</u>	Minimum inhibitory concentrations (MICs) and resistance of <i>Campylobacter coli</i> isolates to antimicrobial agents, 2006 (N=97)	59
<u>Table 5.08:</u>	Percentage and number of <i>Campylobacter coli</i> isolates resistant to antimicrobial agents, 1997–2006	30
Table A.01:	Antimicrobial agents used for susceptibility testing of <i>Escherichia coli</i> , 2006	35
Table A.02:	Escherichia coli isolates received and tested at CDC, by site, 2006	35
Table A.03:	Minimum inhibitory concentrations (MICs) and resistance of <i>Escherichia coli</i> isolates to antimicrobial agents, 2004–2006, (N=82)6	35
Table A.04:	Percentage and number of Escherichia coli isolates resistant to antimicrobial agents, 2004–2006 6	37
Table A.05:	Resistance patterns of <i>Escherichia coli</i> isolates, 2004–2006	38

List of Figures

Figure 1.01: How to read a squashtogram	24
Figure 1.02: Proportional chart, a categorical graph of a squashtogram	25
Figure 1.03: Antimicrobial resistance pattern for non-Typhi Salmonella, 2006	26
Figure 1.04: Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2006	29
Figure 1.05: Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2006	
Figure 1.06: Antimicrobial resistance pattern for Salmonella ser. Newport, 2006	
Figure 1.07: Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2006	
Figure 1.08: Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2006	41
Figure 2.01: Antimicrobial resistance pattern for Salmonella ser. Typhi, 2006	45
Figure 3.01: Antimicrobial resistance pattern for Shigella, 2006	47
Figure 3.02: Antimicrobial resistance pattern for Shigella sonnei, 2006	
Figure 3.03: Antimicrobial resistance pattern for Shigella flexneri, 2006	
Figure 4.01: Antimicrobial resistance pattern for <i>Escherichia coli</i> O157, 2006	54
Figure 5.01: Antimicrobial resistance pattern for Campylobacter, 2006	57
Figure 5.02: Antimicrobial resistance pattern for Campylobacter jejuni, 2006	58
Figure 5.03: Antimicrobial resistance pattern for Campylobacter coli, 2006	59
Figure A.01: Antimicrobial resistance pattern for Escherichia coli, 2006	

List of Abbreviations and Acronyms

ACSSuT Resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracvcline ACSSuTAuCf Resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, amoxicillin-clavulanic acid, and ceftiofur ACSuTm Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole CDC Centers for Disease Control and Prevention CI Confidence interval CLSI Clinical and Laboratory Standards Institute EIP **Emerging Infections Program** ELC Epidemiology and Laboratory Capacity EMB Eosin methylene blue ENTFM Enterococcus faecium ENTFS Enterococcus faecalis ERS Enterococci Resistance Surveillance EUCAST European Committee on Antimicrobial Susceptibility Testing FDA-CVM Food and Drug Administration -Center for Veterinary Medicine FoodNet Foodborne Diseases Active Surveillance Network MDR-AmpC Resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline, amoxicillin-clavulanic acid, and ceftiofur, and decreased susceptibility to ceftriaxone (MIC \geq 2 µg/mL) MIC Minimum inhibitory concentration NARMS National Antimicrobial Resistance Monitoring System for Enteric Bacteria OR Odds ratio PCR Polymerase chain reaction Public Health Laboratory Information System PHLIS USDA United States Department of Agriculture VRE Vancomycin-resistant enterococci WHO World Health Organization

NARMS Working Group

Centers for Disease Control and Prevention

Enteric Diseases Epidemiology Branch Enteric Diseases Laboratory Branch Division of Foodborne Bacterial and Mycotic Diseases Coordinating Center for Infectious Diseases

Frederick Angulo Timothy Barrett Ezra Barzilay **Richard Bishop Cheryl Bopp** Tom Chiller Patricia Fields Jason Folster Kathryn Gay Lewis Graves Sharon Greene Patricia Griffin Robert Michael Hoekstra **Rebecca Howie** Kevin Joyce Katie Joyce Maria Karlsson Amy Krueger Kathryn Lupoli Ewelina Lyszkowicz Amie May ThurdeKoos Felicita Medalla **Terrell Miller** Michael Omondi Gary Pecic **Regan Rickert** Lauren Stancik Rosenthal **Jillian Schwenk** Jacinta Smith Andrew Stuart Robert Tauxe Jean Whichard Jennifer Yam

U.S. Food and Drug Administration Center for Veterinary Medicine

Beth Karp Patrick McDermott David White

Participating State and Local Health Departments

Alabama Department of Public Health

LaDonna Cranidiotis J. P. Lofgren Sharon Massingale Ethel Oldham Joanna Roberson

Alaska Department of Health

and Social Services Mary Anctil Tricia Franklin Sam Obedi Shellie Smith Catherine Xavier

Arizona Department of Health Services

Graham Briggs Mary Finnerty Clare Kioski Ken Komatsu Stephanie Kreis William Slanta Victor Waddell

Arkansas Department of Health

Dennis Berry Joanie Jones-Harp Rossina Stefanova

Sam Shin

Duc Vugia

California Department of Health Services Wendy Cheung Claudia Crandall Samar Fontanoz Paul Kimsey Will Probert

Colorado Department of Public Health and Environment James Beebe Alicia Cronquist Joyce Knutsen Michael Rau

Connecticut Department of Public Health Bob Howard Sharon Hurd Charles Welles

Delaware Health and Social Services

Leroy Hatcock Gaile McLaughlin Marjorie Postell Debra Rutledge Sue Shore

Florida Department of Health

Ronald Baker Maria Calcaterra Sonia Etheridge Dian Sharma

Georgia Division of Public Health

Jim Benson Elizabeth Franko Tameka Hayes Mary Hodel Susan Lance Bob Manning Mahin Park Lynett Poventud Suzanne Segler Stepy Thomas Melissa Tobin-D'Angelo

Hawaii Department of Health Rebecca Kanenaka Norman O'Connor

Houston Health and Human Services Department

Raouf Arafat Onesia Bishop Keri Goede Vern Juchau Joan Rogers

Idaho Department of Health and Welfare

Susan Dana Colleen Greenwalt Vivian Lockary

Illinois Department of Public Health

Nancy Barstead Bob Cox Mark Dworkin Juan Garcia Rebecca Hambelton Sue Kubba Kiran Patel Bindu Shah Guinevere Reserva Andrea Stadsholt Tricia Patterson Patrick Miller Steve Hopkins Stephen Hendren

Indiana State Department of

Health Brent Barrett John Radosevic

Iowa Department of Public Health, University Hygienic Laboratory Mary DeMartino

Randy Groepper

Kansas Department of Health and Environment

Cheryl Banez-Ocfemia Robert Flahart Gail Hansen Carissa Pursell June Sexton Kathleen Waters

Kentucky Department of Public Health

Robin Cotton Jennifer Everman Karim George Matt Nelson Meloney Russell

Los Angeles County

Department of Health Services

Michael Stephens Sheena Chu Sue Sabet Laurene Mascola Brit Oiulfstad Roshan Reporter Joan Sturgeon

Louisiana Department of Health

and Hospitals

Gary Balsamo Wayne Dupree Catrin Jones-Nazar Lori Kravet Steven Martin Raoult Ratard Theresa Sokol Susanne Straif-Bourgeois Annu Thomas

Maine Department of Human Services

Geoff Beckett Kathleen Gensheimer Audrey Littlefield James Martin Jeff Randolph Vicki Rea Susan Schow Lori Webber Donna Wrigley

Maryland Department of Health and Mental Hygiene and University of Maryland School of Medicine, Department of Epidemiology and Preventive Medicine Marisa Caipo Karen Cuenco Julie Kiehlbauch Melanie Megginson J. Glenn Morris, Jr. Jonigene Ruark Pat Ryan

Massachusetts Department of Public Health

Catherine Brown Alfred DeMaria John Fontana Robert Goldbaum Emily Harvey Patricia Kludt Joseph Peppe Tracy Stiles

Michigan Department of Community Health

Carrie Anglewicz

Frances Downes James Rudrik William Schneider Dawn SievPatricia Somsel

Minnesota Department of Health

John Besser Billie Juni Fe Leano Kirk Smith Sara Stenzel Charlotte Taylor Theresa Weber Stephanie Wedel

Mississippi Department of Health

Jannifer Anderson Kay Beggerly Jane Campbell Sheryl Hand Cathie Hoover Mills McNeill Daphne Ware

Missouri Department of Health

David Byrd Steve Gladbach Jason Herstein Harvey Marx JoAnn Rudroff

Montana Department of Public Health and Human Services Jim Murphy Anne Weber Susanne Zanto

Nebraska Health and Human Services System and University of Nebraska Medical Center, Department of Pathology and Microbiology Jude Eberhardt Paul Fev

Jodi Garrett Peter Iwen Tom Safranek

Nevada Department of Health and Human Services

Patricia Armour Stephanie Ernaga Jaime Frank Paul Hug Bradford Lee Matt Mikoleit Lisa Southern Stephanie Van Hooser

New Hampshire Department of

Health and Human Services

Christine Adamski Christine Bean Elizabeth Daly Wendy Lamothe Nancy Taylor Daniel Tullo

New Jersey Department of

Health

Ruth Besco John Brook Sylvia Matiuck Keith Pilot

New Mexico Department of Health

Bernadette Albanese Joan Baumbach Sonya Flores Rey Griego Debra Horensky David Mills Lisa Onsichuk Debbie Sena Johnson Erica Pierce C. Mack Sewell Karla Thornton William Wiese

New York City Department of Health

Alice Agasan Ludwin Chicaiza Sharon Balter Heather Hanson Dennis Kinney Vasudha Reddy

New York State Department of Health

Amy Davignon Nellie Dumas Yvette Khachadourian Tammy Quinlan Dale Morse Tim Root Shelley Zansky

North Carolina Department of Health and Human Services Denise Griffin

Brad Jenkins

North Dakota Department of

Health

Lisa Elijah Julie Goplin Eric Hieb Nicole Meier Tracy Miller Lisa Well

Ohio Department of Health

Rick Bokanyi Tammy Bannerman Jane Carmean Larry King Mary Kay Parrish Susan Luning Ellen Salehi

Oklahoma State Department of Health

Rebekah Berry Mike Lytle Jeff Mathewson Mike McDermott

Oregon Department of Human Resources

Debbie Berquist Cathy Ciaffoni Paul Cieslak Emilio DeBess Julie Hatch Mayland Heim Steve Mauvais Beletsachew Shiferaw Larry Stauffer Ivor Thomas Janie Tierheimer Robert Vega Veronica Williams

Pennsylvania Department of Health

Wayne Chmielecki Tait James Nkuchia Mikanatha James Rankin Stanley Reynolds Veronica Urdaneta Kirsten Waller Nancy Warren Gisela Withers

Rhode Island Department of Health

Cheryl Campbell Tara Cooper Kerry Patterson Deanna Simmons Cindy Vanner

South Carolina Department of Health and Environmental Control

Dana Giurgiutiu Mamie Turner Jennifer Meredith Arthur Wozniak

South Dakota Department of Health

Christopher Carlson Lon Kightlinger Mike Smith Yvette Thomas

Tennessee Department of Health

Jeanette Dill Cynthia Graves Samir Hanna Henrietta Hardin Tim Jones Chris McKeever RuthAnn Spence

Texas Department of State Health Services

Tamara Baldwin Leslie Bullion Elizabeth Delamater Linda Gaul Eldridge Hutcheson Miriam Johnson Susan Neill Pushker Raj Ana Valle

Utah Department of Health

Dan Andrews Kim Christensen Jana Coombs Cindy Fisher David Jackson Barbara Jepson Susan Mottice

Vermont Department of Health

Valerie Cook Eunice H. Froeliger Christine LaBarre Mary Spayne Patsy Tassler

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health

Ellen Basinger Sherry Giese Sally Henderson Mary Mismas Ann Munson Denise Toney

Washington Department of Health

David Boyle Jennifer Breezee Romesh Gautom Donna Green Yolanda Houze Jinxin Hu Kathryn MacDonald

West Virginia Department of

Health and Human Resources

Danae Bixler Christi Clark Maria del Rosario Loretta Haddy Andrea Labik Doug McElfresh Ron Ramirez Connie Smith

Wisconsin Department of Health and Family Services

John Archer Susan Ahrabi-Fard Jeffrey Davis Diep Hoang-Johnson Ronald Laessig Tim Monson Dave Warshauer Mark Wegner

Wyoming Department of Health

Richard Harris John Harrison Clay Van Houten Tracy Murphy Sandy Novick Jim Walford

Suggested Citation: CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final Report, 2006. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2009.

Information Available Online: Previous reports and additional information about NARMS are posted on the CDC NARMS website: <u>http://www.cdc.gov/narms</u> General information on antimicrobial resistance, NARMS partners, related programs and selected resources are available at CDC NARMS resources website: <u>http://www.cdc.gov/narms/resources.htm</u>

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement by the Centers for Disease Control and Prevention or the U. S. Department of Health and Human Services.

The National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria is a collaboration among the Centers for Disease Control and Prevention (CDC), <u>Food and Drug Administration</u> (FDA-CVM), and <u>U.S.</u> <u>Department of Agriculture</u> (USDA). The primary purpose of NARMS at CDC is to monitor antimicrobial resistance among foodborne enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in enteric bacterial pathogens isolated from foods, conducted by the FDA <u>Center for Veterinary Medicine</u>

(<u>http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/default.htm</u>), and resistance in enteric pathogens isolated from animals, conducted by the USDA Agricultural Research Services (<u>http://www.ars.usda.gov/main/site_main.htm?modecode=66-12-05-08</u>).

Many NARMS activities are conducted within the framework of CDC's Emerging Infections Program (EIP), Epidemiology and Laboratory Capacity (ELC) Program, and the Foodborne Diseases Active Surveillance Network (FoodNet). In addition to surveillance of resistance in enteric pathogens, the NARMS program at CDC also includes public health research into the mechanisms of resistance, education efforts to promote prudent use of antimicrobial agents, and studies of resistance in commensal organisms.

Before NARMS was established, CDC monitored antimicrobial resistance in *Salmonella, Shigella*, and *Campylobacter* through periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with prospective monitoring of antimicrobial resistance among clinical non-Typhi *Salmonella* and *Escherichia coli* O157 isolates in 14 sites. In 1997, testing of clinical *Campylobacter* isolates was initiated in the five sites participating in FoodNet. Testing of clinical *Salmonella enterica* serotype Typhi and *Shigella* isolates was added in 1999. Since 2003, all 50 states have been forwarding a representative sample of non-Typhi *Salmonella, Salmonella* ser. Typhi, *Shigella*, and *E. coli* O157 isolates to NARMS for antimicrobial susceptibility testing, and 10 FoodNet states have been participating in *Campylobacter* surveillance.

This annual report includes CDC's surveillance data for 2006 for clinical non-Typhi *Salmonella, Salmonella* ser. Typhi, *Shigella, Campylobacter* and *E. coli* O157 isolates. Resistance trends and comparisons with previous years are included when appropriate. Antimicrobial subclasses defined by Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis. CLSI subclasses constitute major classifications of antimicrobial agents, e.g., aminoglycosides and cephalosporins.

This report also includes World Health Organization's categorization of antimicrobials of critical importance to human medicine (<u>Table I</u>) and data from the *Escherichia coli* Resistance Study, which is part of NARMS surveillance of commensal bacteria. Appendix A summarizes the *Escherichia coli* Resistance Surveillance Pilot Study conducted in 2006.

Additional NARMS data and more information about NARMS activities are available at http://www.cdc.gov/narms_

Population

In 2006, all 50 states participated in NARMS, representing approximately 298 million persons (Table II). Surveillance for antimicrobial resistance included non-Typhi *Salmonella, Salmonella* ser. Typhi, *Shigella*, and *Escherichia coli* O157. *Campylobacter* resistance to antimicrobial agents was monitored in 10 states that comprise the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 44.5 million persons (14.9% of the U.S. population).

Clinically Important Antimicrobial Resistance Patterns

In the United States, certain fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are antimicrobial agents commonly used to treat severe *Salmonella* infections, including *Salmonella* ser. Typhi, the organism that causes typhoid fever. Fluoroquinolones are also used to treat *Campylobacter* infections. Nalidixic acid is an elementary quinolone; resistance to nalidixic acid correlates with decreased susceptibility or resistance to ciprofloxacin and possible treatment failure. Ceftiofur is a third-generation cephalosporin used in food animals in the United States; resistance to ceftiofur among *Enterobacteriaceae* correlates with decreased susceptibility to ceftriaxone. A substantial proportion of isolates tested by NARMS in 2006 demonstrated resistance to these clinically important antimicrobial agents, as follows:

- 19.6% (160/816) of *Campylobacter* isolates were resistant to the fluoroquinolone ciprofloxacin, compared with 12.9% (28/217) in 1997 (OR=2.0, 95% CI [1.3, 3.1]).
 - o 21.6% (21/97) of *Campylobacter coli* isolates were resistant to ciprofloxacin.
 - o 19.5% (138/709) of *Campylobacter jejuni* isolates were resistant to ciprofloxacin.
- 2.7% (60/2,184) of non-Typhi Salmonella isolates were resistant to the quinolone nalidixic acid, compared with 0.4% (5/1,324) in 1996 (OR=9.5, 95% CI [3.8, 23.8]).
 - Salmonella ser. Enteritidis was the most common serotype among nalidixic acid–resistant non-Typhi Salmonella isolates: 48.3% (29/60) of quinolone–resistant isolates were serotype Enteritidis.
 - Nalidixic acid resistance in serotype Enteritidis was 7.0% (29/412) in 2006, compared with 0.9% (3/351) in 1996 (OR 95% CI [2.7–45.4]).
- 3.6% (79/2,184) of non-Typhi *Salmonella* isolates were resistant to the third-generation cephalosporin ceftiofur, compared with 0.2% (2/1324) in 1996 (OR=29.8, 95% CI [7.3, 121.7]).
 - Salmonella ser. Newport was the most common serotype among ceftiofur-resistant non-Typhi Salmonella isolates: 34.1% (27/79) of ceftiofur-resistant isolates were serotype Newport.
 - Ceftiofur resistance among serotype Newport was 12.4% (27/217) in 2006, compared with 0% in 1996.
- 54.0% (175/324) of *Salmonella* ser. Typhi isolates were resistant to the quinolone nalidixic acid, compared with 19.2% (32/167) in 1999 (OR=5.2, 95% CI [3.3, 8.1]).

Multidrug Resistance

Multidrug resistance is described in NARMS by the number of antimicrobial subclasses and also by specific coresistant phenotypes. Antimicrobial subclasses are used as defined by CLSI (<u>Table IV</u>). Multidrug resistance by the number of antimicrobial subclasses is defined as resistance to two or more CLSI subclasses. For non-Typhi *Salmonella*, a common multidrug-resistant phenotype in 2006 includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline (ACSSuT). Another common phenotype includes resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, amoxicillin-clavulanic acid, and ceftiofur, and decreased

susceptibility to ceftriaxone (minimum inhibitory concentration $\geq 2 \ \mu g/mL$) (MDR-AmpC).

- 14.6% (319/2,184) of non-Typhi *Salmonella* isolates were resistant to two or more CLSI subclasses, and 6.7% (146/2,184) were resistant to five or more CLSI subclasses.
 - Of the 319 non-Typhi Salmonella resistant to two or more CLSI subclasses, most were Salmonella ser. Typhimurium (34.2%, n=139), followed by serotype Newport (16.1%, n=35). Of the 146 NTS resistant to five or more CLSI subclasses, most were serotype Typhimurium (21.9%, n=89), followed by serotype Newport (12.9%, n=28). Serotypes Typhimurium and Newport were also the second and third most prevalent serotypes, respectively, among NTS submitted to NARMS in 2006.
 - 16.1% (35/217) of Salmonella ser. Newport isolates were resistant to two or more CLSI subclasses, and 12.9% (28/217) were resistant to five or more CLSI subclasses.
 - 34.2% (139/407) of Salmonella ser. Typhimurium isolates were resistant to two or more CLSI subclasses, and 21.9% (89/407) were resistant to five or more CLSI subclasses.
 - 2.9% (12/412) of Salmonella ser. Enteritidis isolates were resistant to two or more CLSI subclasses, and 0.2% (1/412) were resistant to five or more CLSI subclasses.
- 5.5% (121/2,184) of non-Typhi Salmonella isolates had the ACSSuT resistance pattern, compared with 8.8% (116/1,324) in 1996 (Table 1.20).
 - 19.7% (80/407) of Salmonella ser. Typhimurium isolates were ACSSuT, compared with 33.7% (103/306) in 1996 (OR=0.5, 95% CI [0.3, 0.7]).
 - 12.0% (26/217) of Salmonella ser. Newport isolates were ACSSuT, compared with 5.9% (3/51) in 1996.
- 2.0% (43/2,184) of non-Typhi Salmonella isolates had the MDR-AmpC resistance pattern (Table 1.20). These
 isolates consisted of five different serotypes. In 1996, MDR-AmpC phenotype was not detected in any
 serotype.
 - 10.6% (23/217) of Salmonella ser. Newport isolates were resistant to the MDR-AmpC phenotype, compared with none (0/51) in 1996 (95% CI [1.4, infinity]). Although the prevalence of the MDR-AmpC phenotype was higher than in 1996, prevalence of this phenotype among serotype Newport appears to be decreasing from the apparent peak of 25.0% in 2001.
 - o 2.9% (12/407) of Salmonella ser. Typhimurium isolates had the MDR-AmpC resistance pattern.

World Health Organization's Categorization of Antimicrobials of Critical Importance to Human Medicine

The World Health Organization (WHO) convened a panel of experts to develop a list of essential antimicrobial agents according to their importance to human medicine. The participants categorized antimicrobial agents as either *Critically Important*, *Highly Important*, or *Important* based upon two criteria: (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non–human sources or diseases caused by organisms that may acquire resistance genes from non–human sources.

- Antimicrobial agents are considered critically important if both criteria (1) and (2) are true.
- Antimicrobial agents are highly important if either criteria (1) or (2) are true.
- Antimicrobial agents are important if neither criterion are true.

 Table I: World Health Organization's categorization of antimicrobials of critical importance to human

 medicine

Critical Importance	Categorization of Antimicrobials	CLSI Subclass	Antimicrobial Agent
			Amikacin
		Aminoglycosides	Gentamicin
			Streptomycin
		Aminopenicillins	Ampicillin
		β-Lactamase inhibitor combinations	Amoxicillin-clavulanic acid
I	Critically important	Cephalosporins (3 rd generation)	Ceftriaxone*
		Ketolides	Telithromycin
		Macrolides	Azithromycin
		Macionaes	Erythromycin
		Quinclones	Ciprofloxacin
		Quinoiones	Nalidixic acid
		Aminoglycosides	Kanamycin
		Cephalosporin (1 st generation)	Cephalothin
		Cephamycins	Cefoxitin
	Highly important	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole
	inging important	Phenicols	Chloramphenicol [†]
		Sulfonomidoo	Sulfamethoxazole
		Suionamues	Sulfisoxazole
		Tetracyclines	Tetracycline
	Important	Lincosamides	Clindamycin

^{*} Ceftiofur, a 3rd generation cephalosporin used in veterinary medicine, was included in NARMS testing since 1996. [†] Florfenicol, a phenicol used in veterinary medicine, replaced chloramphenicol in the NARMS *Campylobacter* testing panel in 2005.

State/Site	Population Size [*]	Nor Saln	n-Typhi no <i>nella</i>	Sal	<i>monella</i> Typhi	S	higella	Е. с	oli O157	Campylobacter [†]		
		n	(%)	n	(%)	n	(%)	n	(%)	n	(%)	
Alabama	4,587,564	49	(2.2%)	2	(0.6%)	12	(3.0%)	2	(0.9%)			
Alaska	676,301	4	(0.2%)	0	(0.0%)	1	(0.2%)	1	(0.4%)			
Arizona	6,178,251	46	(2.1%)	4	(1.2%)	26	(6.5%)	1	(0.4%)			
Arkansas	2,804,199	21	(1.0%)	1	(0.3%)	4	(1.0%)	6	(2.6%)			
California [‡]	26,240,388	214	(9.8%)	45	(13.9%)	2	(0.5%)	10	(4.3%)	34	(4.2%)	
Colorado	4,751,474	34	(1.6%)	7	(2.2%)	8	(2.0%)	5	(2.1%)	90	(11.0%)	
Connecticut	3,487,896	53	(2.4%)	4	(1.2%)	4	(1.0%)	2	(0.9%)	37	(4.5%)	
Delaware	850,366	12	(0.5%)	0	(0.0%)	1	(0.2%)	1	(0.4%)			
District of Columbia	585,419	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)			
Florida	18,019,093	47	(2.2%)	15	(4.6%)	0	(0.0%)	0	(0.0%)			
Georgia	9,318,715	102	(4.7%)	5	(1.5%)	55	(13.7%)	29	(12.4%)	144	(17.6%)	
Hawaii	1,275,264	15	(0.7%)	5	(1.5%)	3	(0.7%)	1	(0.4%)			
Houston, Texas [§]	2,169,248	34	(1.6%)	9	(2.8%)	16	(4.0%)	1	(0.4%)			
Idaho	1,461,183	9	(0.4%)	1	(0.3%)	0	(0.0%)	2	(0.9%)			
Illinois	12,759,673	79	(3.6%)	12	(3.7%)	15	(3.7%)	8	(3.4%)			
Indiana	6,294,124	45	(2.1%)	2	(0.6%)	2	(0.5%)	2	(0.9%)			
lowa	2,967,270	18	(0.8%)	0	(0.0%)	4	(1.0%)	3	(1.3%)			
Kansas	2,756,267	13	(0.6%)	0	(0.0%)	5	(1.2%)	1	(0.4%)			
Kentucky	4,199,440	30	(1.4%)	2	(0.6%)	9	(2.2%)	4	(1.7%)			
Los Angeles [¶]	9,880,908	63	(2.9%)	17	(5.2%)	6	(1.5%)	1	(0.4%)			
Louisiana	4,243,634	43	(2.0%)	0	(0.0%)	5	(1.2%)	4	(1.7%)			
Maine	1,313,355	9	(0.4%)	1	(0.3%)	1	(0.2%)	2	(0.9%)			
Maryland	5,602,258	59	(2.7%)	12	(3.7%)	9	(2.2%)	2	(0.9%)	51	(6.3%)	
Massachusetts	6,443,424	64	(2.9%)	3	(0.9%)	10	(2.5%)	3	(1.3%)			
Michigan	10,083,878	47	(2.2%)	5	(1.5%)	4	(1.0%)	2	(0.9%)			
Minnesota	5,143,134	40	(1.8%)	5	(1.5%)	11	(2.7%)	8	(3.4%)	156	(19.1%)	
Mississippi	2,896,713	36	(1.6%)	2	(0.6%)	1	(0.2%)	1	(0.4%)		, ,	
Missouri	5,832,977	55	(2.5%)	2	(0.6%)	24	(6.0%)	6	(2.6%)			
Montana	945,428	4	(0.2%)	0	(0.0%)	1	(0.2%)	1	(0.4%)			
Nebraska	1,759,779	14	(0.6%)	1	(0.3%)	7	(1.7%)	4	(1.7%)			
Nevada	2,484,196	18	(0.8%)	1	(0.3%)	7	(1.7%)	6	(2.6%)			
New Hampshire	1,308,824	10	(0.5%)	0	(0.0%)	1	(0.2%)	1	(0.4%)			
New Jersey	8,640,218	56	(2.6%)	27	(8.3%)	16	(4.0%)	12	(5.2%)			
New Mexico	1,937,916	13	(0.6%)	0	(0.0%)	9	(2.2%)	1	(0.4%)	41	(5.0%)	
New York**	11,116,461	92	(4.2%)	13	(4.0%)	5	(1.2%)	34	(14.6%)	130	(15.9%)	
New York City ^{††}	8,250,567	77	(3.5%)	52	(16.0%)	13	(3.2%)	6	(2.6%)			
North Carolina	8,845,343	82	(3.8%)	5	(1.5%)	3	(0.7%)	3	(1.3%)			
North Dakota	636,453	3	(0.1%)	0	(0.0%)	11	(2.7%)	6	(2.6%)			
Ohio	11,458,390	62	(2.8%)	9	(2.8%)	6	(1.5%)	7	(3.0%)			
Oklahoma	3,568,132	29	(1.3%)	0	(0.0%)	7	(1.7%)	2	(0.9%)			
Oregon	3,680,968	25	(1.1%)	3	(0.9%)	6	(1.5%)	3	(1.3%)	93	(11.4%)	
Pennsylvania	12,388,055	92	(4.2%)	7	(2.2%)	2	(0.5%)	3	(1.3%)			
Rhode Island	1,058,991	8	(0.4%)	2	(0.6%)	1	(0.2%)	1	(0.4%)			
South Carolina	4,324,799	9	(0.4%)	1	(0.3%)	1	(0.2%)	0	(0.0%)			
South Dakota	787,380	8	(0.4%)	1	(0.3%)	10	(2.5%)	3	(1.3%)			
Tennessee	6,068,306	91	(4.2%)	1	(0.3%)	9	(2.2%)	1	(0.4%)	40	(4.9%)	
Texas ^{‡‡}	21,198,286	66	(3.0%)	12	(3.7%)	10	(2.5%)	1	(0.4%)			
Utah	2,585,155	3	(0.1%)	2	(0.6%)	0	(0.0%)	0	(0.0%)			
Vermont	620,196	5	(0.2%)	0	(0.0%)	1	(0.2%)	1	(0.4%)			
Virginia	7,628,347	64	(2.9%)	20	(6.2%)	6	(1.5%)	6	(2.6%)			
Washington	6,360,529	37	(1.7%)	2	(0.6%)	8	(2.0%)	7	(3.0%)			
West Virginia	1,806,760	22	(1.0%)	0	(0.0%)	3	(0.7%)	5	(2.1%)			
Wisconsin	5,568,505	46	(2.1%)	4	(1.2%)	11	(2.7%)	8	(3.4%)			
Wyoming	512,573	7	(0.3%)	0	(0.0%)	10	(2.5%)	3	(1.3%)			
Total	298,362,973	2184	(100.0%)	324	(100.0%)	402	(100.0%)	233	(100.0%)	816	(100.0%)	

Table II: Population size and number of isolates received and tested, NARMS, 2006

* US Census Bureau, 2006

[†] Campylobacter isolates are submitted only from FoodNet sites; total population size of FoodNet sites was 44,531,182

[‡] Excluding Los Angeles County

§ Houston City

[¶] Los Angeles County

** Excluding New York City

⁺⁺ Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

Table III: Summary of trend analysis of the proportion of specific resistance phenotypes among *Campylobacter*, non-Typhi *Salmonella*, and *Salmonella* ser. Typhi isolates, 2006

Resistance Phenotype	Reference Year	Odds Ratio	[95% CI]*
Ciprofloxacin resistance in Campylobacter	1997	2.0	[1.3–3.1]
Nalidixic acid resistance in non-Typhi Salmonella	1996	9.5	[3.8–23.8]
Nalidixic acid resistance in Salmonella ser. Enteritidis	1996	_†	[2.7–45.4] [†]
Ceftiofur resistance in non-Typhi Salmonella	1996	29.8	[7.3–121.7]
Nalidixic acid resistance in Salmonella ser.Typhi	1999	5.2	[3.3–8.1]
ACSSuT resistance in <i>Salmonella</i> ser. Typhimurium [‡]	1996	0.5	[0.3–0.7]
MDR-AmpC resistance in <i>Salmonella</i> ser. Newport [§]	1996	_†	[1.4–infinity] [†]

* For logistic regression models that adjusted for site, odds ratios (ORs) (2006 vs. reference year) and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation.

[‡] Resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, and tetracycline.

[§] Resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, amoxicillinclavulanic acid, and ceftiofur, and decreased susceptibility to ceftriaxone (MIC $\ge 2 \mu g/mL$).

[†] Model included only year. In the analysis, the maximum likelihood estimate of the OR did not exist; only the 95% CIs, calculated using exact unconditional methods, are reported.

Surveillance and Laboratory Testing Methods

Surveillance Sites and Isolate Submissions

In 2006, NARMS conducted nationwide surveillance among approximately 298 million persons (2006 U.S. Census Bureau estimates). Public health laboratories systematically selected every 20th non-Typhi *Salmonella* (i.e., all *Salmonella* serotypes except serotype Typhi), *Shigella*, and *Escherichia coli* O157 isolate as well as every *Salmonella* ser. Typhi isolate received at their laboratories and forwarded these isolates to CDC for antimicrobial susceptibility testing.

Starting in 2005, a new scheme for *Campylobacter* isolate submission was initiated. Public health laboratories of the 10 state health departments that participated in CDC's Foodborne Diseases Active Surveillance Network (FoodNet) forwarded a representative sample of *Campylobacter* isolates to CDC for susceptibility testing. The FoodNet sites, representing approximately 45 million persons (2006 U.S. Census Bureau estimates), included California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Depending on burden of *Campylobacter* isolates for submission to CDC: all isolates received by Georgia, Maryland, New Mexico, Oregon, and Tennessee; every other isolate from California, Colorado, Connecticut, and New York; and every fifth isolate from Minnesota. From 1997 to 2004, one *Campylobacter* isolate was submitted each week from participating FoodNet sites to NARMS. This submission scheme was described in the 2004 NARMS Annual Report.

Testing of Salmonella, Shigella, and Escherichia coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and E. coli O157 isolates were tested using broth microdilution (Sensititre[®], Trek Diagnostics, Westlake, OH) to determine the minimum inhibitory concentration (MIC) for each of 15 antimicrobial agents: amikacin, ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline, and trimethoprimsulfamethoxazole (Table IV). Before 2004, sulfamethoxazole was used instead of sulfisoxazole to represent the sulfonamides. Interpretive criteria defined by CLSI were used when available. The resistance breakpoint for amikacin, according to CLSI guidelines, is $\geq 64 \mu g/mL$. In 2002 and 2003, a truncated broth microdilution series was used for amikacin testing (0.5-4 $\mu g/mL$). For isolates that grew in all amikacin dilutions on the Sensititre panel (MIC>4 $\mu g/mL$), ETest (AB BIODISK, Solna, Sweden) was performed to determine amikacin MIC. The amikacin ETest strip range of dilutions was 0.016-256 $\mu g/mL$. Since 2004, amikacin had a full range of dilutions (0.5-64 $\mu g/mL$) on the Sensititre panel (CMV1AGNF).

Table IV: Antimicrobial agents used for susceptibility testing for *Salmonella*, *Shigella*, and *Escherichia coli* 0157 isolates, NARMS, 2006

	Antimicrobial Agent	Antimicrobial Agent	Breakpoints								
CLSI Subclass	Antimicrobial Agent	Range (µg/mL)	Susceptible	Intermediate	Resistant						
	Amikacin	0.5–64	≤16	32	≥64						
Aminoglygogidog	Gentamicin	0.25–16	≤4	8	≥16						
Aminogrycosides	Kanamycin	8–64	≤16	32	≥64						
	Streptomycin*	32–64	≤32		≥64						
Aminopenicillins	Ampicillin	1–32	≤8	16	≥32						
β-Lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1/0.5–32/16	≤8 / ≤4	16/8	≥32 / ≥16						
Cephalosporin (1 st generation)	Cephalothin [†]	2–32	≤8	16	≥32						
Cephalosporins	Ceftiofur	0.12–8	≤2	4	≥8						
(3 rd generation)	Ceftriaxone	0.25–64	≤8	16–32	≥64						
Cephamycins	Cefoxitin	0.5–32	≤8	16	≥32						
Folate pathway inhibitors	Trimethoprim- sulfamethoxazole	0.12/2.4–4/76	≤2 / ≤38		≥4 / ≥76						
Phenicols	Chloramphenicol	2–32	≤8	16	≥32						
Quinclonco	Ciprofloxacin	0.015–4	≤1	2	≥4						
Quinoiones	Nalidixic acid	0.5–32	≤16		≥32						
Sulfonomidoo‡	Sulfamethoxazole	16–512	≤256		≥512						
Suitonamides	Sulfisoxazole	16–256	≤256		≥512						
Tetracyclines	Tetracycline	4–32	≤4	8	≥16						

No CLSI breakpoints; resistance breakpoint used in NARMS is ≥64 μg/mL. [†] Cephalothin has not been tested since 2003, but was tested in earlier years for *Salmonella*, *Shigella*, and *E. coli* O157. [‡] Sulfamethoxazole, which was tested during 1996–2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Additional Testing of Salmonella Strains

Cephalosporin Retesting of Isolates from 1996-1998

Review of *Salmonella* isolates tested in NARMS during 1996 to 1998 gave conflicting cephalosporin susceptibility results. In particular, some isolates previously reported in NARMS as ceftiofur-resistant exhibited a low ceftriaxone MIC and, in some cases, did not exhibit an elevated MIC to other β -lactams. Because these findings suggested that some previously reported results were inaccurate, we retested, using the 2003 NARMS Sensititre[®] plate, isolates of *Salmonella* tested in NARMS during 1996 to 1998 that exhibited an MIC $\geq 2 \mu g/mL$ to ceftiofur or ceftriaxone. The retest results were first included in the 2003 and 2004 NARMS annual reports.

Serotype Confirmation/Categorization

Salmonella serotype reported by the submitting laboratory was accepted with few exceptions. Serotype was confirmed by CDC for isolates that underwent subsequent molecular analysis for publication. Because of challenges associated with interpretation of tartrate fermentation assays, ability to ferment tartrate was confirmed for isolates reported as *Salmonella* ser. Paratyphi B by the submitting laboratory (serotype Paratyphi B is by definition unable to ferment L(+) tartrate). To distinguish *Salmonella* serotypes Paratyphi B and Paratyphi B var L(+) tartrate+ (formerly serotype Java), CDC performed Jordan's tartrate test and/or Kauffmann's tartrate test on all *Salmonella* ser. Paratyphi B isolates from 1996 to 2006 for which the tartrate result was not reported or was reported to be negative. Isolates negative for tartrate fermentation by both assays were categorized as serotype Paratyphi B. Isolates that were positive for tartrate fermentation by either assay were categorized as serotype Paratyphi B var L(+) tartrate+. Confirmation of other biochemical reactions or somatic and flagellar antigens was not performed at CDC.

Because of increased submissions of *Salmonella* ser. I 4,[5],12:i:- in 2006,, and recognition of the possibility that this serotype may have been under reported in previous years, isolates reported as serogroup B and tested in NARMS during 1996 to 2006 were reviewed for additional information; isolates that could be clearly identified as serogroup B, first-phase flagellar antigen "i", second phase flagellar antigen absent were categorized in this report as *Salmonella* ser. I 4,[5],12:i:-.

Testing of Campylobacter

Changes in testing methods in 2005

Starting in 2005, there were two major changes in the methodology used for *Campylobacter*. First, a surveillance scheme for selecting a representative sample of *Campylobacter* isolates for submission by FoodNet sites was implemented in 2005, which changed from a previous scheme that selected one *Campylobacter* isolate each week for submission during 1997 to 2004. In 2005 and 2006, *Campylobacter* isolates were susceptibility tested using Sensititre (Trek Diagnostics, Westlake, OH); isolates had been tested by Etest (AB BIODISK, Solna, Sweden) from 1997 to 2004. Second, florfenicol replaced chloramphenicol as the phenicol subclass representative drug, and telithromycin was added to the NARMS panel of agents tested in 2005.

Identification/Speciation and Antimicrobial Susceptibility Testing

In 2005 and 2006, isolates were confirmed as *Campylobacter* by determination of typical morphology using dark-field microscopy, and reactivity to catalase and oxidase tests. Identification of *C. jejuni* was performed using the hippurate hydrolysis test. Hippurate-positive isolates were identified as *C. jejuni*. Hippurate-negative isolates were further characterized with polymerase chain reaction (PCR) assay with specific targets for C. *jejuni (mapA or hipO* gene) or C. *coli*-specific *ceuE* gene (Linton et al 1997, Gonzales et al. 1997, Pruckler et al. 2006). The same methodology was used during 1997–2002.

In 2003 and 2004, putative *Campylobacter* isolates were identified as *C. jejuni* or *C. coli* using BAX® System PCR Assay according to the manufacturer's instructions (DuPont Qualicon, Wilmington, DE). Isolates not identified as *C. jejuni* or *C. coli* were further characterized by other PCR assays (Linton et al. 1996) or sent to the CDC *Campylobacter* Reference Laboratory.

Beginning in 2005, the broth microdilution methodology (Sensititre[®], Trek Diagnostics, Westlake, OH) was used to determine the MICs for nine antimicrobial agents: azithromycin, ciprofloxacin, clindamycin, erythromycin, florfenicol, gentamicin, nalidixic acid, telithromycin, and tetracycline (<u>Table V</u>). Florfenicol replaced chloramphenicol in the NARMS panel to represent the phenicol antimicrobial subclass. Similar to the 2004 report, CLSI interpretive criteria for erythromycin, ciprofloxacin, and tetracycline (published in 2006) and revised NARMS criteria for azithromycin were used for all years in this report. In annual reports published before 2004, these CLSI interpretive criteria were not available, and NARMS used resistance breakpoints for azithromycin and erythromycin that were lower than the new and revised breakpoints. In addition, revised NARMS interpretive criteria, adopted from the FDA-CVM arm of NARMS, have been used for clindamycin, gentamicin, and nalidixic acid since 2004. From 1997 to 2004, Etest® (AB Biomerieux, Solna, Sweden)was used for susceptibility testing of *Campylobacter* isolates.

2000										
	Antimicrobial Agent	Antimicrobial Agent	Breakpoints							
	Antimicrobial Agent		Susceptible	Intermediate	Resistant					
Aminoglycosides	Gentamicin	0.12–32 0.016–256 [*]	≤2	4	≥8					
Ketolides	Telithromycin [†]	0.015–8	≤4	8	≥16					
Lincosamides	Clindamycin	0.03–16 0.016–256 [*]	≤2	4	≥8					
Macrolides	Azithromycin	0.015–64 0.016–256 [*]	≤2	4	≥8					
Aminoglycosides Ketolides Lincosamides Macrolides Phenicols Quinolones	Erythromycin	0.03–64 0.016–256 [*]	≤8	16	≥32					
Phonicols	Chloramphenicol [‡]	0.016–256 [*]	≤8	16	≥32					
FIICHICOIS	Florfenicol [§]	0.03–64	≤4	N/A	N/A					
Quinclones	Ciprofloxacin	0.015–64 0.002–32 [*]	≤1	2	≥4					
CLSI Subclass Aminoglycosides Ketolides Lincosamides Macrolides Phenicols Quinolones Tetracyclines	Nalidixic acid	4–64 0.016–256 [*]	≤16	32	≥64					
Tetracyclines	Tetracycline	0.06–64 0.016–256 [*]	≤4	8	≥16					

Table V: Antimicrobial agents used for susceptibility testing of *Campylobacter* isolates, NARMS, 1997–2006

^{*} Etest dilution range used from 1997–2004.

[†]Telithromycin added to NARMS panel in 2005.

[‡]Chloramphenicol, tested from 1997–2004, was replaced by florfenicol in 2005.

[§] Currently only a susceptible breakpoint has been established. In this report isolates with a MIC ≥8 µg/mL are categorized as resistant.

Retesting

Known mechanisms of quinolone resistance in *Campylobacter* are expected to confer equivalent susceptibilities to nalidixic acid and ciprofloxacin. Similarly, known mechanisms of macrolide resistance are expected to confer equivalent susceptibilities to erythromycin and azithromycin. Confirmatory testing of isolates with conflicting results was performed by broth microdilution methods (Sensititre[®], Trek Diagnostics, Westlake, OH). Totals reported here reflect the retest results.

Data Analysis

For all pathogens, MICs were categorized as resistant, intermediate (if applicable), or susceptible. Analysis was restricted to one isolate (per genus under surveillance) per patient based on the first isolate collected for non-Typhi *Salmonella*, *E.coli* 0157, *Shigella*, and *Campylobacter*. If two or more isolates were received for the same patient for *Salmonella* Typhi, the first blood isolate collected would be included in analysis. If no blood isolates were submitted, the first isolate collected would be included in analysis. Where established, CLSI interpretive criteria were used; streptomycin resistance was defined as MIC \geq 64 µg/mL (Table IV). The 95% confidence intervals (CIs) for the percentage of resistant isolates are included in the MIC distribution tables. The 95% CIs were calculated using the Clopper-Pearson exact method. Multidrug resistance by CLSI antimicrobial subclass was defined as resistance to two or more subclasses.

When describing results for several years, multidrug resistance for *Salmonella* and *E. coli* O157 isolates was limited to the nine CLSI subclasses tested in all years from 1996 through 2005 represented by 13 agents: amoxicillin-clavulanic acid, ampicillin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline, and trimethoprim-sulfamethoxazole. For *Salmonella* ser. Typhi and *Shigella*, results for several years included the nine CLSI subclasses tested in all years from 1999 through 2006 represented by 14 agents (13 antimicrobial agents mentioned above and amikacin). Similarly, when describing multidrug resistance for several years for *Campylobacter* isolates, multidrug resistance was limited to the five CLSI subclasses tested in all years from

1997 through 2006, represented by ciprofloxacin, chloramphenicol/florfenicol, clindamycin, erythromycin, nalidixic acid, and tetracycline.

Logistic regression was performed to assess the change in antimicrobial resistance among *Salmonella* and *Campylobacter* isolates tested in NARMS in 2006 compared with resistance in the reference years: 1996 for non-Typhi *Salmonella*, 1999 for *Salmonella* ser. Typhi, and 1997 for *Campylobacter*. The analysis included the following:

- 1. Non-Typhi Salmonella: resistance to nalidixic acid, resistance to ceftiofur, resistance to one or more CLSI subclasses
- 2. Salmonella ser. Typhimurium: resistance to at least ACSSuT
- 3. Salmonella ser. Enteritidis: resistance to nalidixic acid
- 4. Salmonella ser. Newport: resistance to at least MDR-AmpC
- 5. Salmonella ser. Typhi: resistance to nalidixic acid
- 6. Campylobacter species: resistance to ciprofloxacin
- 7. C. jejuni: resistance to ciprofloxacin

The final regression models for non-Typhi Salmonella, and final models for serotypes Typhimurium and Typhi, adjusted for site using the nine Public Health Service geographic regions described in the Public Health Laboratory Information System (PHLIS [http://www.cdc.gov/ncidod/dbmd/phlisdata/]) based on the patient's state of residence. The PHLIS regions are East North Central, East South Central, Mid-Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. For all regression models that adjusted for site, odds ratios (ORs), and 95% confidence intervals (CIs) were calculated using unconditional maximum likelihood estimation. In the final regression models for serotypes Enteritidis and Newport, which included only year and used exact unconditional methods, the maximum likelihood estimate of the OR did not exist; only the 95% CIs are reported. For Campylobacter, the final regression models adjusted for site using patient's state of residence. The adequacy of model fit was assessed in several ways. The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. The Hosmer and Lemeshow goodness-of-fit test also was used. Finally, residual analysis was performed to examine the influence of individual observations. Having assessed that the main effect of year was significant, we reported odds ratios (for 2006 vs. the reference year) that did not include 1.0 in the 95% Cl as significant.

Results

1. Non-Typhi Salmonella

In non-Typhi *Salmonella*, an increase in resistance to two clinically important subclasses, (quinolones, represented by nalidixic acid and third-generation cephalosporins, represented by ceftiofur), was observed from 1996 to 2006. Nalidixic acid resistance increased from 0.4% to 2.7% and ceftiofur resistance increased from 0.2% to 3.6%. Resistance to at least ACSSuT was one of the most common multidrug-resistance phenotypes in 2006. This phenotype was found among 5.5% of non-Typhi *Salmonella* isolates, lower in prevalence than in 2005 (6.9%), and 1996 (8.8%).

In 2006, CDC received 2,276 non-Typhi *Salmonella* isolates, of which 2,184 (96.0%) were viable non-duplicates and tested for antimicrobial susceptibility (<u>Table II</u>). The antimicrobial agent with the highest prevalence of resistance was tetracycline (13.4%), followed by sulfisoxazole (12.0%), ampicillin (10.9%), and streptomycin (10.7%).

Fluoroquinolones (e.g., ciprofloxacin) and third-generation cephalosporins (e.g., ceftriaxone) are commonly used to treat severe *Salmonella* infections. Nalidixic acid is an elementary quinolone; resistance to nalidixic acid correlates with decreased susceptibility to ciprofloxacin and possible treatment failure. Ceftiofur is a third-generation cephalosporin used in food animals in the United States; resistance to ceftiofur correlates with decreased susceptibility to ceftriaxone. In 2006, the prevalence of resistance among non-Typhi *Salmonella* isolates was 2.7% for quinolones (represented by nalidixic acid) and 3.6% for third-generation cephalosporins (represented by ceftiofur) (<u>Table 1.02</u>).

The prevalence of nalidixic acid resistance increased from 0.4% (5/1,324) in 1996 to 2.7% (60/2,184) in 2006 (<u>Table 1.02</u>), a statistically significant increase (OR=9.5, 95% CI [3.8, 23.8]). The prevalence of ceftiofur resistance increased from 0.2% (2/1,324) in 1996 to 3.6% (79/2,184) in 2006, a statistically significant increase (OR=29.8, 95% CI [7.3, 121.7]).

Of the 2,184 non-Typhi Salmonella isolated in 2006, 1,752 (80.2%) showed no resistance to the drugs tested, similar to 2005 (80.6%) (Table 1.03). In 2006, 432 (19.8%) were resistant to one or more CLSI subclasses, 319 (14.6%) to two or more subclasses, 258 (11.8%) to three or more subclasses, 183 (8.4%) to four or more subclasses, and 146 (6.7%) to five or more subclasses. There was a statistically significant decline in resistance to one or more subclass from 33.8% in 1996 to 19.8% in 2006 (OR=0.6, 95% CI [0.5, 0.7]).

In 2006, resistance to at least ACSSuT was one of the most common multidrug-resistance phenotypes. This phenotype was found among 5.5% of non-Typhi *Salmonella* isolates, lower in prevalence than in 2005 (6.9%), and 1996 (8.8%). Another common multidrug-resistant phenotype among non-Typhi *Salmonella* was resistance to at least MDR-AmpC, and 2.0% of the isolates displayed this pattern. The prevalence of the MDR-AmpC phenotype increased from 0% (0/1,324) in 1996 to 2.0% (43/2,184) in 2006. Isolates that demonstrate the MDR-AmpC phenotype also exhibit decreased susceptibility ($\geq 2 \mu g/mL$) to ceftriaxone. Six (0.3%) isolates were resistant to both nalidixic acid and ceftiofur (Table 1.03); this pattern was first detected in 1997.

In 2006, serotypes were identified for a higher proportion of isolates in NARMS (97.3%) than in the Public Health Laboratory Information System (PHLIS) (86.1%) (<u>Table 1.04</u>). The 20 most common serotypes accounted for 81.8% of isolates in NARMS and 70.2% in PHLIS. The same three most common serotypes were reported in NARMS and PHLIS, which accounted for 47.4% of isolates in NARMS and 41.9% in PHLIS. In NARMS; 2.2% of isolates were not completely serotyped in 2006, which was an increase compared with 1.0% in 2005. In 2006 *Salmonella* ser. Enteritidis was the most commonly reported serotype, whereas Typhimurium was the most common serotype reported to NARMS in previous years. *Salmonella* subspecies I 4,[5],12:i- was the fourth most prevalent serotype reported to NARMS in 2006, whereas it was the 12th most common in 2005. It is not yet clear whether isolation rates or changes in reporting are responsible for these serotype prevalence changes.

Figure 1.01: How to read a squashtogram

			Percent with Intermediate resistance		Percent 95% con resistant for perce				ence inte esistar	erval it		J								Je			
Rank		Antib	iotic	%I [†]	% of is	olates	CII§	0.015	0.03	0.06	0.125	0.25	Perce	entofal	l isolat	es with 4	MIC (µ 8	g/mL) ¹ 16	32	64	128	256	512
	Aminoglycosides	Amika	Critically important antimicrobial agents	0.0	0.0	[0.0-	-0.3]			0.00		0.20	13.3	69.5	- 15.4	1.7	0.1				0.0		
		Gentar	nicin	0.3	2.1	[1.6-	-2.9]	9	Sum of 6 susce	percer eptible	nts =	70.4	25.7	1.3	0.0	0.0	0.3	1.1	1.0				
		Strepto	mycin	NA	11.0	[9.6–	12.4]												89.0	5.9	5.0		
	Aminopenicillins	Ampici	llin	0.0	11.3	[10.0-	-12.8]							76.0	11.9	0.6	0.2		0.1	11.2			
I.	β-lactamase inhibitor	Amoxi	illin-clavulanic acid	5.1	3.2	[2.5-	4.0]						0	Sum of % interr	percen nediate	ts =	2.8	5.1	1.0	21			-
	Cephalosporins (3rd generation)	Ceftiof	ır	0.2	2.9	[2.2-	-3.7]				0.5	0.9	58.2	36.5	0.7	0.2	0.1	2.8		Sun % r	n of peri esistant	cents =	
		Ceftria	kone	2.5	0.1	[0.0-	-0.4]					97.0	0.1			0.0	0.2	1.3	1.2	0.0	0.1		
	Quinolones	Ciprofl	oxacin	0.0	0.0	[0.0-	-0.3]	96.2	1.0	0.3	1.1	0.6	0.8	0.0			0.0						
		Nalidix	ic acid	NA	2.4	[1.8-	-3.2]						0.1	0.5	31.5	63.8	1.2	0.4		2.4			
	Aminoglycosides	Kanar	Highly important	0.1	3.4	[2.7-	-4.3]										96.4	0.0	0.1	0.2	3.2		
	Cephamycins	Cefoxi	in	0.0	3.0	[2.3-	-3.9]						0.4	35.9	47.2	12.3	1.1	0.0	0.7	2.3			
	Folate pathway inhibitors	Trimet	noprim-sulfamethoxazole	NA	1.7	[1.2-	-2.3]				91.2	6.7	0.3	0.0			1.7						
l "	Phenicols	Chlora	mphenicol	0.5	7.7	[6.6-	-9.0]						Г		2.0	64.6	25.1	0.5	0.1	7.6			
	Sulfonamides	Sulfiso	xazole	NA	12.5	[11.1-	-14.0]				Sin	igle line	e is up	per limi	t of			23.4	Do	ouble lii	ne is up	per limit	; of
	Tetracyclines	Tetrac	cline	0.1	13.7	[12.3-	-15.3]				inte	susceptibility / lower limit of intermediate resistance			86.2	0.1	1.4	lo	ver limi	t of full	resistan	се	

Figure 1.02: Proportional chart, a categorical graph of a squashtogram

Dealst	•	Antibiotic		% of is	olates	Percent of all isolates with MIC (μg/mL) [¶]															
Rank		Antibiotic	%l†	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–0.9]						2.9	74.4	20.9	1.7							
		Gentamicin	0.2	2.7	[1.4–4.8]					60.0	34.6	2.5			0.2	1.0	1.7				
		Streptomycin	NA	29.5	[25.1–34.2]												70.5	17.2	12.3		
	Aminopenicillins	Ampicillin	0.0	28.3	[23.9–32.9]							61.4	10.1	0.2				28.3			
T	β-lactamase inhibitor	Amoxicillin-clavulanic acid	14.5	4.4	[2.6-6.9]							69.8	2.0	0.7	8.	14.5	0.2	4.2			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	4.2	[2.5-6.6]					0.5	48.9	45.7	0.7			4.2					
	, ,	Ceftriaxone	2.2	0.2	[0.0–1.4]					95.8					1.7	1.0	1.2	0.2			
	Quinolones	Ciprofloxacin	0.0	0.2	[0.0–1.4]	96.3	2.0		0.2	0.2	1.0				0.2						
		Nalidixic acid	NA	0.7	[0.2–2.1]							0.2	48.4	49.1	0.7	0.7		0.7	_		
	Aminoglycosides	Kanamycin	0.0	5.2	[3.2–7.8]										94.6	0.2	[⊄		5.2)	
	Cephamycins	Cefoxitin	0.2	3.9	[2.3-6.3]							26.8	60.4	7.4	1.2	0.2	2.2	1.7			
п	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	2.2	[1.0-4.2]			<	75.9	21.4	0.2	0.2	>		2.2						
	Phenicols	Chloramphenicol	0.7	22.1	[18.2–26.5]					Τ			2.5	49.9	24.8	0.7		221			
	Sulfonamides	Sulfisoxazole	NA	33.4	[28.8–38.2]											11.3	51.6	37			33.4
	Tetracyclines	Tetracycline	0.0	31.7	[27.2–36.5]									68.3		3.9	13.0	14.7			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases and the few alternatives of the few alternative important (Rank I) as (1) sole therapies or aused by organisms that may acquire [†]Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensitive plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitive plate. Numbers listed for the lowest tested concentrations represent the

precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when availa

Antimicrobial Agent

Amikacin Gentamicin Streptomycin Ampicillin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Ciprofloxacin Nalidixic acid Kanamycin Cefoxitin Trimethoprim-sulfamethoxazole Chloramphenicol Sulfisoxazole

Tetracycline

Susceptible, Intermediate, and/Resistant Proportion

S Т R

Table 1.01: Minimum inhibitory concentrations (MICs) and resistance of non-Typhi Salmonella isolates to antimicrobial agents, 2006 (N=2,184)

Bank		Antibiotic		% of is	olates						Perce	nt of all	isolate	es with	MIC (µ	g/mL) [¶]					
Ralik		Antibiotic	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0-0.2]						9.9	69.8	18.5	1.7	0.1	0.0					
		Gentamicin	0.5	2.0	[1.5–2.7]					64.6	31.7	1.1	0.2	0.0	0.5	0.7	1.3				
		Streptomycin	NA	10.7	[9.4–12.0]												89.3	5.3	5.4		
	Aminopenicillins	Ampicillin	0.0	10.9	[9.6–12.3]							79.6	8.9	0.5				10.9			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	3.5	3.7	[3.0-4.6]							86.5	2.5	0.6	3.2	3.5	1.4	2.3			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	3.6	[2.9–4.5]				0.2	0.7	49.7	45.0	0.8		0.0	3.6					
		Ceftriaxone	2.8	0.2	[0.0–0.5]					96.3	0.0			0.1	0.5	1.5	1.4	0.1	0.1		
	Quinolones	Ciprofloxacin	0.0	0.1	[0.0–0.3]	94.2	2.5	0.2	1.4	0.7	0.8	0.0			0.1	•					
		Nalidixic acid	NA	2.7	[2.1–3.5]							0.4	40.7	55.0	0.8	0.3	0.1	2.7			
	Aminoglycosides	Kanamycin	0.2	2.9	[2.2–3.7]										96.7	0.2	0.2	0.0	2.8		
	Cephamycins	Cefoxitin	0.3	3.5	[2.8–4.4]						0.3	28.5	55.4	11.0	0.9	0.3	1.5	2.0			
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	1.6	[1.2–2.3]				88.4	9.5	0.4	0.1			1.6						
	Phenicols	Chloramphenicol	0.7	6.4	[5.4–7.5]								1.9	61.0	29.9	0.7		6.4			
	Sulfonamides	Sulfisoxazole	NA	12.0	[10.7–13.5]											14.6	51.6	20.7	1.1	0.0	12.0
	Tetracyclines	Tetracycline	0.1	13.4	[12.0–14.9]									86.5	0.1	1.0	3.9	8.6			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

¹Percent of isolates that were resistant [§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 1.03: Antimicrobial resistance pattern for non-Typhi Salmonella, 2006

Susceptible, Intermediate, and Resistant Proportion Antimicrobial Agent Amikacin Gentamicin Streptomycin Ampicillin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Ciprofloxacin Nalidixic acid Kanamycin Cefoxitin Trimethoprim-sulfamethoxazole Chloramphenicol Sulfisoxazole Tetracycline

Year			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total	solatos		1324	1301	1460	1495	1377	1419	2008	1864	1794	2052	2184
Total		Antibiotic	1024	1001	1400	1400	10/1	1410	2000	1004	1104	2002	2104
Rank	Subclass	(Resistance breakpoint)											
	Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	Tested	0	0	1	0	0	0	0	0	1	0
		Gentamicin	4.8%	2.9%	2.8%	2.1%	2.7%	1.9%	1.3%	1.4%	1.3%	2.1%	2.0%
		(MIC ≥ 16)	63	38	41	32	37	27	27	26	24	44	44
		Streptomycin	20.6%	21.4%	18.6%	16.7%	16.3%	17.0%	13.2%	15.0%	11.8%	11.0%	10.7%
		(MIC ≥ 64)	273	278	272	250	224	241	265	279	212	225	233
	Aminopenicillins	Ampicillin	20.7%	18.3%	16.5%	15.5%	15.9%	17.4%	12.9%	13.6%	12.0%	11.3%	10.9%
		(MIC ≥ 32)	274	238	241	232	219	247	259	254	216	232	238
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.1%	1.0%	1.7%	2.3%	3.9%	4.7%	5.3%	4.6%	3.7%	3.2%	3.7%
		(MIC ≥ 32)	15	13	25	34	54	66	106	86	67	65	81
	Cephalosporins (3rd generation)	Ceftiofur	0.2%	0.5%	0.8%	2.0%	3.2%	4.1%	4.3%	4.5%	3.4%	2.9%	3.6%
		(MIC ≥ 8)	2	6	12	30	44	58	87	83	61	60	79
		Ceftriaxone	0.0%	0.1%	0.0%	0.3%	0.0%	0.0%	0.2%	0.4%	0.6%	0.1%	0.2%
		(MIC ≥ 64)	0	1	0	5	0	0	4	8	10	3	4
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.1%	0.1%	0.4%	0.2%	0.0%	0.2%	0.2%	0.0%	0.1%
		(MIC ≥ 4)	0	0	1	1	5	3	1	3	4	1	2
		Nalidixic acid	0.4%	0.9%	1.4%	0.9%	2.5%	2.6%	1.8%	2.3%	2.6%	2.4%	2.7%
		(MIC ≥ 32)	5	12	20	14	34	37	36	42	47	50	60
	Aminoglycosides	Kanamycin	5.0%	5.1%	5.7%	4.3%	5.6%	4.8%	3.8%	3.4%	2.8%	3.4%	2.9%
		(MIC ≥ 64)	66	67	83	65	77	68	76	64	50	70	63
	Cephalosporin (1 st generation)	Cephalothin	2.9%	2.2%	2.3%	3.5%	4.0%	4.0%	5.0%	5.4%	Not	Not	Not
		(MIC ≥ 32)	39	29	33	53	55	57	101	100	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	Not	Not	Not	3.2%	3.4%	4.3%	4.2%	3.5%	3.0%	3.5%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	44	48	86	79	62	62	77
п	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	3.9%	1.8%	2.3%	2.0%	2.1%	2.0%	1.4%	1.9%	1.8%	1.7%	1.6%
		(MIC ≥ 4)	51	24	34	30	29	28	28	36	32	34	36
	Phenicols	Chloramphenicol	10.6%	10.1%	9.9%	9.2%	10.1%	11.6%	8.6%	10.0%	7.6%	7.7%	6.4%
		(MIC ≥ 32)	140	131	145	137	139	164	172	187	136	159	139
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	20.3%	22.8%	19.4%	18.0%	17.1%	17.7%	12.8%	15.0%	13.2%	12.5%	12.0%
		(MIC ≥ 512)	269	297	283	269	235	251	258	280	237	256	263
	Tetracyclines	Tetracycline	24.2%	21.7%	20.2%	19.3%	18.6%	19.7%	14.9%	16.3%	13.5%	13.7%	13.4%
	1	(MIC > 16)	320	282	295	289	256	280	200	303	242	282	293

Table 1.02: Percentage and number of non-Typhi Salmonella isolates resistant to antimicrobial agents, 1996-2006

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. [†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 1.03: Resistance patterns of non-Typhi Salmonella isolates, 1996-2006

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	1324	1301	1460	1495	1377	1419	2008	1864	1794	2052	2184
	%	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n	n
No resistance detected	66.2%	68.4%	72.9%	74.2%	74.4%	72.3%	79.0%	77.7%	79.6%	80.6%	80.2%
	876	890	1064	1109	1024	1026	1586	1449	1428	1654	1752
Resistance ≥ 1 CLSI subclass*	33.8%	31.6%	27.1%	25.8%	25.6%	27.7%	21.0%	22.3%	20.4%	19.4%	19.8%
	448	411	396	386	353	393	422	415	366	398	432
Resistance ≥ 2 CLSI subclasses*	27.0%	24.1%	22.6%	20.4%	20.2%	22.1%	15.8%	17.7%	15.0%	14.8%	14.6%
	358	314	330	305	278	314	318	330	269	304	319
Resistance ≥ 3 CLSI subclasses*	18.1%	17.7%	16.7%	15.1%	15.6%	16.8%	12.2%	14.3%	11.7%	12.0%	11.8%
	240	230	244	225	215	239	244	266	210	247	258
Resistance ≥ 4 CLSI subclasses*	13.7%	13.7%	13.1%	12.2%	12.9%	14.2%	9.9%	11.6%	9.4%	9.1%	8.4%
	181	178	191	183	178	202	199	216	168	186	183
Resistance ≥ 5 CLSI subclasses*	10.0%	9.9%	10.1%	8.6%	9.9%	10.5%	8.3%	9.9%	8.1%	7.6%	6.7%
	132	129	147	129	137	149	167	185	146	156	146
At least ACSSuT [†]	8.8%	9.5%	8.9%	8.4%	8.9%	10.0%	7.8%	9.3%	7.1%	6.9%	5.5%
	116	124	130	125	122	142	156	173	128	141	121
At least ACSuTm [‡]	0.8%	0.4%	0.9%	0.9%	1.0%	0.5%	1.0%	1.2%	0.6%	0.9%	0.7%
	10	5	13	14	14	7	21	23	10	18	15
At least ACSSuTAuCf [§]	0.0%	0.3%	0.3%	1.5%	2.6%	2.5%	3.3%	3.2%	2.3%	2.0%	2.0%
	0	4	5	23	36	36	67	60	42	41	43
At least MDR-AmpC [¶]	0.0%	0.3%	0.3%	1.5%	2.6%	2.5%	3.3%	3.2%	2.3%	2.0%	2.0%
	0	4	5	23	36	36	67	60	42	41	43
Resistance to quinolone** and cephalosporin ^{††}	0.0%	0.2%	0.1%	0.1%	0.3%	0.3%	0.2%	0.2%	0.4%	0.3%	0.3%
	0	2	1	1	4	4	5	4	7	7	6

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline [‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 µg/mL)

Resistance to nalidixic acid (MIC \ge 32) or decreased susceptibility to ciprofloxacin (MIC \ge 0.12) ¹¹Decreased susceptibility to ceftiofur (MIC \ge 2) or ceftriaxone (MIC \ge 2)

Table 1.04: Twenty most common non-Typhi Salmonella serotypes in NARMS and the Public Health Laboratory Information System, 2006

	NARMS				PHLIS		
		lso	lates			lso	lates
Rank	Serotype	n	(%)	Rank	Serotype	n	(%)
1	Enteritidis	412	(18.9%)	1	Typhimurium	6872	(17.0%)
2	Typhimurium	407	(18.6%)	2	Enteritidis	6740	(16.6%)
3	Newport	217	(9.9%)	3	Newport	3373	(8.3%)
4	l 4,[5],12:i:-	105	(4.8%)	4	Heidelberg	1495	(3.7%)
5	Heidelberg	102	(4.7%)	5	Javiana	1433	(3.5%)
6	Javiana	80	(3.7%)	6	I 4,[5],12:i:-	1200	(3.0%)
7	Montevideo	62	(2.8%)	7	Montevideo	1061	(2.6%)
8	Paratyphi B var. L(+) tartrate+	49	(2.2%)	8	Muenchen	753	(1.9%)
9	Oranienburg	48	(2.2%)	9	Oranienburg	719	(1.8%)
10	Muenchen	45	(2.1%)	10	Mississippi	604	(1.5%)
11	Agona	42	(1.9%)	11	Saintpaul	588	(1.5%)
12	Saintpaul	30	(1.4%)	12	Braenderup	561	(1.4%)
13	Braenderup	29	(1.3%)	13	Agona	538	(1.3%)
14	Thompson	26	(1.2%)	14	Infantis	491	(1.2%)
15	Stanley	25	(1.1%)	15	Thompson	447	(1.1%)
16	Mississippi	24	(1.1%)	16	Paratyphi B var. L(+) tartrate+	417	(1.0%)
17	Infantis	22	(1.0%)	17	Stanley	315	(0.8%)
18	Hadar	22	(1.0%)	18	Tennessee	312	(0.8%)
19	Tennessee	21	(1.0%)	19	Hadar	275	(0.8%)
20	Berta	19	(0.9%)	20	Bareilly	256	(0.7%)
	Subtotal	1787	(81.8%)		Subtotal	28450	(70.2%)
	All other serotypes	339	(15.5%)		All other serotypes	6459	(15.9%)
	Unknown serotype	6	(0.3%)		Unknown serotype	4042	(10.0%)
	Partially serotyped	49	(2.2%)		Partially serotyped	1448	(3.6%)
	Rough/Nonmotile isolates	3	(0.1%)		Rough/Nonmotile isolates	110	(0.3%)
	Subtotal	397	(18.2%)		Subtotal	12059	(29.8%)
	Grand Total	2184	(100.0%)		Grand Total	40509	(100.0%)

A. Salmonella ser. Enteritidis

In 2006, *Salmonella* ser. Enteritidis was the most common non-Typhi *Salmonella* serotype in NARMS. Most serotype Enteritidis isolates had no detected resistance. However, nalidixic acid resistance increased from 0.9% in 1996 to 7.0% in 2006 (95% CI [2.7, 45.4]) (<u>Table 1.06</u>).

In 2006, *Salmonella* ser. Enteritidis was the most common non-Typhi *Salmonella* serotype identified in NARMS, accounting for 18.9% (412/2,184) of non-Typhi *Salmonella* isolates (<u>Table 1.04</u>). Resistance was rare among serotype Enteritidis isolates tested in 2006. Most (88.6%) of the serotype Enteritidis isolates tested in 2006 had no detected resistance (<u>Table 1.07</u>). However, there was a statistically significant increase in nalidixic acid resistance from 0.9% in 1996 to 7.0% in 2006 (95% CI [2.7, 45.4]) (<u>Table 1.06</u>). Serotype Enteritidis was the most prevalent (48.3%) non-Typhi *Salmonella* serotype that had resistance to nalidixic acid (<u>Table 1.20</u>).

Table 1.05: Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Enteritidis isolates to antimicrobial agents, 2006 (N=412)

Bank [*]		Antibiotic		% of is	olates						Percer	nt of all	isolate	es with	MIC (µ	g/mL) [¶]					
Ralik		Antibiotic	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–0.9]						25.5	63.8	9.5	1.2							
		Gentamicin	0.0	0.2	[0.0–1.3]					82.5	16.7	0.5					0.2				
		Streptomycin	NA	1.2	[0.4–2.8]												98.8	0.2	1.0		
	Aminopenicillins	Ampicillin	0.0	4.4	[2.6–6.8]							84.5	11.2					4.4			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.5	0.5	[0.1–1.7]							93.4	2.2	1.2	2.2	0.5	0.2	0.2			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	0.5	[0.1–1.7]				0.2	0.5	30.1	68.4	0.2			0.5					
		Ceftriaxone	0.0	0.0	[0.0-0.9]					99.5					0.5						
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0–0.9]	86.7	6.1	0.2	5.6	1.2	0.2					•	•				
		Nalidixic acid	NA	7.0	[4.8–10.0]								18.9	73.1	0.7	0.2		7.0			
	Aminoglycosides	Kanamycin	0.0	0.2	[0.0–1.3]										99.8				0.2		
	Cephamycins	Cefoxitin	0.0	0.5	[0.1–1.7]						0.5	25.5	69.9	3.4	0.2		0.5				
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	0.5	[0.1–1.7]				90.3	8.7	0.5				0.5						
	Phenicols	Chloramphenicol	0.0	0.0	[0.0-0.9]								1.5	71.1	27.4						
	Sulfonamides	Sulfisoxazole	NA	1.5	[0.5–3.1]											11.4	63.3	23.3	0.5		1.5
	Tetracyclines	Tetracycline	0.2	1.7	[0.7–3.5]									98.1	0.2		0.2	1.5			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

¹Percent of isolates that were resistant [§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance.

The unshaded areas indicate the dilution range of the sensitire plates used to test isolates. Single vertical bars indicate the oreaxpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensitire plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs greater tested concentration. CLSI breakpoints were used when available.

Figure 1.04: Antimicrobial resistance pattern for Salmonella ser. Enteritidis, 2006

Table 1.06: Percentage and number of Salmonella ser. Enteritidis isolates resistant to antimicrobial agents, 1996-2006

Year	•		1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Is	olates		351	301	244	269	319	277	337	257	271	384	412
Rank	Subclass	Antibiotic (Resistance breakpoint)											
	Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	I ested	0	0	0	0	0	0	0	0	0	0
		Gentamicin	4.8%	0.3%	0.4%	0.0%	0.3%	0.0%	0.3%	0.4%	0.4%	0.8%	0.2%
		(MIC ≥ 16)	17	1	1	0	1	0	1	1	1	3	1
		Streptomycin	2.0%	4.3%	1.6%	2.2%	0.0%	1.4%	1.8%	1.2%	2.2%	1.0%	1.2%
		(MIC ≥ 64)	7	13	4	6	0	4	6	3	6	4	5
	Aminopenicillins	Ampicillin	20.5%	11.3%	6.1%	10.8%	7.5%	8.7%	7.1%	2.3%	4.1%	2.9%	4.4%
		(MIC ≥ 32)	72	34	15	29	24	24	24	6	11	11	18
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6%	0.0%	0.0%	0.4%	0.0%	1.4%	0.6%	0.0%	0.0%	0.8%	0.5%
		(MIC ≥ 32)	2	0	0	1	0	4	2	0	0	3	2
	Cephalosporins (3 rd generation)	Ceftiofur	0.0%	0.3%	0.0%	0.4%	0.0%	2.2%	0.0%	0.0%	0.0%	0.5%	0.5%
		(MIC ≥ 8)	0	1	0	1	0	6	0	0	0	2	2
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0	0
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.9%	1.7%	2.0%	2.2%	2.2%	4.3%	3.9%	4.7%	6.6%	4.7%	7.0%
		(MIC ≥ 32)	3	5	5	6	7	12	13	12	18	18	29
	Aminoglycosides	Kanamycin	0.0%	0.7%	0.4%	0.4%	0.3%	0.7%	0.3%	0.0%	0.7%	0.3%	0.2%
		(MIC ≥ 64)	0	2	1	1	1	2	1	0	2	1	1
	Cephalosporin (1 st generation)	Cephalothin	4.0%	1.3%	0.0%	1.9%	0.9%	1.1%	0.6%	1.2%	Not	Not	Not
		(MIC ≥ 32)	14	4	0	5	3	3	2	3	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	Not	Not	Not	0.0%	0.4%	0.0%	0.0%	0.0%	1.0%	0.5%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	0	1	0	0	0	4	2
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	6.6%	1.3%	0.8%	0.7%	0.0%	0.7%	0.6%	0.8%	0.0%	0.5%	0.5%
		(MIC ≥ 4)	23	4	2	2	0	2	2	2	0	2	2
	Phenicols	Chloramphenicol	0.0%	0.7%	0.0%	0.4%	0.0%	0.0%	0.6%	0.4%	0.4%	0.5%	0.0%
		(MIC ≥ 32)	0	2	0	1	0	0	2	1	1	2	0
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	8.5%	9.0%	2.0%	3.0%	0.9%	2.2%	1.8%	1.2%	1.8%	1.6%	1.5%
		(MIC ≥ 512)	30	27	5	8	3	6	6	3	5	6	6
	Tetracyclines	Tetracycline	16.8%	9.6%	6.6%	8.2%	1.9%	1.8%	4.5%	1.6%	3.3%	2.3%	1.7%
		(MIC ≥ 16)	59	29	16	22	6	5	15	4	9	9	7

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. [†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 1.07: Resistance patterns of Salmonella ser. Enteritidis isolates, 1996–2006

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	351	301	244	269	319	277	337	257	271	384	412
	%	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n	n
No resistance detected	73.5%	77.4%	87.7%	83.6%	89.0%	86.6%	87.2%	91.8%	87.1%	91.9%	88.6%
	258	233	214	225	284	240	294	236	236	353	365
Resistance ≥ 1 CLSI subclass*	26.5%	22.6%	12.3%	16.4%	11.0%	13.4%	12.8%	8.2%	12.9%	8.1%	11.4%
	93	68	30	44	35	37	43	21	35	31	47
Resistance ≥ 2 CLSI subclasses*	19.1%	9.6%	6.6%	8.6%	1.9%	4.7%	4.2%	2.3%	3.0%	3.6%	2.9%
	67	29	16	23	6	13	14	6	8	14	12
Resistance ≥ 3 CLSI subclasses*	8.0%	3.0%	0.8%	1.1%	0.3%	2.9%	2.4%	0.8%	1.1%	2.1%	2.2%
	28	9	2	3	1	8	8	2	3	8	9
Resistance ≥ 4 CLSI subclasses*	4.6%	1.3%	0.0%	0.7%	0.0%	1.8%	1.5%	0.4%	0.7%	0.8%	0.7%
	16	4	0	2	0	5	5	1	2	3	3
Resistance ≥ 5 CLSI subclasses*	1.7%	0.7%	0.0%	0.4%	0.0%	0.0%	0.3%	0.4%	0.7%	0.5%	0.2%
	6	2	0	1	0	0	1	1	2	2	1
At least ACSSuT [†]	0.0%	0.3%	0.0%	0.4%	0.0%	0.0%	0.3%	0.4%	0.4%	0.5%	0.0%
	0	1	0	1	0	0	1	1	1	2	0
At least ACSuTm [‡]	0.0%	0.3%	0.0%	0.4%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%
	0	1	0	1	0	0	0	1	0	0	0
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%
	0	0	0	1	0	0	0	0	0	1	0
At least MDR-AmpC [®]	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%
	0	0	0	1	0	0	0	0	0	1	0
Resistance to quinolone** and cephalosporin ^{††}	0.0%	0.3%	0.0%	0.0%	0.3%	0.0%	0.0%	0.4%	0.0%	0.3%	0.0%
	0	1	0	0	1	0	0	1	0	1	0

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§]ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur [¶]MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 µg/mL)

"Resistance to nalidixic acid (MIC \ge 32) or decreased susceptibility to ciprofloxacin (MIC \ge 0.12) ¹¹Decreased susceptibility to ceftiofur (MIC \ge 2) or ceftriaxone (MIC \ge 2)

Resistance to nalidixic acid and decreased susceptibility to ciprofloxacin in Salmonella ser. Enteritidis, NARMS, 1996–2006

Salmonella ser. Enteritidis is a leading cause of salmonellosis in the United States. Serotype Enteritidis was the most common serotype reported to the National Antimicrobial Resistance Monitoring System (NARMS) and the second most common serotype among culture-confirmed infections reported to National Salmonella Surveillance System at CDC in 2006 (http://www.cdc.gov/ncidod/dbmd/phlisdata/default.htm). Consumption of egg-containing products and chicken prepared outside the home are risk factors of human Salmonella ser. Enteritidis infections (Altekruse et al. 2006; Voetsch et al. 2009).

While most non-Typhi *Salmonella* infections are self-limiting, antimicrobial agents, such as fluoroquinolones (e.g. ciprofloxacin) are essential to treat invasive infections (Mandell et al. 2000). Resistance to nalidixic acid (MIC \ge 32 µg/mL), a quinolone, correlates with decreased susceptibility to ciprofloxacin (MIC \ge 0.125 µg/mL). Enterobacteriaceae, including *Salmonella* spp., most commonly develop resistance to quinolones by acquiring chromosomal point mutations in the genes encoding DNA gyrase (*gyrA*, *gyrB*) and DNA topoisomerase IV (*parC*, *parE*). These mutations prevent quinolone drugs from binding to their targets, thereby enabling the bacteria to replicate (Crump et al. 2003). While a single point mutation is sufficient to confer nalidixic acid resistance, two or more point mutations are required to confer ciprofloxacin resistance according to current CLSI definitions. (Jacoby 2005). Additional plasmid-mediated mechanisms for decreased fluoroquinolone susceptibility include topoisomerase protection by Qnr proteins, acetylation by the Aac (6')-lb-cr enzyme, and efflux by the QepA pump. Here we describe the trend in resistance to nalidixic acid and decreased susceptibility to ciprofloxacin among *Salmonella* ser. Enteritidis isolates in NARMS from 1996 to 2006. Isolate submission and testing are described in the methods section of this report.

Among *Salmonella* ser. Enteritidis submitted to NARMS, quinolone resistance was observed in 128 (3.7%) of 3,422 isolates from 1996 to 2006. This annual report highlights that the proportion of nalidixic acid resistance among *Salmonella* ser. Enteritidis significantly increased from 3/351 (0.9%) in 1996 to 29/412 (7.0%) in 2006 (95% CI [2.7, 45.4]). While none of the isolates showed resistance to both nalidixic acid and ciprofloxacin, decreased susceptibility to ciprofloxacin also increased from 1996–2006. As expected, nalidixic acid resistance was associated with decreased susceptibility to ciprofloxacin, compared with 6 (0.2%) of 3,294 isolates that were not resistant to nalidixic acid (Chi-square, *p* <0.001) (*Figure A*). Six isolates that showed decreased susceptibility to ciprofloxacid. This phenotype could be due to the acquisition of plasmid-mediated fluoroquinolone resistance mechanisms such as *qnr*, *aac* (6')-*lb-cr*, *or qepA*. Foodborne *Salmonella* ser. Enteritidis remains an important source for human salmonellosis infections in the United States. Continued public health surveillance for quinolone resistance and decreased susceptibility to fluoroquinolones, as well as identifying the mechanisms of resistance is critical and subsequent studies will be important in documenting these and other emerging mechanisms of resistance.

Altekruse SF, Bauer N, Chanlongbutra A, DeSagun R, Naugle A, Schlosser W, et al. 2006. Salmonella enteritidis in broiler chickens, United States, 2000–2005. Emerg Infect Dis 12(12): 1848–1852.

Voetsch AC, Poole C, Hedberg CW, Hoekstra RM, Ryder RW, Weber DJ, et al. 2009. Analysis of the FoodNet case-control study of sporadic Salmonella serotype Enteritidis infections using persons infected with other Salmonella serotypes as the comparison group. Epidemiol Infect 137(3): 408–416.

Mandell GL, Douglas RG, Bennett JE. 2000. Principles and practice of infectious diseases. 5th ed. New York: Wiley.

Crump JA, Barrett TJ, Nelson JT, Angulo FJ. 2003. Reevaluating fluoroquinolone breakpoints for Salmonella enterica serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 37(1): 75–81.

Jacoby GA. 2005. Mechanisms of resistance to quinolones. Clin Infect Dis 41 Suppl 2: S120-126

B. Salmonella ser. Typhimurium

In 2006, *Salmonella* ser. Typhimurium was the second most common non-Typhi *Salmonella* serotype in NARMS. The ACSSuT resistant phenotype in serotype Typhimurium decreased from 33.7% in 1996 to 19.7% in 2006.

In 2006, *Salmonella* ser. Typhimurium was the second most common non-Typhi *Salmonella* serotype in NARMS, accounting for 18.6% (407/2,184) of non-Typhi *Salmonella* isolates (<u>Table 1.04</u>). Of the 407 serotype Typhimurium isolates tested, resistance was highest to sulfisoxazole (33.4%), tetracycline (31.7%), streptomycin (29.5%), ampicillin (28.3%), and chloramphenicol (22.1%) (<u>Table 1.09</u>). The prevalence of resistance among clinically important antimicrobial subclasses was 0.7% for quinolones (represented by nalidixic acid) and 4.2% for third-generation cephalosporins (represented by ceftiofur).

Resistance to other antimicrobial agents decreased since 1996 (<u>Table 1.09</u>). Resistance to tetracycline decreased from 49.3% in 1996 to 31.7% in 2006; ampicillin, from 50.0% to 28.3%; streptomycin, from 51.6% to 29.5%; chloramphenicol, from 39.9% to 22.1%; and gentamicin, from 4.2% to 2.7%.

Of the 407 Salmonella ser. Typhimurium isolates tested in 2006, 62.4% (254/407) had no detected resistance, a decrease from the 65.2% (285/437) of isolates in 2005 (<u>Table 1.10</u>). In 2006, 34.2% (139/407) were resistant to two or more CLSI subclasses, compared with 33.2% (145/437) in 2005. Similarly, in 2006, 21.9% (89/407) were resistant to at least five subclasses, compared with 23.6% (103/437) in 2005.

In 2006, the most common multidrug-resistant phenotype among *Salmonella* ser. Typhimurium was ACSSuT (19.7% of isolates). Since 1996, the prevalence of ACSSuT among *Salmonella* ser. Typhimurium decreased from 33.7% to 19.7%. In the logistic regression model, this decrease was statistically significant (OR=0.5, 95% CI [0.3, 0.7]).

One (0.2%) serotype *Salmonella* ser. Typhimurium isolate was resistant to both quinolones and third-generation cephalosporins in 2006. Since 1996, eight *Salmonella* ser. Typhimurium isolates have shown this multidrug resistance pattern.

Denk		Antihiatia		% of is	olates						Percer	nt of al	l isolat	es with	MIC (µ	g/mL) [¶]					
капк		Anubiotic	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–0.9]						2.9	74.4	20.9	1.7							
		Gentamicin	0.2	2.7	[1.4–4.8]					60.0	34.6	2.5			0.2	1.0	1.7				
		Streptomycin	NA	29.5	[25.1–34.2]												70.5	17.2	12.3		
	Aminopenicillins	Ampicillin	0.0	28.3	[23.9–32.9]							61.4	10.1	0.2				28.3			
1	β-lactamase inhibitor	Amoxicillin-clavulanic acid	14.5	4.4	[2.6-6.9]							69.8	2.0	0.7	8.6	14.5	0.2	4.2			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	4.2	[2.5-6.6]					0.5	48.9	45.7	0.7			4.2					
		Ceftriaxone	2.2	0.2	[0.0–1.4]					95.8					1.7	1.0	1.2	0.2			
	Quinolones	Ciprofloxacin	0.0	0.2	[0.0–1.4]	96.3	2.0		0.2	0.2	1.0				0.2						
		Nalidixic acid	NA	0.7	[0.2–2.1]							0.2	48.4	49.1	0.7	0.7		0.7			
	Aminoglycosides	Kanamycin	0.0	5.2	[3.2–7.8]										94.6	0.2			5.2		
	Cephamycins	Cefoxitin	0.2	3.9	[2.3–6.3]							26.8	60.4	7.4	1.2	0.2	2.2	1.7			
Ш	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	2.2	[1.0-4.2]				75.9	21.4	0.2	0.2			2.2		•				
	Phenicols	Chloramphenicol	0.7	22.1	[18.2–26.5]								2.5	49.9	24.8	0.7		22.1			
	Sulfonamides	Sulfisoxazole	NA	33.4	[28.8–38.2]											11.3	51.6	3.7			33.4
	Tetracyclines	Tetracycline	0.0	31.7	[27.2–36.5]									68.3		3.9	13.0	14.7			

Table 1.08: Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Typhimurium isolates to antimicrobial agents, 2006 (N=407)

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

⁴The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 1.05: Antimicrobial resistance pattern for Salmonella ser. Typhimurium, 2006

Antimicrobial Agent	Susceptible, Intermediate, and Resist	ant Proportion
Amikacin		
Gentamicin		
Streptomycin		
Ampicillin		
Amoxicillin-clavulanic acid		
Ceftiofur		
Ceftriaxone		
Ciprofloxacin		
Nalidixic acid		
Kanamycin		
Cefoxitin		
Trimethoprim-sulfamethoxazole		
Chloramphenicol		
Sulfisoxazole		
Tetracycline		

Table 1.09: Percentage and number of Salmonella ser. Typhimurium isolates resistant to antimicrobial agents, 1996-2006

Year			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total I	solates		306	328	381	363	304	324	393	406	382	437	407
Rank	Subclass	(Resistance breakpoint)											
	Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	Tested	0	0	0	0	0	0	0	0	0	0
		Gentamicin	4.2%	4.6%	3.7%	2.2%	2.6%	1.5%	2.3%	2.0%	2.1%	1.8%	2.7%
		(MIC ≥ 16)	13	15	14	8	8	5	9	8	8	8	11
		Streptomycin	51.6%	55.2%	47.8%	43.3%	39.5%	40.1%	31.8%	35.2%	31.7%	27.9%	29.5%
		(MIC ≥ 64)	158	181	182	157	120	130	125	143	121	122	120
	Aminopenicillins	Ampicillin	50.0%	50.3%	45.7%	41.3%	42.1%	42.6%	33.6%	36.0%	31.9%	28.8%	28.3%
		(MIC ≥ 32)	153	165	174	150	128	138	132	146	122	126	115
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.6%	3.4%	4.5%	2.8%	6.3%	6.2%	7.6%	5.4%	4.7%	3.2%	4.4%
		(MIC ≥ 32)	8	11	17	10	19	20	30	22	18	14	18
	Cephalosporins (3 rd generation)	Ceftiofur	0.0%	1.5%	1.8%	1.9%	3.6%	3.1%	4.3%	4.9%	4.5%	2.5%	4.2%
		(MIC ≥ 8)	0	5	7	7	11	10	17	20	17	11	17
		Ceftriaxone	0.0%	0.3%	0.0%	0.3%	0.0%	0.0%	0.3%	0.2%	0.8%	0.0%	0.2%
		(MIC ≥ 64)	0	1	0	1	0	0	1	1	3	0	1
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.2%
		(MIC ≥ 4)	0	0	0	0	0	1	0	0	0	0	1
		Nalidixic acid	0.3%	0.9%	0.5%	0.0%	1.3%	0.6%	1.3%	1.2%	0.5%	0.9%	0.7%
		(MIC ≥ 32)	1	3	2	0	4	2	5	5	2	4	3
	Aminoglycosides	Kanamycin	14.4%	15.5%	15.7%	12.9%	13.2%	8.3%	7.6%	7.1%	5.8%	5.7%	5.2%
		(MIC ≥ 64)	44	51	60	47	40	27	30	29	22	25	21
	Cephalosporin (1 st generation)	Cephalothin	2.0%	4.3%	3.9%	4.4%	4.3%	3.1%	5.6%	6.2%	Not	Not	Not
		(MIC ≥ 32)	6	14	15	16	13	10	22	25	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	Not	Not	Not	3.6%	3.1%	4.3%	4.4%	4.7%	2.5%	3.9%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	11	10	17	18	18	11	16
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	4.6%	3.0%	4.5%	2.8%	3.6%	2.5%	2.3%	3.4%	2.6%	2.7%	2.2%
		(MIC ≥ 4)	14	10	17	10	11	8	9	14	10	12	9
	Phenicols	Chloramphenicol	39.9%	36.0%	34.1%	28.9%	30.9%	31.8%	23.2%	27.8%	24.1%	24.3%	22.1%
		(MIC ≥ 32)	122	118	130	105	94	103	91	113	92	106	90
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	53.3%	56.7%	50.1%	45.7%	45.4%	43.2%	32.1%	38.4%	35.9%	31.8%	33.4%
		(MIC ≥ 512)	163	186	191	166	138	140	126	156	137	139	136
	Tetracyclines	Tetracycline	49.3%	52.4%	46.5%	41.9%	43.4%	43.5%	31.8%	37.9%	30.1%	30.2%	31.7%
		(MIC ≥ 16)	151	172	177	152	132	141	125	154	115	132	129

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true.

[†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 1.10: Resistance patterns of Salmonella ser. Typhimurium isolates, 1996–2006

Table Inter Recibiance pa		Gaine			in a la	100101	00, 100	0 2000			
Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	306	328	381	363	304	324	393	406	382	437	407
	%	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n	n
No resistance detected	37.9%	39.0%	46.5%	50.4%	49.3%	49.1%	60.3%	54.9%	60.7%	65.2%	62.4%
	116	128	177	183	150	159	237	223	232	285	254
Resistance ≥ 1 CLSI subclass*	62.1%	61.0%	53.5%	49.6%	50.7%	50.9%	39.7%	45.1%	39.3%	34.8%	37.6%
	190	200	204	180	154	165	156	183	150	152	153
Resistance ≥ 2 CLSI subclasses*	56.2%	56.7%	51.4%	46.3%	47.0%	48.1%	36.1%	41.4%	37.2%	33.2%	34.2%
	172	186	196	168	143	156	142	168	142	145	139
Resistance ≥ 3 CLSI subclasses*	51.0%	52.4%	47.8%	43.3%	43.4%	42.0%	32.3%	36.9%	31.4%	30.0%	30.5%
	156	172	182	157	132	136	127	150	120	131	124
Resistance ≥ 4 CLSI subclasses*	45.4%	47.9%	43.3%	38.6%	39.8%	38.3%	28.5%	32.0%	28.0%	27.2%	27.3%
	139	157	165	140	121	124	112	130	107	119	111
Resistance ≥ 5 CLSI subclasses*	35.6%	36.0%	34.6%	28.1%	30.6%	29.9%	23.4%	27.8%	24.3%	23.6%	21.9%
	109	118	132	102	93	97	92	113	93	103	89
At least ACSSuT [†]	33.7%	35.1%	32.5%	27.8%	28.0%	29.6%	21.4%	26.1%	23.3%	22.2%	19.7%
	103	115	124	101	85	96	84	106	89	97	80
At least ACSuTm [‡]	2.0%	0.6%	2.6%	2.2%	1.6%	0.9%	2.0%	3.2%	1.6%	2.1%	0.7%
	6	2	10	8	5	3	8	13	6	9	3
At least ACSSuTAuCf [§]	0.0%	1.2%	1.0%	0.6%	2.0%	1.2%	1.8%	2.2%	2.6%	1.8%	2.9%
	0	4	4	2	6	4	7	9	10	8	12
At least MDR-AmpC ¹	0.0%	1.2%	1.0%	0.6%	2.0%	1.2%	1.8%	2.2%	2.6%	1.8%	2.9%
·	0	4	4	2	6	4	7	9	10	8	12
Resistance to guinolone** and cephalosporin ^{††}	0.0%	0.3%	0.0%	0.0%	0.3%	0.3%	0.5%	0.0%	0.3%	0.2%	0.2%
	0	1	0	0	1	1	2	0	1	1	1

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

SACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

[¶]MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 µg/mL) "Resistance to nalidixic acid (MIC ≥ 32) or decreased susceptibility to ciprofloxacin (MIC ≥ 0.12)

thDecreased susceptibility to ceftiofur (MIC \geq 2) or ceftriaxone (MIC \geq 2)

C. Salmonella ser. Newport

In 2006, Newport was the third most common non-Typhi Salmonella serotype in NARMS. The MDR-AmpC phenotype in Salmonella ser. Newport increased from 1996 to 2006. The MDR-AmpC phenotype was first noted in 1998, increased to 18.2% in 1999, peaked at 25.0% in 2001, and declined to 10.6% in 2006. A similar trend was observed for ceftiofur resistance.

In 2006, *Salmonella* ser. Newport was the third most commonly isolated non-Typhi *Salmonella* serotype in NARMS, accounting for 9.9% (217/2,184) of non-Typhi *Salmonella* isolates (<u>Table 1.04</u>). *Salmonella* ser. Newport isolates were most commonly resistant to ampicillin and sulfisoxazole (15.2%), tetracycline (14.3%), streptomycin (13.8%), cefoxitin (12.9%), and ceftiofur, chloramphenicol, and amoxicillin-clavulanic acid (12.4%) (<u>Table 1.12</u>). The prevalence of resistance among clinically important antimicrobial subclasses was 0.5% for quinolones (represented by nalidixic acid) and 12.4% for third-generation cephalosporins (represented by ceftiofur).

Ceftiofur resistance was first noted in one isolate (1.3%) in 1998; it increased to 18.2% in 1999, peaked at 27.4% in 2001, and declined to 12.4% in 2006 (<u>Table 1.12</u>). *Salmonella* ser. Newport was the most prevalent (34.2%) non-Typhi *Salmonella* serotype that showed resistance to ceftiofur (<u>Table 1.20</u>).

While the percentage of *Salmonella* ser. Newport isolates with no detected resistance declined from 86.3% in 1996 to 65.3% in 2001 (<u>Table 1.13</u>) resistance increased to 82.9% in 2006. Resistance to at least five subclasses of antimicrobial agents increased from 5.9% in 1996 to 12.9% in 2006 and peaked at 27.4% in 2001.

In 2006, the most common multidrug-resistant phenotype among *Salmonella* ser. Newport was at least ACSSuT (12.0% of isolates). Among these, most also showed resistance to amoxicillin-clavulanate and ceftiofur and decreased susceptibility (MIC $\geq 2 \mu g/mL$) to ceftriaxone (the MDR-AmpC phenotype). Isolates that showed the MDR-AmpC phenotype comprised 10.6% of Newport submissions in 2006. MDR-AmpC resistance followed the same pattern as ceftiofur resistance (<u>Table 1.13</u>); it increased from 0% in 1996 to 18.2% in 1999, peaked at 25.0% in 2001, and declined to 10.6% in 2006. In the logistic regression model, the increase from 1996 to 2006 was statistically significant (95% CI [1.4, infinity]).

Table 1.11: Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Newport isolates to antimicrobial agents, 2006 (N=217)

Donk [*]		Antibiotic		% of is	olates						Percer	nt of all	isolate	es with	MIC (µ	g/mL) [¶]					
Ralik		Anubiotic	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–1.7]						7.4	78.3	13.4	0.5		0.5					
		Gentamicin	0.5	0.9	[0.1–3.3]					67.7	30.4		0.5		0.5	0.5	0.5				
		Streptomycin	NA	13.8	[9.5–19.1]												86.2	0.9	12.9		
	Aminopenicillins	Ampicillin	0.0	15.2	[10.7–20.7]							77.0	6.9	0.9				15.2			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.9	12.4	[8.4–17.6]							82.0	2.3	0.5	1.8	0.9	6.5	6.0			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	12.4	[8.4–17.6]				0.5		45.2	40.1	1.8			12.4					
		Ceftriaxone	12.0	0.5	[0.0–2.5]					87.1				0.5		5.1	6.9		0.5		
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0–1.7]	99.1	0.5				0.5										
		Nalidixic acid	NA	0.5	[0.0–2.5]							0.5	44.7	53.9	0.5		0.5				
	Aminoglycosides	Kanamycin	0.5	2.3	[0.8–5.3]										96.8	0.5	0.5		2.3		
	Cephamycins	Cefoxitin	0.0	12.9	[8.7–18.1]						0.5	23.0	58.1	4.1	1.4		2.3	10.6			
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	3.2	[1.3–6.5]				87.6	8.3	0.5	0.5			3.2						
	Phenicols	Chloramphenicol	0.5	12.4	[8.4–17.6]								1.8	76.0	9.2	0.5		12.4			
	Sulfonamides	Sulfisoxazole	NA	15.2	[10.7–20.7]											6.0	38.7	40.1			15.2
	Tetracyclines	Tetracycline	0.0	14.3	[9.9–19.7]									85.7			3.7	10.6			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

¹Percent of isolates that were resistant [§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 1.06: Antimicrobial resistance pattern for Salmonella ser. Newport, 2006

Antimicrobial Agent Susceptible, Intermediate, and Resistant Proportion Amikacin Gentamicin Streptomycin Ampicillin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Ciprofloxacin Nalidixic acid Kanamycin Cefoxitin Trimethoprim-sulfamethoxazole Chloramphenicol Sulfisoxazole Tetracycline

Year			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total I	solates		51	46	77	99	121	124	241	223	191	207	217
		Antibiotic											
Rank	Subclass	(Resistance breakpoint)											
	Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	Tested	0	0	0	0	0	0	0	0	0	0
		Gentamicin	5.9%	4.3%	0.0%	0.0%	2.5%	3.2%	3.3%	3.1%	0.5%	1.0%	0.9%
		(MIC ≥ 16)	3	2	0	0	3	4	8	7	1	2	2
		Streptomycin	7.8%	4.3%	2.6%	19.2%	24.0%	31.5%	25.3%	24.2%	15.7%	14.0%	13.8%
		(MIC ≥ 64)	4	2	2	19	29	39	61	54	30	29	30
	Aminopenicillins	Ampicillin	5.9%	6.5%	2.6%	18.2%	23.1%	29.8%	24.9%	22.9%	15.7%	14.0%	15.2%
		(MIC ≥ 32)	3	3	2	18	28	37	60	51	30	29	33
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.0%	0.0%	2.6%	18.2%	22.3%	26.6%	22.8%	21.5%	15.2%	12.6%	12.4%
		(MIC ≥ 32)	1	0	2	18	27	33	55	48	29	26	27
	Cephalosporins (3rd generation)	Ceftiofur	0.0%	0.0%	1.3%	18.2%	22.3%	27.4%	22.8%	22.0%	15.2%	12.6%	12.4%
		(MIC ≥ 8)	0	0	1	18	27	34	55	49	29	26	27
		Ceftriaxone	0.0%	0.0%	0.0%	3.0%	0.0%	0.0%	0.8%	1.8%	2.6%	1.4%	0.5%
		(MIC ≥ 64)	0	0	0	3	0	0	2	4	5	3	1
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.0%	0.0%	0.0%	0.0%	0.8%	0.0%	0.8%	0.4%	0.5%	0.0%	0.5%
		(MIC ≥ 32)	0	0	0	0	1	0	2	1	1	0	1
	Aminoglycosides	Kanamycin	2.0%	0.0%	1.3%	1.0%	5.0%	7.3%	10.0%	4.5%	2.6%	1.9%	2.3%
		(MIC ≥ 64)	1	0	1	1	6	9	24	10	5	4	5
	Cephalosporin (1 st generation)	Cephalothin	3.9%	4.3%	2.6%	18.2%	22.3%	26.6%	22.8%	22.4%	Not	Not	Not
		(MIC ≥ 32)	2	2	2	18	27	33	55	50	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	Not	Not	Not	22.3%	25.8%	22.4%	21.5%	15.2%	12.6%	12.9%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	27	32	54	48	29	26	28
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	3.9%	4.3%	1.3%	2.0%	4.1%	1.6%	4.1%	0.9%	2.1%	1.9%	3.2%
		(MIC ≥ 4)	2	2	1	2	5	2	10	2	4	4	7
	Phenicols	Chloramphenicol	5.9%	4.3%	2.6%	18.2%	23.1%	28.2%	25.3%	22.4%	15.2%	13.5%	12.4%
		(MIC ≥ 32)	3	2	2	18	28	35	61	50	29	28	27
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	11.8%	4.3%	3.9%	22.2%	23.1%	32.3%	25.7%	24.7%	16.8%	15.5%	15.2%
		(MIC ≥ 512)	6	2	3	22	28	40	62	55	32	32	33
	Tetracyclines	Tetracycline	7.8%	4.3%	2.6%	19.2%	23.1%	30.6%	25.7%	24.2%	16.8%	14.5%	14.3%
		(MIC ≥ 16)	4	2	2	19	28	38	62	54	32	30	31

Table 1.12: Percentage and number of Salmonella ser. Newport isolates resistant to antimicrobial agents, 1996-2006

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true.

[†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 1.13: Resistance patterns of Salmonella ser. Newport isolates, 1996–2006

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	51	46	77	99	121	124	241	223	191	207	217
	%	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n	n
No resistance detected	86.3%	93.5%	94.8%	75.8%	75.2%	65.3%	72.2%	73.5%	82.2%	84.1%	82.9%
	44	43	73	75	91	81	174	164	157	174	180
Resistance ≥ 1 CLSI subclass*	13.7%	6.5%	5.2%	24.2%	24.8%	34.7%	27.8%	26.5%	17.8%	15.9%	17.1%
	7	3	4	24	30	43	67	59	34	33	37
Resistance ≥ 2 CLSI subclasses*	7.8%	4.3%	2.6%	18.2%	23.1%	32.3%	25.7%	25.1%	17.3%	15.0%	16.1%
	4	2	2	18	28	40	62	56	33	31	35
Resistance ≥ 3 CLSI subclasses*	5.9%	4.3%	2.6%	18.2%	23.1%	31.5%	25.3%	23.3%	16.8%	14.5%	14.7%
	3	2	2	18	28	39	61	52	32	30	32
Resistance ≥ 4 CLSI subclasses*	5.9%	4.3%	2.6%	18.2%	23.1%	31.5%	25.3%	22.9%	15.7%	14.0%	13.8%
	3	2	2	18	28	39	61	51	30	29	30
Resistance ≥ 5 CLSI subclasses*	5.9%	4.3%	2.6%	18.2%	23.1%	27.4%	23.7%	22.4%	14.7%	12.6%	12.9%
	3	2	2	18	28	34	57	50	28	26	28
At least ACSSuT [†]	5.9%	4.3%	1.3%	18.2%	23.1%	25.8%	23.7%	22.0%	14.7%	12.6%	12.0%
	3	2	1	18	28	32	57	49	28	26	26
At least ACSuTm [‡]	3.9%	4.3%	1.3%	2.0%	4.1%	0.8%	3.7%	0.9%	1.0%	1.9%	2.3%
	2	2	1	2	5	1	9	2	2	4	5
At least ACSSuTAuCf [§]	0.0%	0.0%	1.3%	18.2%	22.3%	25.0%	22.8%	21.1%	14.7%	12.6%	10.6%
	0	0	1	18	27	31	55	47	28	26	23
At least MDR-AmpC ¹	0.0%	0.0%	1.3%	18.2%	22.3%	25.0%	22.8%	21.1%	14.7%	12.6%	10.6%
	0	0	1	18	27	31	55	47	28	26	23
Resistance to quinolone** and cephalosporin ^{††}	0.0%	0.0%	1.3%	0.0%	0.0%	0.0%	0.4%	0.0%	0.5%	0.0%	0.5%
	0	0	1	0	0	0	1	0	1	0	1

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

[¶]MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 µg/mL)

Resistance to nalidixic acid (MIC \ge 32) or decreased susceptibility to ciprofloxacin (MIC \ge 0.12) ¹¹Decreased susceptibility to ceftiofur (MIC \ge 2) or ceftriaxone (MIC \ge 2)

D. Salmonella ser. I 4,[5],12:i:-

In 2006, *Salmonella* ser. I 4,[5],12:i:- was the fourth most common non-Typhi *Salmonella* serotype in NARMS. Most *Salmonella* ser. I 4,[5],12:i:- isolates had no detected resistance and multidrug resistance was rare.

In 2006, Salmonella ser. I 4,[5],12:i:- was the fourth most commonly isolated non-Typhi Salmonella serotype in NARMS, accounting for 4.8% (105/2,184) of non-Typhi Salmonella isolates (Table 1.04). In 2005, I 4,[5],12:i:- was the 12th most commonly reported serotype among NARMS submissions, making up 1.6% of the non-Typhi Salmonella. Salmonella ser. I 4,[5],12:i:- isolates were most commonly resistant to sulfisoxazole and tetracycline (8.6%), ampicillin (6.7%), gentamicin (4.8%), streptomycin, amoxicillin-clavulanic acid, ceftiofur, and cefoxitin (3.8%) (Table 1.15). The prevalence of resistance among clinically important antimicrobial subclasses was 1.7% for quinolones (represented by nalidixic acid) and 5.1% for third-generation cephalosporins (represented by ceftiofur) (Table 1.20).

Most I 4,[5],12:i:- isolates had no detected resistance. The percentage of I 4,[5],12:i:- isolates with no detected resistance increased from 80.6% in 2004 to 87.9% in 2005, but has slightly decreased to 85.7% in 2006 (<u>Table 1.16</u>).

Multidrug-resistance was not common among I 4,[5],12:i:- isolates (<u>Table 1.16</u>). However, 2 isolates (1.9%) with resistance to at least ACSSuT were identified in 2006.

Table 1.14: Minimum inhibitory concentration	s (MICs) and resistance of Salmonella ser. I 4,[5],12:i:-
isolates to antimicrobial agents, 2006 (N=105)	

Donk*	Rank Antibiotic			% of is	olates						Percer	nt of all	isolat	es with	MIC (µ	g/mL) [¶]					
Ralik		Anubiotic	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–3.5]						2.9	75.2	20.0	1.9							
		Gentamicin	0.0	4.8	[1.6–10.8]					59.0	36.2					3.8	1.0				
		Streptomycin	NA	3.8	[1.0–9.5]												96.2	1.9	1.9		
	Aminopenicillins	Ampicillin	0.0	6.7	[2.7–13.3]							87.6	5.7					6.7			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	1.0	3.8	[1.0–9.5]							93.3			1.9	1.0		3.8			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	3.8	[1.0–9.5]				1.0		67.6	27.6				3.8					
		Ceftriaxone	3.8	0.0	[0.0–3.5]					96.2				•		3.8					
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0–3.5]	97.1	1.9			1.0											
		Nalidixic acid	NA	1.0	[0.0–5.2]								70.5	28.6				1.0			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0–3.5]										100.0						
	Cephamycins	Cefoxitin	0.0	3.8	[1.0–9.5]						1.0	48.6	46.7				3.8				
п	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	0.0	[0.0–3.5]				95.2	4.8											
	Phenicols	Chloramphenicol	0.0	1.9	[0.2-6.7]									84.8	13.3			1.9			
	Sulfonamides	Sulfisoxazole	NA	8.6	[4.0–15.6]											11.4	65.7	14.3			8.6
	Tetracyclines	Tetracycline	0.0	8.6	[4.0–15.6]									91.4		1.9	1.9	4.8			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 1.07: Antimicrobial resistance pattern for Salmonella ser. I 4,[5],12:i:-, 2006

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Ampicillin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Sulfisoxazole	
Tetracycline	

Table 1.15: Percentage and number of *Salmonella* ser. I 4,[5],12:i:- isolates resistant to antimicrobial agents, 1996–2006

Year			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total I	solates		3	3	0	8	13	14	35	37	36	33	105
Rank	Subclass	Antibiotic (Resistance breakpoint)											
	Aminoglycosides	Amikacin	Not	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	Tested	0		0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%		0.0%	0.0%	7.1%	0.0%	5.4%	5.6%	0.0%	4.8%
		(MIC ≥ 16)	0	0		0	0	1	0	2	2	0	5
		Streptomycin	0.0%	66.7%		0.0%	7.7%	14.3%	2.9%	8.1%	5.6%	3.0%	3.8%
		(MIC ≥ 64)	0	2		0	1	2	1	3	2	1	4
	Aminopenicillins	Ampicillin	0.0%	0.0%		0.0%	7.7%	7.1%	8.6%	8.1%	5.6%	6.1%	6.7%
		(MIC ≥ 32)	0	0		0	1	1	3	3	2	2	7
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0%	0.0%		0.0%	0.0%	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%
· ·		(MIC ≥ 32)	0	0		0	0	0	1	2	1	1	4
	Cephalosporins (3rd generation)	Ceftiofur	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	5.4%	2.8%	3.0%	3.8%
	,	(MIC ≥ 8)	0	0		0	0	1	1	2	1	1	4
		Ceftriaxone	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	2.8%	0.0%	0.0%
		(MIC ≥ 64)	0	0		0	0	0	0	0	1	0	0
	Quinolones	Ciprofloxacin	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0		0	0	0	0	0	0	0	0
		Nalidixic acid	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	2.7%	2.8%	0.0%	1.0%
		(MIC ≥ 32)	0	0		0	0	0	0	1	1	0	1
	Aminoglycosides	Kanamycin	0.0%	0.0%		0.0%	0.0%	7.1%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0		0	0	1	0	0	0	0	0
	Cephalosporin (1 st generation)	Cephalothin	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	5.4%	Not	Not	Not
		(MIC ≥ 32)	0	0		0	0	1	1	2	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	Not		Not	0.0%	0.0%	2.9%	5.4%	2.8%	3.0%	3.8%
		(MIC ≥ 32)	Tested	Tested		Tested	0	0	1	2	1	1	4
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	0.0%
		(MIC ≥ 4)	0	0		0	0	1	1	0	1	0	0
	Phenicols	Chloramphenicol	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	1.9%
		(MIC ≥ 32)	0	0		0	0	1	1	0	1	0	2
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	0.0%	100.0%		12.5%	0.0%	14.3%	2.9%	5.4%	11.1%	0.0%	8.6%
l I		(MIC ≥ 512)	0	3		1	0	2	1	2	4	0	9
	Tetracyclines	Tetracycline	0.0%	0.0%		0.0%	7.7%	7.1%	5.7%	0.0%	11.1%	3.0%	8.6%
		(MIC ≥ 16)	0	0		0	1	1	2	0	4	1	9

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true.

[†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 1.16: Resistance patterns of Salmonella ser. I 4,[5],12:i:- isolates, 1996-2006

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	3	3	0	8	13	14	35	37	36	33	105
	%	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n	n
No resistance detected	100.0%	0.0%		87.5%	92.3%	78.6%	91.4%	78.4%	80.6%	87.9%	85.7%
	3	0		7	12	11	32	29	29	29	90
Resistance ≥ 1 CLSI subclass*	0.0%	100.0%		12.5%	7.7%	21.4%	8.6%	21.6%	19.4%	12.1%	14.3%
	0	3		1	1	3	3	8	7	4	15
Resistance ≥ 2 CLSI subclasses*	0.0%	66.7%		0.0%	7.7%	14.3%	8.6%	10.8%	13.9%	3.0%	11.4%
	0	2		0	1	2	3	4	5	1	12
Resistance ≥ 3 CLSI subclasses*	0.0%	0.0%		0.0%	7.7%	7.1%	5.7%	5.4%	11.1%	3.0%	9.5%
	0	0		0	1	1	2	2	4	1	10
Resistance ≥ 4 CLSI subclasses*	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	3.8%
	0	0		0	0	1	1	0	1	0	4
Resistance ≥ 5 CLSI subclasses*	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	2.9%
	0	0		0	0	1	1	0	1	0	3
At least ACSSuT [†]	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	0.0%	2.8%	0.0%	1.9%
	0	0		0	0	1	1	0	1	0	2
At least ACSuTm [‡]	0.0%	0.0%		0.0%	0.0%	7.1%	2.9%	0.0%	0.0%	0.0%	0.0%
	0	0		0	0	1	1	0	0	0	0
At least ACSSuTAuCf [§]	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0		0	0	0	0	0	0	0	0
At least MDR-AmpC ¹	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
·	0	0		0	0	0	0	0	0	0	0
Resistance to guinolone** and cephalosporin ^{††}	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0		0	0	0	0	0	0	0	0

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

⁴ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

SACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

¹MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC $\ge 2 \mu g/mL$) "Resistance to nalidixic acid (MIC ≥ 32) or decreased susceptibility to ciprofloxacin (MIC ≥ 0.12)

⁺⁺Decreased susceptibility to ceftiofur (MIC \geq 2) or ceftriaxone (MIC \geq 2)

E. Salmonella ser. Heidelberg

In 2006, *Salmonella* ser. Heidelberg was the fifth most commonly isolated non-Typhi *Salmonella* serotype in NARMS, accounting for 4.7% (102/2,184) of non-Typhi *Salmonella* isolates (<u>Table 1.04</u>). Serotype Heidelberg isolates were most commonly resistant to ampicillin (18.6%), tetracycline (13.7%), streptomycin (11.8%), amoxicillin-clavulanic acid and ceftiofur (9.8%), kanamycin and cefoxitin (8.8%), and sulfisoxazole and gentamicin (4.9%) (<u>Table 1.18</u>).

Ceftiofur resistance was first noted in one isolate (1.4%) in 1996. Resistance increased to ten isolates (9.8%) in 2006 (<u>Table 1.18</u>). Heidelberg was the third most common serotype (12.7%) among ceftiofur-resistant non-Typhi *Salmonella* (<u>Table 1.20</u>).

In contrast to other common serotypes, the percentage of Heidelberg isolates with no detected resistance increased from 54.1% in 1996 to 67.6% in 2006 (<u>Table 1.19</u>). In addition, resistance to at least five CLSI subclasses of antimicrobial agents decreased from 3.2% in 2004 to 2.0% in 2006.

Table 1.17: Minimum inhibitory concentrations (MICs) and resistance of Salmonella ser. Heidelberg isolates to antimicrobial agents, 2006 (N=102)

Bank		Antibiotic		% of is	olates						Percer	nt of all	isolate	es with	MIC (µ	g/mL) ¹					
Ralik		Anubiotic	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–3.6]						17.6	64.7	16.7	1.0							
		Gentamicin	1.0	4.9	[1.6–11.1]					66.7	25.5		1.0	1.0	1.0	2.0	2.9				
		Streptomycin	NA	11.8	[6.2–19.6]												88.2	8.8	2.9		
	Aminopenicillins	Ampicillin	0.0	18.6	[11.6–27.6]							70.6	8.8	2.0				18.6			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.0	9.8	[4.8–17.3]							76.5	3.9	1.0	6.9	2.0	4.9	4.9			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	9.8	[4.8–17.3]						56.9	32.4	1.0		1.0	8.8					
		Ceftriaxone	7.8	0.0	[0.0–3.6]					90.2				1.0	1.0	5.9	2.0				
	Quinolones	Ciprofloxacin	0.0	0.0	[0.0–3.6]	98.0	2.0														
		Nalidixic acid	NA	0.0	[0.0–3.6]								24.5	75.5							
	Aminoglycosides	Kanamycin	0.0	8.8	[4.1–16.1]										90.2	1.0			8.8		
	Cephamycins	Cefoxitin	1.0	8.8	[4.1–16.1]							52.9	33.3	2.9	1.0	1.0	5.9	2.9			
п	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	0.0	[0.0–3.6]				94.1	5.9											
	Phenicols	Chloramphenicol	1.0	0.0	[0.0–3.6]									60.8	38.2	1.0					
	Sulfonamides	Sulfisoxazole	NA	4.9	[1.6–11.1]											36.3	50.0	7.8	1.0		4.9
	Tetracyclines	Tetracycline	0.0	13.7	[7.7–22.0]									86.3		1.0	1.0	11.8			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

¹Percent of isolates that were resistant [§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 1.08: Antimicrobial resistance pattern for Salmonella ser. Heidelberg, 2006

Antimicrobial Agent Susceptible, Intermediate, and Resistant Proportion Amikacin Gentamicin Streptomycin Ampicillin Amoxicillin-clavulanic acid Ceftiofur Ceftriaxone Ciprofloxacin Nalidixic acid Kanamycin Cefoxitin Trimethoprim-sulfamethoxazole Chloramphenicol Sulfisoxazole Tetracycline S T R

Year			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total I	solates		74	75	101	88	79	102	105	96	93	125	102
		Antibiotic											
Rank	Subclass	(Resistance breakpoint)											
	Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	Tested	0	0	0	0	0	0	0	0	0	0
		Gentamicin	23.0%	17.3%	16.8%	14.8%	8.9%	7.8%	3.8%	5.2%	4.3%	6.4%	4.9%
		(MIC ≥ 16)	17	13	17	13	7	8	4	5	4	8	5
		Streptomycin	40.5%	24.0%	30.7%	23.9%	22.8%	25.5%	17.1%	12.5%	15.1%	13.6%	11.8%
		(MIC ≥ 64)	30	18	31	21	18	26	18	12	14	17	12
	Aminopenicillins	Ampicillin	14.9%	13.3%	16.8%	6.8%	10.1%	9.8%	12.4%	10.4%	25.8%	20.0%	18.6%
		(MIC ≥ 32)	11	10	17	6	8	10	13	10	24	25	19
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.7%	1.3%	1.0%	1.1%	3.8%	2.9%	9.5%	5.2%	10.8%	8.8%	9.8%
'		(MIC ≥ 32)	2	1	1	1	3	3	10	5	10	11	10
	Cephalosporins (3rd generation)	Ceftiofur	1.4%	0.0%	0.0%	0.0%	3.8%	2.9%	7.6%	5.2%	9.7%	8.8%	9.8%
		(MIC ≥ 8)	1	0	0	0	3	3	8	5	9	11	10
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0	0
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0	0
		Nalidixic acid	0.0%	0.0%	1.0%	1.1%	1.3%	0.0%	0.0%	1.0%	0.0%	0.8%	0.0%
		(MIC ≥ 32)	0	0	1	1	1	0	0	1	0	1	0
	Aminoglycosides	Kanamycin	14.9%	8.0%	12.9%	9.1%	15.2%	19.6%	10.5%	8.3%	8.6%	12.8%	8.8%
		(MIC ≥ 64)	11	6	13	8	12	20	11	8	8	16	9
	Cephalosporin (1 st generation)	Cephalothin	6.8%	2.7%	5.9%	3.4%	5.1%	3.9%	10.5%	7.3%	Not	Not	0.0%
		(MIC ≥ 32)	5	2	6	3	4	4	11	7	Tested	Tested	0
	Cephamycins	Cefoxitin	Not	Not	Not	Not	2.5%	2.9%	8.6%	5.2%	8.6%	8.8%	8.8%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	2	3	9	5	8	11	9
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	0.0%	0.0%	2.0%	1.1%	1.3%	2.0%	1.0%	2.1%	0.0%	0.8%	0.0%
		(MIC ≥ 4)	0	0	2	1	1	2	1	2	0	1	0
	Phenicols	Chloramphenicol	1.4%	0.0%	1.0%	1.1%	1.3%	1.0%	1.0%	0.0%	1.1%	0.8%	0.0%
		(MIC ≥ 32)	1	0	1	1	1	1	1	0	1	1	0
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	17.6%	21.3%	21.8%	18.2%	11.4%	8.8%	6.7%	7.3%	7.5%	8.0%	4.9%
		(MIC ≥ 512)	13	16	22	16	9	9	7	7	7	10	5
	Tetracyclines	Tetracycline	20.3%	12.0%	19.8%	18.2%	21.5%	24.5%	19.0%	16.7%	19.4%	18.4%	13.7%
	1	(MIC > 16)	15	0	20	16	17	25	20	16	10	22	14

Table 1.18: Percentage and number of Salmonella ser. Heidelberg isolates resistant to antimicrobial agents 1996-2006

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. [†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 1.19: Resistance patterns of Salmonella ser. Heidelberg isolates, 1996–2006

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	74	75	101	88	79	102	105	96	93	125	102
	%	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n	n
No resistance detected	54.1%	66.7%	56.4%	68.2%	63.3%	64.7%	67.6%	68.8%	55.9%	62.4%	67.6%
	40	50	57	60	50	66	71	66	52	78	69
Resistance ≥ 1 CLSI subclass*	45.9%	33.3%	43.6%	31.8%	36.7%	35.3%	32.4%	31.3%	44.1%	37.6%	32.4%
	34	25	44	28	29	36	34	30	41	47	33
Resistance ≥ 2 CLSI subclasses*	33.8%	26.7%	33.7%	26.1%	26.6%	29.4%	25.7%	17.7%	23.7%	24.8%	23.5%
	25	20	34	23	21	30	27	17	22	31	24
Resistance ≥ 3 CLSI subclasses*	12.2%	12.0%	13.9%	10.2%	7.6%	7.8%	11.4%	10.4%	14.0%	15.2%	12.7%
	9	9	14	9	6	8	12	10	13	19	13
Resistance ≥ 4 CLSI subclasses*	4.1%	1.3%	4.0%	4.5%	3.8%	2.0%	1.9%	2.1%	4.3%	4.8%	2.0%
	3	1	4	4	3	2	2	2	4	6	2
Resistance ≥ 5 CLSI subclasses*	2.7%	1.3%	1.0%	0.0%	3.8%	2.0%	1.9%	0.0%	3.2%	2.4%	2.0%
	2	1	1	0	3	2	2	0	3	3	2
At least ACSSuT [†]	1.4%	0.0%	0.0%	0.0%	1.3%	1.0%	1.0%	0.0%	1.1%	0.0%	0.0%
	1	0	0	0	1	1	1	0	1	0	0
At least ACSuTm [‡]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	1	0	0	0	0
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%	0.0%	1.3%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	1	1	0	0	0	0
At least MDR-AmpC [¶]	0.0%	0.0%	0.0%	0.0%	1.3%	1.0%	1.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	1	1	0	0	0	0
Resistance to guinolone** and cephalosporin ^{††}	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.8%	0.0%
	0	0	0	0	0	0	0	0	0	1	0

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole [§]ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

¹MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 µg/mL) ¹Resistance to nalidixic acid (MIC ≥ 32) or decreased susceptibility to ciprofloxacin (MIC ≥ 0.12) ¹¹Decreased susceptibility to ceftiofur (MIC ≥ 2) or ceftriaxone (MIC ≥ 2)

F. Specific Drug Resistance Phenotypes

The multidrug–resistant phenotypes ACSSuT, MDR-AmpC, and resistance to nalidixic acid and Ceftiofur were detected in several other serotypes in 2006 (<u>Table 1.20</u>).

In 2006, 121 (5.5%) non-Typhi *Salmonella* isolates were resistant to at least ACSSuT. Of these isolates, 66.1% were serotype Typhimurium; 21.5% Newport; 3.3% Agona; 2.5% Paratyphi B var. L(+) tartrate+; 1.7% I 4,[5],12:i:-; and 0.8% were serotypes Saintpaul, Stanley, and Tennessee (<u>Table 1.20</u>). Forty-three (2.0%) non-Typhi *Salmonella* isolates were resistant to at least MDR-AmpC of which 53.5% were serotype Newport; 27.9% Typhimurium; 9.3% Agona; and 2.3% Saintpaul. Sixty (2.7%) non-Typhi *Salmonella* isolates were nalidixic acid resistant, 48.3% of which were Enteritidis; 5.0% Typhimurium; and 1.7% for serotypes Newport, I 4,[5],12:i:-, Muenchen, Agona, Braenderup, Stanley, Hadar, and Tennessee. Seventy-nine (3.6%) non-Typhi *Salmonella* isolates were ceftiofur resistant, of which 34.2% were serotype Newport; 21.5% Typhimurium; 12.7% Heidelberg; 6.3% Agona; 5.1% I 4[5]12:i:- and 2.5% Enteritidis.

			A	CSSuT*	MD	ORAmpC [†]	Nali	idixic Acid	С	eftiofur
Rank	Serotype	Ν	n	(%)	n	(%)	n	(%)	n	(%)
1	Enteritidis	412	0	(0.0%)	0	(0.0%)	29	(48.3%)	2	(2.5%)
2	Typhimurium	407	80	(66.1%)	12	(27.9%)	3	(5.0%)	17	(21.5%)
3	Newport	217	26	(21.5%)	23	(53.5%)	1	(1.7%)	27	(34.2%)
4	I 4,[5],12:i:-	105	2	(1.7%)	0	(0.0%)	1	(1.7%)	4	(5.1%)
5	Heidelberg	102	0	(0.0%)	0	(0.0%)	0	(0.0%)	10	(12.7%)
6	Javiana	80	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
7	Montevideo	62	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
8	Paratyphi B var. L(+) tartrate+	49	3	(2.5%)	0	(0.0%)	0	(0.0%)	1	(1.3%)
9	Oranienburg	48	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
10	Muenchen	45	0	(0.0%)	0	(0.0%)	1	(1.7%)	0	(0.0%)
11	Agona	42	4	(3.3%)	4	(9.3%)	1	(1.7%)	5	(6.3%)
12	Saintpaul	30	1	(0.8%)	1	(2.3%)	0	(0.0%)	1	(1.3%)
13	Braenderup	29	0	(0.0%)	0	(0.0%)	1	(1.7%)	0	(0.0%)
14	Thompson	26	0	(0.0%)	0	(0.0%)	0	(0.0%)	1	(1.3%)
15	Stanley	25	1	(0.8%)	0	(0.0%)	1	(1.7%)	0	(0.0%)
16	Mississippi	24	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
17	Infantis	22	0	(0.0%)	0	(0.0%)	0	(0.0%)	0	(0.0%)
18	Hadar	22	0	(0.0%)	0	(0.0%)	1	(1.7%)	0	(0.0%)
19	Tennessee	21	1	(0.8%)	0	(0.0%)	1	(1.7%)	0	(0.0%)
20	Berta	19	0	(0.0%)	0	(0.0%)	0	(0.0%)	1	(1.3%)
	Subtotal	1787	118	(97.5%)	40	(93.0%)	40	(66.7%)	69	(87.3%)
	All Other Serotypes	397	3	(2.5%)	3	(7.0%)	20	(33.3%)	10	0.0%
	Total	2184	121	(100.0%)	43	(100.0%)	60	(100.0%)	79	(100.0%)

Table 1.20: Number and percentage of ACSSuT-, MDR-AmpC-, nalidixic acid-, and ceftiofur-resistant isolates among the 20 most common non-Typhi Salmonella serotypes isolated in NARMS, 2006

*ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfisoxazole, tetracycline

† MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2µg/mL)

2. Salmonella ser. Typhi

Among *Salmonella* ser. Typhi isolates, resistance to nalidixic acid increased from 19.2% in 1999 to 54.0% in 2006. Resistance to most of the antimicrobial agents tested increased from 2005 to 2006. The percentage of isolates with no detected resistance decreased from 48.1% in 2005 to 40.4% in 2006.

During 2006, *Salmonella* ser. Typhi were most commonly resistant to nalidixic acid (54.0%), trimethoprimsulfamethoxazole, sulfisoxazole, and ampicillin (20.7%), chloramphenicol (19.4%), and streptomycin (18.8%) (<u>Table 2.02</u>). Resistance to most of the antimicrobial agents tested increased from 2005 to 2006 (<u>Table 2.02</u>). Nalidixic acid resistance increased from 19.2% in 1999 to 54.0% in 2006; a statistically significant increase (OR=5.2, 95% CI [3.3, 8.1]). Ciprofloxacin resistance increased from 0.3% in 2005 to 0.9% in 2006.

The percentage of isolates with no detected resistance decreased from 48.1% in 2005 to 40.4% in 2006. Resistance to greater than five CLSI subclasses increased from 11.9% in 2005 to 16.4% in 2006. *Salmonella* ser. Typhi isolates with the resistance phenotype ACSuTm increased from 12.6% to 18.5% between 1999 and 2006 (Table 2.03). A single isolate exhibited both quinolone and third-generation cephalosporin resistance in 2006.

Table 2.01: Minimum inhibitory conce	ntrations (MICs) and resistance o	f Salmonella ser.	Typhi isolates to
antimicrobial agents, 2006 (N=324)			

Rank		Antibiotic		% of is	olates						Perce	nt of all	isolat	es with	MIC (µ	ıg/mL) [¶]					
Rank	Antibiotic Aminoglycosides Amikacin	Antibiotic	%I [†]	%R [‡]	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–1.1]						25.9	69.8	4.0	0.3							
		Gentamicin	0.0	0.0	[0.0–1.1]					95.7	4.0	0.3									
		Streptomycin	NA	18.8	[14.7–23.5]												81.2	0.3	18.5		
	Aminopenicillins	Ampicillin	0.0	20.7	[16.4–25.5]							69.1	9.3	0.9			0.3	20.4			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.3	0.3	[0.0–1.7]							78.1	0.6	7.7	13.0	0.3		0.3			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	0.0	[0.0–1.1]				0.9	9.3	80.2	9.0	0.6								
	, ,	Ceftriaxone	0.0	0.0	[0.0–1.1]					100.0				•							
	Quinolones	Ciprofloxacin	0.0	0.9	[0.2–2.7]	42.9	0.3	2.2	11.7	39.5	2.5				0.9						
		Nalidixic acid	NA	54.0	[48.4–59.5]						0.3	2.8	37.7	3.7	1.2	0.3	0.6	53.4			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0–1.1]										100.0						
	Cephamycins	Cefoxitin	0.0	0.3	[0.0–1.7]						3.1	31.5	13.0	44.4	7.7			0.3			
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	20.7	[16.4–25.5]				73.1	6.2				0.3	20.4						
	Phenicols	Chloramphenicol	0.6	19.4	[15.3–24.2]								3.4	64.2	12.3	0.6		19.4			
	Sulfonamides	Sulfisoxazole	NA	20.7	[16.4–25.5]											38.3	24.7	13.3	3.1		20.7
	Tetracyclines	Tetracycline	0.0	8.3	[5.6–11.9]									91.7				8.3			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire *Percent of isolates with intermediate susceptibility. NA if no MIC range of intermediate susceptibility exists

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensitire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of lisolates with MICs greater than the highest concentrations on the Sensitire plate. Numbers listed for the lowest tested concentrations represent the precentages of lisolates with MICs greater than the lowest vest when available.

Figure 2.01: Antimicrobial resistance pattern for Salmonella ser. Typhi, 2006

Table 2.02: Percentage and number of Salmonella ser.	Typhi isolates resistant to antimicrobial agents,
1999–2006	

Year Total I	solates		1999 167	2000 177	2001 197	2002 195	2003 334	2004 304	2005 318	2006 324
		Antibiotic								
Rank	Subclass	(Resistance breakpoint)								
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 16)	0	0	0	0	0	0	0	0
		Streptomycin	13.8%	9.0%	20.3%	7.2%	14.4%	11.8%	13.2%	18.8%
		(MIC ≥ 64)	23	16	40	14	48	36	42	61
	Aminopenicillins	Ampicillin	13.2%	9.0%	20.3%	5.6%	16.2%	11.8%	13.2%	20.7%
		(MIC ≥ 32)	22	16	40	11	54	36	42	67
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.3%
· ·		(MIC ≥ 32)	1	0	0	0	1	0	0	1
	Cephalosporins (3rd generation)	Ceftiofur	0.6%	0.0%	0.0%	0.0%	0.6%	0.0%	0.0%	0.0%
		(MIC ≥ 8)	1	0	0	0	2	0	0	0
		Ceftriaxone	0.6%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	1	0	0	0	1	0	0	0
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.3%	0.9%
		(MIC ≥ 4)	0	0	0	0	1	0	1	3
		Nalidixic acid	19.2%	22.0%	29.9%	23.6%	37.7%	41.8%	48.4%	54.0%
		(MIC ≥ 32)	32	39	59	46	126	127	154	175
	Aminoglycosides	Kanamycin	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	1	0	0	0	0	0
	Cephalosporin (1 st generation)	Cephalothin	2.4%	1.1%	0.5%	1.5%	0.6%	Not	Not	Not
		(MIC ≥ 32)	4	2	1	3	2	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	0.6%	0.5%	0.0%	0.9%	0.0%	0.0%	0.3%
		(MIC ≥ 32)	Tested	1	1	0	3	0	0	1
п	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	13.2%	9.0%	20.8%	6.7%	16.8%	13.2%	14.5%	20.7%
		(MIC ≥ 4)	22	16	41	13	56	40	46	67
	Phenicols	Chloramphenicol	12.6%	10.7%	20.8%	6.2%	16.5%	13.2%	13.2%	19.4%
		(MIC ≥ 32)	21	19	41	12	55	40	42	63
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	16.8%	11.3%	20.8%	6.2%	17.1%	11.8%	14.2%	20.7%
		(MIC ≥ 512)	28	20	41	12	57	36	45	67
	Tetracyclines	Tetracycline	9.6%	9.6%	20.8%	6.7%	15.6%	8.9%	10.1%	8.3%
1		(MIC ≥ 16)	16	17	41	13	52	27	32	27

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true.

[†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 2.03: Resistance patterns of Salmonella ser. Typhi isolates, 1999-2006

Year	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	167	177	197	195	334	304	318	324
	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n
No resistance detected	71.3%	72.9%	59.4%	74.4%	56.6%	56.6%	48.1%	40.4%
	119	129	117	145	189	172	153	131
Resistance ≥ 1 CLSI subclass*	28.7%	27.1%	40.6%	25.6%	43.4%	43.4%	51.9%	59.6%
	48	48	80	50	145	132	165	193
Resistance ≥ 2 CLSI subclasses*	15.0%	10.7%	22.8%	7.2%	18.0%	13.2%	14.5%	21.6%
	25	19	45	14	60	40	46	70
Resistance ≥ 3 CLSI subclasses*	13.2%	9.6%	22.8%	6.7%	17.7%	12.8%	13.8%	20.4%
	22	17	45	13	59	39	44	66
Resistance ≥ 4 CLSI subclasses*	13.2%	9.0%	21.8%	6.7%	16.8%	12.5%	12.9%	19.1%
	22	16	43	13	56	38	41	62
Resistance ≥ 5 CLSI subclasses*	12.6%	9.0%	18.8%	5.6%	15.9%	11.8%	11.9%	16.4%
	21	16	37	11	53	36	38	53
At least ACSSuT [†]	9.6%	7.9%	16.8%	5.6%	12.6%	7.9%	9.1%	5.9%
	16	14	33	11	42	24	29	19
At least ACSuTm [‡]	12.6%	9.0%	17.8%	5.6%	15.6%	11.8%	12.9%	18.5%
	21	16	35	11	52	36	41	60
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0
At least MDR-AmpC ¹	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0
Resistance to quinolone** and cephalosporin ^{††}	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.3%
	0	0	0	0	1	0	0	1

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

⁴ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

SACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

[¶]MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC $\ge 2 \ \mu g/mL$) "Resistance to nalidixic acid (MIC ≥ 32) or decreased susceptibility to ciprofloxacin (MIC ≥ 0.12)

^{t1}Decreased susceptibility to certific (MIC \geq 32) or decreased susceptibility to certific (MIC \geq 2) or ceftriaxone (MIC \geq 2)

3. Shigella

In 2006, *Shigella sonnei* isolates showed a higher prevalence of resistance to streptomycin compared to *Shigella flexneri*. *S. flexneri* showed a higher prevalence of resistance to tetracycline, sulfisoxazole, ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol compared to *S. sonnei*. The percentage of isolates with no detected resistance was low in *S. sonnei* (4.7%) and *S. flexneri* (5.4%).

During 2006, 402 *Shigella* isolates were tested, of which 321 (79.9%) were *S. sonnei*; 74 (18.7%), *S. flexneri*; 4 (1.0%), *S. boydii*; and 2 (0.5%), *S. dysenteriae* (Table 3.01). Resistance was highest to ampicillin (62.2%), streptomycin (60.7%), trimethoprim-sulfamethoxazole (58.2%), sulfisoxazole (40.3%), and tetracycline (34.6%) (Table 3.02). Among all *Shigella* spp., resistance decreased from 2005 to 2006 to most of the antimicrobials tested. Ampicillin resistance decreased from 70.7% in 2005 to 62.2% in 2006; streptomycin resistance decreased from 68.7% to 60.7%; and sulfisoxazole resistance decreased from 57.6% to 40.3%. Resistance to at least five CLSI subclasses declined from 1999 to 2006: 40.5% were resistant to at least five subclasses in 1999, compared with 13.7% in 2006 (Table 3.08). Resistance to trimethoprim-sulfamethoxazole increased from 51.5% in 1999 to 58.2% in 2006. One isolate in 2006 exhibited resistance to ciprofloxacin, making this the second ciprofloxacin resistant isolate since 1999. Of isolates tested in all years from 1999 to 2006, more than 90% of isolates, which ranged from 90.9% to 95.6%, were resistant to at least one CLSI subclass.

In 2006, there were differences in resistance to antimicrobial agents between *Shigella sonnei* and *Shigella flexneri* (<u>Tables 3.03</u> and <u>3.04</u>). *Shigella sonnei* isolates showed a higher prevalence of resistance to streptomycin than *Shigella flexneri*: 61.7% streptomycin resistance in *S. sonnei*, compared with 58.1% in *S. flexneri*. However, *S. flexneri* showed a higher prevalence of resistance to tetracycline, sulfisoxazole, ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol than *S. sonnei*: 83.8% tetracycline resistance in *S. flexneri*, compared with 22.7% in *S. sonnei*; 68.9% sulfisoxazole resistance in *S. flexneri*, compared with 33.3% in *S. sonnei*; and 63.5% ampicillin resistance in *S. flexneri*, compared with 62.3% in *S. sonnei*.

In all years from 1999 to 2006, resistance phenotypes ACSSuT and ACSuTm were higher in *S. flexneri* compared with *S. sonnei* (Tables 3.09 and 3.10). The percentage of isolates with no detected resistance among *S. sonnei* and *S. flexneri* remained low in all years from 1999 to 2006; it was 4.7% in *S. sonnei* and 5.4% in *S. flexneri* in 2006.

Table 3.01: Frequency of Shigella species isolated in NARMS, 2006

		2006
Species	n	(%)
Shigella sonnei	321	(79.9%)
Shigella flexneri	74	(18.4%)
Shigella boydii	4	(1.0%)
Shigella dysenteriae	2	(0.5%)
Other	1	(0.2%)
Total	402	(100.0%)

Table 3.02: Minimum inhibitory concentrations (MICs) and resistance of *Shigella* isolates to antimicrobial agents, 2006 (N=402)

Rank		Antibiotic		% of is	olates						Percent of all isolates with MIC $(\mu g/mL)^{1}$										
капк		Anubiouc	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–0.9]						1.5	4.5	51.0	41.0	2.0						
		Gentamicin	0.0	0.2	[0.0–1.4]					3.7	39.1	55.5	1.5				0.2				
		Streptomycin	NA	60.7	[55.7–65.5]												39.3	28.9	31.8		
	Aminopenicillins	Ampicillin	1.0	62.2	[57.2–66.9]							7.7	23.6	4.2	1.2	1.0	0.5	61.7			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	16.7	1.5	[0.5–3.2]							3.2	6.7	27.9	44.0	16.7	1.5				
	Cephalosporins (3rd generation)	Ceftiofur	0.0	0.2	[0.0–1.4]				22.4	67.7	9.0	0.7				0.2					
	,	Ceftriaxone	0.2	0.0	[0.0–0.9]					99.3	0.5						0.2				
	Quinolones	Ciprofloxacin	0.0	0.2	[0.0–1.4]	95.8	0.2	1.2	1.2	0.2	0.7	0.2		0.2							
		Nalidixic acid	NA	3.5	[1.9–5.8]						4.7	70.9	18.4	2.2	0.2		1.2	2.2			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0–0.9]										99.5	0.5					
	Cephamycins	Cefoxitin	1.2	0.0	[0.0-0.9]						0.7	19.7	63.4	14.7	0.2	1.2					
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	58.2	[53.2–63.1]				20.6	6.2	1.7	6.0	7.2	8.7	49.5						
	Phenicols	Chloramphenicol	2.0	10.9	[8.1–14.4]								17.4	65.4	4.2	2.0	3.0	8.0			
	Sulfonamides	Sulfisoxazole	NA	40.3	[35.5–45.3]											48.8	8.5	2.0	0.5		40.3
	Tetracyclines	Tetracycline	0.2	34.6	[29.9–39.5]									65.2	0.2	1.2	7.7	25.6			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists ¹Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 3.01: Antimicrobial resistance pattern for Shigella, 2006

% of isolates Percent of all isolates with MIC (µg/mL)¹ Rank Antibiotic [95% CI1[§] %I[†] %R[‡] 0.015 0.03 0.06 0.125 0.25 0.50 1 2 4 8 16 32 64 128 256 512 Aminoglycosides Amikacin 0.0 0.0 [0.0-1.1] 1.6 44 59.2 32.7 2.2 Gentamicin 0.0 0.0 [0.0-1.1] 3.4 43.3 51.4 1.9 Streptomycin NA 61.7 [56.1-67.0] 38.3 34.0 27.7 62.3 [56.8-67.6] 0.9 1.2 0.6 Ampicillin 1.2 4.4 25.9 5.3 61.7 minopenicillins β-lactamase I 2.5 2.5 32.4 50.8 10.0 1.9 Amoxicillin-clavulanic acid 10.0 1.9 [0.7-4.0] nhibitor Cephalosporins 73.8 [0.0-1.1] 15.9 9.7 Ceftiofur 0.0 0.0 0.6 (3rd generation) Ceftriaxone 0.0 0.0 [0.0-1.1] 99.4 0.6 Quinolones 96.6 0.3 0.9 1.6 Ciprofloxacin 0.0 0.0 [0.0-1.1] 0.3 0.3 17.4 1.6 0.3 Nalidixic acid NA 2.8 [1.3-5.3] 5.3 72.6 1.2 1.6 99.7 0.3 minoglycosides 0.0 0.0 [0.0-1.1] Kanamycin 0.0 [0.0-1.1] 0.3 Cephamycins Cefoxitin 1.6 0.6 23.4 65.7 8.4 1.6 Folate pathway 9.0 10.9 47.0 Trimethoprim-sulfamethoxazole NA 57.9 [52.3-63.4] 19.9 4.0 1.9 7.2 inhibitors Ш henicols Chloramphenicol 2.2 0.9 [0.2-2.7] 11.8 80.1 5.0 2.2 0.3 0.6 Sulfisoxazole NA 33.3 [28.2–38.8] 53.9 10.3 2.2 0.3 33.3 ulfona 77.3 Tetracyclines Tetracycline 0.0 22.7 [18.3–27.7 0.6 7.8 14.3

Table 3.03: Minimum inhibitory concentrations (MICs) and resistance of *Shigella sonnei* isolates to antimicrobial agents, 2006 (N=321)

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensitiire plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 3.02: Antimicrobial resistance pattern for Shigella sonnei, 2006

Table 3:04: Minimum inhibitory concentrations and resistance of *Shigella flexneri* isolates to antimicrobial agents, 2006 (N=74)

Rank		Antibiotic		% of is	olates					Percer	nt of all	isolat	es with	MIC (µ	g/mL) ¹					
r\dllk			%I [†]	%R‡	[95% CI] [§]	0.015 0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0-4.9]					1.4	4.1	18.9	74.3	1.4						
		Gentamicin	0.0	1.4	[0.0–7.3]				4.1	24.3	70.3					1.4				
		Streptomycin	NA	58.1	[46.1–69.5]											41.9	9.5	48.6		
	Aminopenicillins	Ampicillin	0.0	63.5	[51.5–74.4]						21.6	12.2		2.7			63.5			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	44.6	0.0	[0.0-4.9]						4.1	25.7	8.1	17.6	44.6					
	Cephalosporins (3rd generation)	Ceftiofur	0.0	1.4	[0.0–7.3]			47.3	44.6	5.4	1.4				1.4					
		Ceftriaxone	1.4	0.0	[0.0-4.9]				98.6							1.4				
	Quinolones	Ciprofloxacin	0.0	1.4	[0.0–7.3]	93.2	1.4			4.1			1.4		•	-				
		Nalidixic acid	NA	5.4	[1.5–13.3]					2.7	64.9	23.0	4.1				5.4			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.0-4.9]									98.6	1.4					
	Cephamycins	Cefoxitin	0.0	0.0	[0.0-4.9]					1.4	4.1	56.8	37.8		[
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	59.5	[47.4–70.7]			23.0	14.9	1.4	1.4			59.5						
	Phenicols	Chloramphenicol	1.4	54.1	[42.1–65.7]							36.5	8.1		1.4	14.9	39.2			
	Sulfonamides	Sulfisoxazole	NA	68.9	[57.1–79.2]										28.4	1.4	1.4			68.9
	Tetracyclines	Tetracycline	1.4	83.8	[73.4–91.3]								14.9	1.4	4.1	6.8	73.0			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

¹Percent of isolates that were resistant [§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

[®]The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 3.03: Antimicrobial resistance pattern for Shigella flexneri, 2006

Table 3.05: Percentage	and number of Shig	<mark>gella</mark> isolates resistant to	antimicrobial agents,	1999-2006
------------------------	--------------------	--	-----------------------	-----------

Year	U		1999	2000	2001	2002	2003	2004	2005	2006
Total Is	solates		375	450	344	620	495	315	396	402
Rank	Subclass	Antibiotic (Resistance breakpoint)								
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0
		Gentamicin	0.3%	0.2%	0.0%	0.2%	0.0%	0.0%	1.0%	0.2%
		(MIC ≥ 16)	1	1	0	1	0	0	4	1
		Streptomycin	55.7%	57.1%	53.2%	54.4%	57.0%	61.0%	68.7%	60.7%
		(MIC ≥ 64)	209	257	183	337	282	192	272	244
	Aminopenicillins	Ampicillin	77.6%	79.1%	79.7%	76.6%	79.4%	77.8%	70.7%	62.2%
		(MIC ≥ 32)	291	356	274	475	393	245	280	250
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.1%	2.2%	4.4%	2.6%	1.4%	1.6%	1.0%	1.5%
· ·		(MIC ≥ 32)	4	10	15	16	7	5	4	6
	Cephalosporins (3 rd generation)	Ceftiofur	0.0%	0.0%	0.0%	0.2%	0.2%	0.3%	0.5%	0.2%
		(MIC ≥ 8)	0	0	0	1	1	1	2	1
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	1	2	0
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.2%
		(MIC ≥ 4)	0	0	1	0	0	0	0	1
		Nalidixic acid	1.6%	0.9%	1.7%	1.6%	1.0%	1.6%	1.5%	3.5%
		(MIC ≥ 32)	6	4	6	10	5	5	6	14
	Aminoglycosides	Kanamycin	0.5%	1.3%	0.6%	0.8%	0.4%	0.0%	0.8%	0.0%
		(MIC ≥ 64)	2	6	2	5	2	0	3	0
	Cephalosporin (1 st generation)	Cephalothin	3.2%	8.0%	9.0%	6.6%	9.3%	Not	Not	Not
		(MIC ≥ 32)	12	36	31	41	46	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	0.2%	1.2%	0.3%	0.0%	0.3%	0.3%	0.0%
		(MIC ≥ 32)	Tested	1	4	2	0	1	1	0
п	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	51.5%	52.9%	46.8%	37.3%	38.6%	51.4%	58.6%	58.2%
		(MIC ≥ 4)	193	238	161	231	191	162	232	234
	Phenicols	Chloramphenicol	17.3%	14.0%	21.5%	7.6%	8.5%	14.9%	10.9%	10.9%
		(MIC ≥ 32)	65	63	74	47	42	47	43	44
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole	56.0%	55.8%	56.4%	31.8%	33.9%	52.4%	57.6%	40.3%
		(MIC ≥ 512)	210	251	194	197	168	165	228	162
	Tetracyclines	Tetracycline	57.3%	44.9%	59.3%	30.6%	29.1%	49.2%	38.4%	34.6%
		(MIC ≥ 16)	215	202	204	190	144	155	152	139

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true.

[†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 3.06: Percentage and number of Shigella sonnei isolates resistant to antimicrobial agents,	1999–
2006	

Year Total I	solates		1999 275	2000 366	2001 239	2002 536	2003 434	2004 241	2005 340	2006 321
Rank	Subclass	Antibiotic (Resistance breakpoint)								
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0
		Gentamicin	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	1.2%	0.0%
		(MIC ≥ 16)	1	1	0	0	0	0	4	0
		Streptomycin	52.0%	56.0%	54.0%	55.4%	56.5%	58.1%	70.3%	61.7%
		(MIC ≥ 64)	143	205	129	297	245	140	239	198
	Aminopenicillins	Ampicillin	79.6%	80.6%	82.8%	77.6%	79.7%	79.3%	70.6%	62.3%
		(MIC ≥ 32)	219	295	198	416	346	191	240	200
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.4%	1.9%	4.6%	2.2%	1.4%	1.7%	1.2%	1.9%
		(MIC ≥ 32)	1	7	11	12	6	4	4	6
	Cephalosporins (3 rd generation)	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.6%	0.0%
		(MIC ≥ 8)	0	0	0	0	0	1	2	0
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.6%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	1	2	0
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0
		Nalidixic acid	1.5%	1.1%	0.8%	1.5%	0.5%	1.7%	1.2%	2.8%
		(MIC ≥ 32)	4	4	2	8	2	4	4	9
	Aminoglycosides	Kanamycin	0.7%	1.6%	0.4%	0.4%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	2	6	1	2	0	0	0	0
	Cephalosporin (1 st generation)	Cephalothin	2.9%	8.7%	12.6%	7.3%	10.1%	Not	Not	Not
		(MIC ≥ 32)	8	32	30	39	44	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	0.3%	1.7%	0.4%	0.0%	0.4%	0.3%	0.0%
		(MIC ≥ 32)	Tested	1	4	2	0	1	1	0
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	53.1%	54.9%	50.6%	37.9%	38.5%	53.1%	61.2%	57.9%
		(MIC ≥ 4)	146	201	121	203	167	128	208	186
	Phenicols	Chloramphenicol	1.8%	2.7%	1.3%	0.2%	1.2%	2.5%	2.4%	0.9%
		(MIC ≥ 32)	5	10	3	1	5	6	8	3
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	54.5%	56.0%	54.4%	29.9%	31.3%	49.0%	57.9%	33.3%
		(MIC ≥ 512)	150	205	130	160	136	118	197	107
	Tetracyclines	Tetracycline	46.2%	34.4%	44.8%	23.5%	22.1%	36.1%	29.4%	22.7%
	1 .	(MIC ≥ 16)	127	126	107	126	96	87	100	73

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true.

[†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Year			1999	2000	2001	2002	2003	2004	2005	2006
Total I	solates		87	75	91	73	51	61	52	74
		Antibiotic								
Rank	Subclass	(Resistance breakpoint)								
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	1.4%
		(MIC ≥ 16)	0	0	0	1	0	0	0	1
		Streptomycin	63.2%	61.3%	47.3%	43.8%	60.8%	72.1%	57.7%	58.1%
		(MIC ≥ 64)	55	46	43	32	31	44	30	43
	Aminopenicillins	Ampicillin	77.0%	77.3%	72.5%	75.3%	84.3%	82.0%	75.0%	63.5%
		(MIC ≥ 32)	67	58	66	55	43	50	39	47
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	3.4%	4.0%	4.4%	5.5%	2.0%	1.6%	0.0%	0.0%
1		(MIC ≥ 32)	3	3	4	4	1	1	0	0
	Cephalosporins (3 rd generation)	Ceftiofur	0.0%	0.0%	0.0%	1.4%	2.0%	0.0%	0.0%	1.4%
		(MIC ≥ 8)	0	0	0	1	1	0	0	1
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0
	Quinolones	Ciprofloxacin	0.0%	0.0%	1.1%	0.0%	0.0%	0.0%	0.0%	1.4%
		(MIC ≥ 4)	0	0	1	0	0	0	0	1
		Nalidixic acid	1.1%	0.0%	3.3%	2.7%	5.9%	1.6%	3.8%	5.4%
		(MIC ≥ 32)	1	0	3	2	3	1	2	4
	Aminoglycosides	Kanamycin	0.0%	0.0%	1.1%	4.1%	3.9%	0.0%	3.8%	0.0%
		(MIC ≥ 64)	0	0	1	3	2	0	2	0
	Cephalosporin (1 st generation)	Cephalothin	4.6%	2.7%	1.1%	2.7%	3.9%	Not	Not	Not
		(MIC ≥ 32)	4	2	1	2	2	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 32)	Tested	0	0	0	0	0	0	0
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	48.3%	42.7%	34.1%	28.8%	39.2%	45.9%	44.2%	59.5%
		(MIC ≥ 4)	42	32	31	21	20	28	23	44
	Phenicols	Chloramphenicol	64.4%	69.3%	74.7%	63.0%	68.6%	60.7%	65.4%	54.1%
		(MIC ≥ 32)	56	52	68	46	35	37	34	40
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	58.6%	53.3%	57.1%	41.1%	52.9%	65.6%	55.8%	68.9%
		(MIC ≥ 512)	51	40	52	30	27	40	29	51
	Tetracyclines	Tetracycline	92.0%	92.0%	94.5%	78.1%	82.4%	95.1%	94.2%	83.8%
		(MIC > 16)	00	60	0.0	57	40	50	40	60

Table 3.07: Percentage and number of Shigella flexneri isolates resistant to antimicrobial agents,1999–2006

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. [†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 3.08: Resistance patterns of Shigella isolates, 1999–2006

Year	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	375	450	344	620	495	315	396	402
	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n
No resistance detected	9.1%	7.3%	4.9%	8.2%	8.5%	4.4%	4.5%	5.2%
	34	33	17	51	42	14	18	21
Resistance ≥ 1 CLSI subclass*	90.9%	92.7%	95.1%	91.8%	91.5%	95.6%	95.5%	94.8%
	341	417	327	569	453	301	378	381
Resistance ≥ 2 CLSI subclasses*	63.7%	64.7%	69.8%	55.3%	57.8%	66.7%	73.7%	71.4%
	239	291	240	343	286	210	292	287
Resistance ≥ 3 CLSI subclasses*	61.1%	62.0%	61.3%	41.8%	41.4%	62.2%	62.9%	51.0%
	229	279	211	259	205	196	249	205
Resistance ≥ 4 CLSI subclasses*	54.1%	56.7%	54.1%	31.0%	32.5%	52.1%	55.6%	35.8%
	203	255	186	192	161	2003 2004 2003 495 315 336 % % % n n n 8.5% 4.4% 4.5% 42 14 18 91.5% 95.6% 95.5% 453 301 378 57.8% 66.7% 73.7% 286 210 292 41.4% 62.2% 62.9% 205 196 249 32.5% 52.1% 55.6% 161 164 220 22.4% 27.6% 15.7% 111 87 62 3.2% 6.0% 4.0% 16 19 16 3.6% 6.7% 6.3% 18 21 25 33.7% 37.8% 39.9% 167 119 158 0.8% 0.6% 0.5% 4 2 2 0.0%	144	
Resistance ≥ 5 CLSI subclasses*	40.5%	26.2%	36.0%	20.5%	22.4%	27.6%	15.7%	13.7%
	152	118	124	127	111	87	62	55
At least ACSSuT [†]	8.5%	5.6%	6.4%	1.8%	3.2%	6.0%	4.0%	5.0%
	32	25	22	11	16	19	16	20
At least ACSuTm [‡]	9.9%	6.9%	7.0%	2.7%	3.6%	6.7%	6.3%	6.0%
	37	31	24	17	18	21	25	24
At least ASuTm [§]	44.3%	44.4%	37.5%	29.8%	33.7%	37.8%	39.9%	34.1%
	166	200	129	185	167	119	158	137
At least ANSuTm [¶]	0.3%	0.0%	0.6%	0.3%	0.8%	0.6%	0.5%	0.5%
	1	0	2	2	4	2	2	2
At least ACSSuTAuCf**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0
At least MDR-AmpC ^{††}	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0
Resistance to guinolone ^{‡‡} and cephalosporin ^{§§}	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.3%	0.2%
	0	0	0	0	1	1	1	1

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

 $\label{eq:constraint} {}^{\mathtt{t}}\mathsf{ACSuTm}: \text{resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole}$

 $^{\$}\mbox{ASuTm}:$ resistance to ampicillin, trimethoprim-sulfamethoxazole

¹ANSuTm: resistance to ASuTm + naladixic acid

**ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

¹¹MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC $\ge 2 \mu g/mL$)

^{‡‡}Resistance to nalidixic acid (MIC \ge 32) or decreased susceptibility to ciprofloxacin (MIC \ge 0.12)

 $\$ Decreased susceptibility to ceftiofur (MIC \geq 2) or ceftriaxone (MIC \geq 2)

Table 3.09: Resistance patterns of Shigella sonnei isolates, 1999–2006

Year	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	275	366	239	536	434	241	340	321
	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n
No resistance detected	10.5%	7.7%	5.4%	7.1%	8.5%	5.0%	4.4%	4.7%
	29	28	13	38	37	12	15	15
Resistance ≥ 1 CLSI subclass*	89.5%	92.3%	94.6%	92.9%	91.5%	95.0%	95.6%	95.3%
	246	338	226	498	397	229	325	306
Resistance ≥ 2 CLSI subclasses*	56.0%	60.7%	60.7%	52.1%	54.1%	59.8%	72.6%	67.9%
	154	222	145	279	235	144	247	218
Resistance ≥ 3 CLSI subclasses*	54.5%	57.7%	53.1%	36.6%	36.2%	54.4%	60.0%	43.6%
	150	211	127	196	157	131	204	140
Resistance ≥ 4 CLSI subclasses*	50.5%	54.1%	49.0%	26.7%	28.6%	46.5%	53.5%	29.3%
	139	198	117	143	124	112	182	94
Resistance ≥ 5 CLSI subclasses*	38.5%	23.5%	36.0%	19.4%	20.0%	24.9%	11.5%	7.5%
	106	86	86	104	87	60	39	24
At least ACSSuT [†]	0.4%	0.8%	0.0%	0.0%	0.2%	0.0%	0.3%	0.0%
	1	3	0	0	1	0	1	0
At least ACSuTm [‡]	1.8%	1.9%	0.8%	0.2%	0.9%	1.7%	2.4%	0.9%
	5	7	2	1	4	4	8	3
At least ASuTm§	45.1%	46.2%	41.0%	30.2%	33.6%	39.4%	40.6%	32.1%
	124	169	98	162	146	95	138	103
At least ANSuTm ¹	0.0%	0.0%	0.0%	0.2%	0.2%	0.8%	0.3%	0.0%
	0	0	0	1	1	2	1	0
At least ACSSuTAuCf**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0
At least MDR-AmpC ^{††}	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
·	0	0	0	0	0	0	0	0
Resistance to quinolone** and cephalosporin ^{††}	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.3%	0.0%
	0	0	0	0	0	1	1	0

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

 $^{\$}\mbox{ASuTm}:$ resistance to ampicillin, trimethoprim-sulfamethoxazole ¹ANSuTm: resistance to ASuTm + naladixic acid

**ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

^{+†}MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 μg/mL)

^{‡‡}Resistance to nalidixic acid (MIC \ge 32) or decreased susceptibility to ciprofloxacin (MIC \ge 0.12)

 $^{\$\$}$ Decreased susceptibility to ceftiofur (MIC \geq 2) or ceftriaxone (MIC \geq 2)

Table 3.10: Resistance patterns of Shigella flexneri isolates, 1999–2006

Year	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	87	75	91	73	51	61	52	74
	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n
No resistance detected	4.6%	4.0%	3.3%	15.1%	7.8%	0.0%	5.8%	5.4%
	4	3	3	11	4	0	3	4
Resistance ≥ 1 CLSI subclass*	95.4%	96.0%	96.7%	84.9%	92.2%	100.0%	94.2%	94.6%
	83	72	88	62	47	61	49	70
Resistance ≥ 2 CLSI subclasses*	83.9%	82.7%	90.1%	76.7%	86.3%	93.4%	80.8%	86.5%
	73	62	82	56	44	57	42	64
Resistance ≥ 3 CLSI subclasses*	80.5%	81.3%	80.2%	75.3%	82.4%	91.8%	80.8%	81.1%
	70	61	73	55	42	56	42	60
Resistance ≥ 4 CLSI subclasses*	67.8%	69.3%	65.9%	58.9%	64.7%	75.4%	69.2%	62.2%
	59	52	60	43	33	46	36	46
Resistance ≥ 5 CLSI subclasses*	49.4%	40.0%	31.9%	28.8%	45.1%	41.0%	44.2%	40.5%
	43	30	29	21	23	25	23	30
At least ACSSuT [†]	33.3%	29.3%	22.0%	15.1%	29.4%	27.9%	28.8%	27.0%
	29	22	20	11	15	17	15	20
At least ACSuTm [‡]	34.5%	32.0%	23.1%	21.9%	27.5%	24.6%	32.7%	28.4%
	30	24	21	16	14	15	17	21
At least ASuTm [§]	44.8%	38.7%	25.3%	27.4%	37.3%	36.1%	38.5%	43.2%
	39	29	23	20	19	22	20	32
At least ANSuTm [¶]	1.1%	0.0%	1.1%	1.4%	5.9%	0.0%	1.9%	2.7%
	1	0	1	1	3	0	1	2
At least ACSSuTAuCf**	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0
At least MDR-AmpC ^{††}	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0
Resistance to quinolone** and cephalosporin ^{††}	0.0%	0.0%	0.0%	0.0%	2.0%	0.0%	0.0%	1.4%
	0	0	0	0	1	0	0	1

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline [‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

§ASuTm: resistance to ampicillin, trimethoprim-sulfamethoxazole

[¶]ANSuTm: resistance to ASuTm + naladixic acid

**ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur ¹¹MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC $\ge 2 \ \mu g/mL$) ¹²Resistance to nalidixic acid (MIC ≥ 32) or decreased susceptibility to ciprofloxacin (MIC ≥ 0.12)

SSDecreased susceptibility to ceftiofur (MIC \geq 2) or ceftriaxone (MIC \geq 2)

4. Escherichia coli O157

From 1996 to 2006, there was no temporal trend in the percentage of isolates with resistance. Among *E. coli* O157 isolates, resistance to antimicrobial agents was not common and multidrug resistance was rare.

In 2006, CDC received a total of 251 *Escherichia coli* O157 isolates, of which 233 (92.8%) were viable nonduplicates tested for antimicrobial susceptibility (<u>Table II</u>). Resistance to antimicrobial agents was not common. Antimicrobial agents with the highest prevalence of resistance were tetracycline (4.7%), sulfisoxazole (3.0%), ampicillin (2.6%), and streptomycin (2.6%). Three isolates in 2006 were resistant to ceftiofur, whereas no isolates were resistant in 2005 (<u>Table 4.02</u>).

Isolates resistant to at least one CLSI subclass decreased from 12.4% in 2005 to 8.2% in 2006 (<u>Table 4.03</u>). Just as in 2004 and 2005, there were no isolates resistant to at least five subclasses in 2006. From 1996 to 2006, there was no temporal trend in the percentage of isolates with no detected resistance, which ranged from 86.6% to 95.3% during the 11-year surveillance period.

Table 4.01: Minimum inhibitory concentrations (MICs) and resistance of *Escherichia coli* O157 isolates to antimicrobial agents, 2006 (N=233)

Bank		Antibiotic		% of is	olates						Perce	nt of al	l isolat	es with	MIC (µ	g/mL) [¶]					
Ralik		Antibiotic	%l [†]	%R [‡]	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–1.6]						6.0	66.1	21.9	5.2	0.9						
		Gentamicin	0.0	0.0	[0.0–1.6]					51.9	42.1	5.6	0.4								
		Streptomycin	NA	2.6	[1.0–5.5]												97.4	1.3	1.3		
	Aminopenicillins	Ampicillin	0.4	2.6	[1.0–5.5]							4.3	78.5	12.9	1.3	0.4		2.6			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	0.4	1.3	[0.3–3.7]							1.7	9.0	86.3	1.3	0.4	0.4	0.9			
	Cephalosporins (3rd generation)	Ceftiofur	0.0	1.3	[0.3–3.7]				1.7	24.5	69.5	3.0				1.3					
		Ceftriaxone	0.4	0.9	[0.1–3.1]					97.9			0.9			0.4		0.9			
	Quinolones	Ciprofloxacin	0.0	0.4	[0.0–2.4]	97.0	0.4		1.3	0.9					0.4		-				
		Nalidixic acid	NA	2.1	[0.7–4.9]						0.4	2.1	87.1	7.3	0.4	0.4	0.4	1.7			
	Aminoglycosides	Kanamycin	0.0	0.4	[0.0–2.4]										99.1	0.4			0.4		
	Cephamycins	Cefoxitin	0.9	1.3	[0.3–3.7]							2.1	7.3	78.1	10.3	0.9	0.4	0.9			
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	0.4	[0.0–2.4]				94.4	5.2					0.4						
	Phenicols	Chloramphenicol	0.9	1.3	[0.3–3.7]								1.3	27.0	69.5	0.9		1.3			
	Sulfonamides	Sulfisoxazole	NA	3.0	[1.2–6.1]											81.1	14.6	1.3			3.0
	Tetracyclines	Tetracycline	0.0	4.7	[2.4–8.3]									95.3		0.4	1.3	3.0			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

*Percent of isolates that were resistant \$95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure 4.01: Antimicrobial resistance pattern for *Escherichia coli* O157, 2006

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Ampicillin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Sulfisoxazole	
Tetracycline	

199	0-2000												
Year Total I	solates		1996 201	1997 161	1998 318	1999 292	2000 407	2001 277	2002 399	2003 157	2004 169	2005 194	2006 233
Rank	Subclass	Antibiotic (Resistance breakpoint)											
	Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		(MIC ≥ 64)	Tested	0	0	0	0	0	0	0	0	0	0
		Gentamicin	0.0%	0.0%	0.0%	0.3%	0.5%	0.4%	0.0%	0.0%	0.6%	0.5%	0.0%
		(MIC ≥ 16)	0	0	0	1	2	1	0	0	1	1	0
		Streptomycin	2.0%	2.5%	1.9%	2.7%	5.2%	1.8%	2.3%	1.9%	1.8%	2.1%	2.6%
		(MIC ≥ 64)	4	4	6	8	21	5	9	3	3	4	6
	Aminopenicillins	Ampicillin	1.5%	0.0%	2.5%	1.4%	2.7%	2.2%	1.5%	3.2%	1.2%	4.1%	2.6%
		(MIC ≥ 32)	3	0	8	4	11	6	6	5	2	8	6
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0%	0.0%	0.0%	0.3%	1.0%	0.7%	0.0%	1.3%	0.0%	0.0%	1.3%
		(MIC ≥ 32)	0	0	0	1	4	2	0	2	0	0	3
	Cephalosporins (3rd Gen.)	Ceftiofur	0.0%	0.0%	0.0%	0.0%	1.0%	1.1%	0.0%	1.3%	0.0%	0.0%	1.3%
	,	(MIC ≥ 8)	0	0	0	0	4	3	0	2	0	0	3
		Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.9%
		(MIC ≥ 64)	0	0	0	0	0	0	0	0	0	0	2
	Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%
		(MIC ≥ 4)	0	0	0	0	0	0	0	0	0	0	1
		Nalidixic acid	0.0%	0.0%	0.0%	0.7%	0.5%	1.1%	1.0%	0.6%	1.8%	1.5%	2.1%
		(MIC ≥ 32)	0	0	0	2	2	3	4	1	3	3	5
	Aminoglycosides	Kanamycin	0.0%	0.0%	0.3%	0.7%	1.0%	0.0%	0.5%	0.0%	0.0%	0.5%	0.4%
		(MIC ≥ 64)	0	0	1	2	4	0	2	0	0	1	1
	Cephalosporin (1 st Gen.)	Cephalothin	1.5%	2.5%	0.0%	0.7%	1.2%	1.4%	1.5%	2.5%	Not	Not	Not
		(MIC ≥ 32)	3	4	0	2	5	4	6	4	Tested	Tested	Tested
	Cephamycins	Cefoxitin	Not	Not	Not	Not	1.0%	0.7%	0.0%	1.3%	0.6%	0.0%	1.3%
		(MIC ≥ 32)	Tested	Tested	Tested	Tested	4	2	0	2	1	0	3
п	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	0.0%	0.0%	0.6%	1.4%	0.7%	0.7%	0.5%	0.6%	0.0%	0.5%	0.4%
		$(MIC \ge 4)$	0	0	2	4	3	2	2	1	0	1	1
	Phenicols	Chloramphenicol	0.5%	0.0%	0.3%	0.0%	3.7%	1.4%	1.3%	1.3%	0.6%	1.0%	1.3%
		(MIC ≥ 32)	1	0	1	0	15	4	5	2	1	2	3
	Sulfonamides	Sulfamethoxazole/Sulfisoxazole [†]	11.9%	9.9%	5.7%	8.2%	5.9%	5.1%	3.5%	3.8%	1.8%	6.7%	3.0%
		(MIC ≥ 512)	24	16	18	24	24	14	14	6	3	13	7
	Tetracyclines	Tetracycline	5.0%	3.1%	4.4%	3.4%	7.1%	5.4%	3.0%	5.7%	1.8%	8.8%	4.7%
		(MIC ≥ 16)	10	5	14	10	29	15	12	9	3	17	11

Table 4.02: Percentage and number of Escherichia coli O157 isolates resistant to antimicrobial agents, 1996-2006

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. [†]Sulfamethoxazole, which was tested during 1996-2003 to represent sulfonamides, was replaced by sulfisoxazole in 2004.

Table 4.03: Resistance patterns of Escherichia coli O157 isolates, 1996–2006

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	201	161	318	292	407	277	399	157	169	194	233
	%	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n	n
No resistance detected	86.6%	88.8%	92.8%	89.7%	90.4%	91.3%	94.0%	90.4%	95.3%	87.6%	91.8%
	174	143	295	262	368	253	375	142	161	170	214
Resistance ≥ 1 CLSI subclass*	13.4%	11.2%	7.2%	10.3%	9.6%	8.7%	6.0%	9.6%	4.7%	12.4%	8.2%
	27	18	23	30	39	24	24	15	8	24	19
Resistance ≥ 2 CLSI subclasses*	5.0%	3.7%	5.3%	3.4%	6.6%	5.4%	3.8%	5.1%	1.2%	5.2%	3.4%
	10	6	17	10	27	15	15	8	2	10	8
Resistance ≥ 3 CLSI subclasses*	1.5%	0.6%	1.9%	3.1%	4.7%	2.2%	2.0%	3.2%	0.6%	1.0%	3.0%
	3	1	6	9	19	6	8	5	1	2	7
Resistance ≥ 4 CLSI subclasses*	0.5%	0.0%	0.9%	1.0%	3.7%	1.8%	1.0%	1.3%	0.6%	0.5%	1.7%
	1	0	3	3	15	5	4	2	1	1	4
Resistance ≥ 5 CLSI subclasses*	0.5%	0.0%	0.0%	0.7%	1.5%	0.7%	0.3%	0.6%	0.0%	0.0%	0.0%
	1	0	0	2	6	2	1	1	0	0	0
At least ACSSuT [†]	0.5%	0.0%	0.0%	0.0%	1.2%	0.4%	0.0%	0.0%	0.0%	0.0%	0.9%
	1	0	0	0	5	1	0	0	0	0	2
At least ACSuTm [‡]	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	1	0	0	0	0	0	0
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%	0.0%	1.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	4	1	0	0	0	0	0
At least MDR-AmpC [¶]	0.0%	0.0%	0.0%	0.0%	1.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	4	1	0	0	0	0	0
Resistance to guinolone** and cephalosporin ^{††}	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.3%
	0	0	0	0	0	0	0	0	0	0	3

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline [‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§]ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur [¶]MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 µg/mL)

Thesistance to nalidixi acid (MIC \geq 2) or decreased susceptibility to ciprofloxacin (MIC \geq 0.12) ¹¹Decreased susceptibility to ciprofloxacin (MIC \geq 0.12)

5. Campylobacter

Among all *Campylobacter* isolates tested, ciprofloxacin resistance increased from 12.9% in 1997 to 21.7 in 2005 and decreased to 19.6% in 2006. Resistance to erythromycin remained low during the period from 1997 to 2006. A decrease in ciprofloxacin resistance in *C. jejuni* was observed similar to the trend in all *Campylobacter*. The percentage of resistance to most antimicrobial agents tested, including ciprofloxacin and erythromycin, was higher in *C. coli* compared with *C. jejuni*.

In 2006, CDC received 920 *Campylobacter* isolates, of which 816 (88.7%) were viable non-duplicates tested for antimicrobial susceptibility. A total of 709 (86.9%) were *C. jejuni*, 97 (11.9%) were *C. coli*, and 10 (1.2%) were other species (Table 5.01).

Of the *Campylobacter* isolates tested in 2006 (<u>Table II</u>), resistance was highest to tetracycline (46.0%), nalidixic acid (20.1%), and ciprofloxacin (19.6%) (<u>Table 5.02</u>). Of the isolates tested, none were resistant to florfenicol, which replaced chloramphenicol to represent the phenicol antimicrobial subclass.

The percentage of *Campylobacter* isolates resistant to ciprofloxacin significantly increased from 12.9% in 1997 to 19.6% in 2006 (OR=2.0, 95% CI [1.3, 3.1]). Resistance to erythromycin remained low at 2.1% or less from 1997 to 2006. It increased from 0.3% in 2004 to 1.7% in 2006 (Table 5.03).

In 2006, 56.1% of *Campylobacter* isolates were resistant to one or more CLSI subclass, compared with 51.6% in 2005 (<u>Table 5.04</u>). In 2006, 12.0% of *Campylobacter* isolates were resistant to two or more subclasses, compared with 13.6% in 2005.

The antimicrobial agent with the highest prevalence of resistance among the 709 *C. jejuni* isolates was tetracycline (47.4%), followed by ciprofloxacin (19.5%), and nalidixic acid (19.0%) (<u>Table 5.05</u>). Of note, 0.0% and 0.8% of *C. jejuni* isolates were resistant to gentamicin and erythromycin, respectively.

The percentage of *C. jejuni* isolates resistant to ciprofloxacin increased from 12.4% in 1997 to 19.5% in 2006 (<u>Table 5.06</u>); this increase was statistically significant (OR=2.0, 95% CI [1.3, 3.3]). Erythromycin resistance was low at 1.9% or less from 1997 to 2006.

The percentage of resistance to most agents tested, including ciprofloxacin and erythromycin, was higher in *C. coli* compared with *C. jejuni*. In 2006, the highest levels of resistance among the 97 *C. coli* isolates were to tetracycline (39.2%), nalidixic acid (23.7%), and ciprofloxacin (21.6%) (<u>Table 5.07</u>). The percentage of *C. coli* isolates resistant to ciprofloxacin was 33.3% in 1997, not detected in 1998, but ranged from 12.0% to 47.1% from 1999 to 2006; it was 21.6% in 2006 (<u>Table 5.08</u>). Resistance to erythromycin was not detected in 1997, 12.5% in 1998, ranged from 4.0% to 10.0% during 1999 to 2003, decreased to 0.0% in 2004, and increased to 8.2% in 2006.

Table 5.01: Frequency of Campylobacter species isolated in NARMS, 2006

Species		2006
	n	(%)
Campylobacter jejuni	709	(86.9%)
Campylobacter coli	97	(11.9%)
Other	10	(1.2%)
Total	816	(100.0%)

Table 5.02: Minimum inhibition concentrations (MICs) and resistance of *Campylobacter* isolates to antimicrobial agents, 2006 (N=816)

Deals		Antibiotio		% of is	olates						Percer	nt of all	isolate	es with	MIC (µ	g/mL) [¶]					
Rank		Anabiotic	%I [†]	%R [‡]	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.1	[0.0-0.7]				7.6	33.5	51.7	6.7	0.4					0.1			
	Ketolide	Telithromycin	0.5	1.6	[0.9–2.7]			0.2	1.6	12.6	30.0	30.4	19.2	3.8	0.5	1.6					
	Macrolides	Azithromycin	0.0	1.7	[0.9–2.9]	3.6	25.4	34.3	25.1	8.8	0.9	0.2							1.7		
		Erythromycin	0.0	1.7	[0.9–2.9]			0.9	7.2	27.7	33.6	22.2	4.8	2.0				0.1	1.6		
	Quinolones	Ciprofloxacin	0.1	19.6	[16.9–22.5]	0.2	5.3	36.2	29.0	8.3	1.2		0.1	2.0	8.3	5.9	2.0	1.2	0.2		
		Nalidixic acid	0.4	20.1	[17.4–23.0]									58.3	18.1	3.1	0.4	2.6	17.5		
	Phenicols	Florfenicol**	N/A	0.0	[0.0-0.5]					2.0	18.4	60.8	16.3	2.6				-			
	Tetracyclines	Tetracycline	0.5	46.0	[42.5–49.4]			6.0	22.4	17.0	4.5	2.7	0.7	0.1	0.5	1.5	3.2	12.3	29.0		
III	Lincosamides	Clindamycin	0.1	2.0	[1.1–3.2]		3.9	21.7	39.8	22.1	7.5	2.0	1.0	0.1	0.2	0.7	1.0				

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire *Percent of isolates with intermediate susceptibility

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

The unshaded areas indicate the range of dilutions tested for each antimicrobial agent. Single vertical bars indicate the breakpoints for susceptibility, while double vertical

bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest tested concentrations.

Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints

"CLSI guidelines do not currently define a resistance-breakpoint for florfenicol.

Figure 5.01: Antimicrobial resistance pattern for Campylobacter, 2006

Table 5.03: Percentage and number of Campylobacter isolates resistant to antimicrobial agents, 1997–2006

Year			1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Is	solates		217	310	317	324	384	354	328	347	890	816
Rank	Subclass	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin	Not	0.3%	0.0%	0.3%	0.0%	0.0%	0.3%	0.3%	0.7%	0.1%
		(MIC ≥ 8)	Tested	1	0	1	0	0	1	1	6	1
	Ketolides	Telithromycin	Not	1.0%	1.6%							
		(MIC ≥ 16)	Tested	9	13							
	Macrolides	Azithromycin	Not	0.6%	2.2%	1.9%	2.1%	2.0%	0.9%	0.6%	1.9%	1.7%
		(MIC ≥ 8)	Tested	2	7	6	8	7	3	2	17	14
I		Erythromycin	1.8%	1.0%	1.9%	1.2%	2.1%	1.4%	0.9%	0.3%	1.8%	1.7%
		(MIC ≥ 32)	4	3	6	4	8	5	3	1	16	14
	Quinolones	Ciprofloxacin	12.9%	13.9%	18.3%	14.8%	19.5%	20.1%	17.7%	19.0%	21.7%	19.6%
		(MIC ≥ 4)	28	43	58	48	75	71	58	66	193	160
		Nalidixic acid	14.3%	16.8%	21.1%	16.7%	20.3%	20.6%	18.9%	19.6%	22.4%	20.1%
		(MIC ≥ 64)	31	52	67	54	78	73	62	68	199	164
	Phenicols	Chloramphenicol	5.1%	2.9%	0.6%	0.0%	0.3%	0.3%	0.0%	1.4%	Not	Not
		(MIC ≥ 32)	11	9	2	0	1	1	0	5	Tested	Tested
		Florfenicol [†]	Not	0.6%	0.0%							
		Susceptible breakpoint: (MIC < 4)	Tested	5	0							
	Tetracyclines	Tetracycline	47.9%	45.5%	43.8%	38.3%	40.9%	41.2%	38.4%	46.1%	40.6%	46.0%
		(MIC ≥ 16)	104	141	139	124	157	146	126	160	361	375
	Lincosamides	Clindamycin	1.8%	1.3%	1.3%	0.9%	2.1%	2.0%	0.6%	2.0%	1.5%	2.0%
		(MIC ≥ 8)	4	4	4	3	8	7	2	7	13	16

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important

(Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. Antimicrobial agents are considered important (Rank III) if neither criterion are true.

[†] Only a susceptible breakpoint (≤ 4 µg/ml) has been established. In this report, isolates with an MIC ≥ 8 µg/ml are categorized as resistant

Table 5.04: Resistance patterns of Campylobacter isolates, 1997–2006

Year	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Isolates	217	310	317	324	384	354	328	347	890	816
	%	%	%	%	%	%	%	%	%	%
	n	n	n	n	n	n	n	n	n	n
No resistance detected	47.0%	45.2%	47.3%	52.2%	49.2%	48.3%	50.9%	46.1%	48.4%	43.9%
	102	140	150	169	189	171	167	160	431	358
Resistance ≥ 1 CLSI subclass*	53.0%	54.8%	52.7%	47.8%	50.8%	51.7%	49.1%	53.9%	51.6%	56.1%
	115	170	167	155	195	183	161	187	2005 2006 890 816 % % n n 48.4% 43.9% 431 358 51.6% 56.1% 459 458 13.6% 12.0% 121 98 1.5% 13 13 12 0.3% 0.5% 3 4 0.0% 0 0 0	458
Resistance ≥ 2 CLSI subclasses*	15.7%	9.7%	13.6%	8.0%	13.3%	12.7%	8.5%	14.1%	13.6%	12.0%
	34	30	43	26	51	45	28	49	121	98
Resistance ≥ 3 CLSI subclasses*	1.8%	2.6%	1.6%	0.9%	1.6%	1.1%	0.9%	1.2%	1.5%	1.5%
	4	8	5	3	6	4	3	4	13	12
Resistance ≥ 4 CLSI subclasses*	0.5%	0.3%	0.9%	0.3%	0.3%	0.0%	0.3%	0.3%	0.3%	0.5%
	1	1	3	1	1	0	1	1	3	4
Resistance ≥ 5 CLSI subclasses*	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0	2005 21 890 8 % - 48.4% 43 431 3 51.6% 56 459 4 13.6% 12 121 5 1.5% 1. 13 - 0.3% 0. 3 0.0% 0. 0 0	0

*CLSI: Clinical and Laboratory Standards Institute

Table 5.05: Minimum inhibitory concentrations (MICs) and resistance of *Campylobacter jejuni* isolates to antimicrobial agents, 2006, (N=709)

Donk		Antibiotic		% of is	olates						Perce	nt of al	l isolate	es with	MIC (µ	g/mL) [¶]					
Rank [*] Amin Ketol Macre Quine		Antibiotic	%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	0.0	[0.0-0.5]				8.5	37.5	49.6	4.1	0.3								
	Ketolide	Telithromycin	0.1	0.8	[0.3–1.8]			0.3	1.7	12.4	31.5	32.6	19.0	1.6	0.1	0.8					
	Macrolides	Azithromycin	0.0	0.8	[0.3–1.8]	4.1	28.1	37.7	22.8	6.1	0.3	0.1							0.8		
		Erythromycin	0.0	0.8	[0.3–1.8]			1.0	8.2	30.9	34.3	20.6	3.5	0.7					0.8		
	Quinolones	Ciprofloxacin	0.1	19.5	[16.6–22.6]	0.3	5.9	39.5	28.2	5.8	0.7		0.1	1.8	8.3	5.8	2.1	1.1	0.3		
		Nalidixic acid	0.4	19.0	[16.2–22.1]									62.3	15.8	2.4	0.4	2.3	16.8		
	Phenicols	Florfenicol**	N/A	0.0	[0.0-0.5]					2.3	20.2	61.6	13.7	2.3							
Т	Tetracyclines	Tetracycline	0.6	47.4	[43.7–51.1]			6.6	24.3	15.2	3.2	2.0	0.6	0.1	0.6	1.6	3.7	13.8	28.3		
III	Lincosamides	Clindamycin	0.0	1.0	[0.4–2.0]		4.4	24.4	43.6	20.0	5.2	0.8	0.6		0.1	0.4	0.4				

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or ¹Percent of isolates with intermediate susceptibility

[‡]Percent of isolates that were resistant

^{\$}95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the range of dilutions tested for each antimicrobial agent. Single vertical bars indicate the breakpoints for susceptibility, while double vertical

bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest tested concentrations. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints

Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration.

"CLSI guidelines do not currently define a resistance-breakpoint for florfenicol.

Figure 5.02: Antimicrobial resistance pattern for Campylobacter jejuni, 2006

Antim icrobial

Table 5.06: Percentage and number of Campylobacter jejuni isolates resistant to antimicrobial agents, 1997–2006

Year Total Isolates			1997 209	1998 297	1999 293	2000 306	2001 365	2002 329	2003 303	2004 320	2005 791	2006 709
Rank	Subclass	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin (MIC > 8)	Not Tested	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%	0.0%
	Ketolides	Telithromycin (MIC ≥ 16)	Not Tested	0.0%	0.8%							
	Macrolides	Azithromycin (MIC ≥ 8)	Not Tested	0.3%	1.7%	1.6%	1.9%	1.8%	0.3%	0.6%	1.8% 14	0.8% 6
		Erythromycin (MIC ≥ 32)	1.4% 3	0.7% 2	1.4% 4	1.0% 3	1.9% 7	1.2% 4	0.3% 1	0.3% 1	1.6% 13	0.8% 6
	Quinolones	Ciprofloxacin (MIC \geq 4)	12.4% 26	13.8% 41	17.7% 52	14.7% 45	18.4% 67	20.7% 68	17.2% 52	18.1% 58	21.5% 170	19.5% 138
		Nalidixic acid (MIC ≥ 64)	13.4% 28	15.5% 46	20.1% 59	16.0% 49	18.9% 69	21.3% 70	17.8% 54	18.4% 59	21.9% 173	19.0% 135
	Phenicols Chloramphenicol (MIC ≥ 32)		3.8% 8	1.0% 3	0.7% 2	0.0% 0	0.3% 1	0.3% 1	0.0% 0	1.6% 5	Not Tested	Not Tested
П		Florfenicol* Susceptible breakpoint: (MIC < 4)	Not Tested	0.5% 4	0.0% 0							
	Tetracyclines	Tetracycline (MIC ≥ 16)	47.8% 100	46.1% 137	45.4% 133	39.2% 120	40.3% 147	41.3% 136	38.3% 116	46.9% 150	41.8% 331	47.4% 336
Ш	Lincosamides	Clindamycin (MIC ≥ 8)	1.0% 2	1.0% 3	0.7% 2	0.7% 2	1.9% 7	1.8% 6	0.0%	2.2% 7	1.1% 9	1.0% 7

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important

(Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. Antimicrobial agents are considered important (Rank III) if either criterion are true.

Torivis a susceptible breakpoint ($\leq 4 \mu g/m$) has been established. In this report, isolates with an MIC $\geq 8 \mu g/m$ are categorized as resistant

Table 5.07: Minimum inhibitory concentrations (MICs) and resistance of *Campylobacter coli* isolates to antimicrobial agents, 2006 (N=97)

Pank	Antibiotic			% of is	olates	Percent of all isolates with MIC (μg/mL) ¹															
Ralik		Anubiolic		%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Gentamicin	0.0	1.0	[0.0–5.6]				2.1	6.2	63.9	25.8	1.0			-		1.0			
	Ketolide	Telithromycin	2.1	7.2	[3.0–14.3]				1.0	14.4	21.6	14.4	20.6	18.6	2.1	7.2					
	Macrolides	Azithromycin	0.0	8.2	[3.6–15.6]		8.2	11.3	41.2	24.7	5.2	1.0							8.2		
		Erythromycin	0.0	8.2	[3.6–15.6]				1.0	6.2	29.9	29.9	13.4	11.3				1.0	7.2		
	Quinolones	Ciprofloxacin	0.0	21.6	[13.9–31.2]		1.0	15.5	35.1	22.7	4.1			3.1	9.3	7.2	1.0	1.0			
		Nalidixic acid	0.0	23.7	[15.7–33.4]									32.0	36.1	8.2		5.2	18.6		
ш	Phenicols	Florfenicol**	N/A	0.0	[0.0–3.7]						7.2	54.6	33.0	5.2				-			
	Tetracyclines	Tetracycline	0.0	39.2	[29.4–49.6]			2.1	9.3	29.9	12.4	5.2	2.1					2.1	37.1		
Ш	Lincosamides	Clindamycin	1.0	9.3	[4.3–16.9]		1.0	3.1	15.5	36.1	22.7	7.2	4.1	1.0	1.0	3.1	5.2				

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or ¹Percent of isolates with intermediate susceptibility

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the range of dilutions tested for each antimicrobial agent. Single vertical bars indicate the breakpoints for susceptibility, while double vertical

bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest tested concentrations.

Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints

*CLSI guidelines do not currently define a resistance-breakpoint for florfenicol.

Figure 5.03: Antimicrobial resistance pattern for *Campylobacter coli*, 2006 Antimicrobial

Table 5.08: Percentage and number of Campylobacter coli isolates resistant to antimicrobial agents, 1997–2006

Year			1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Total Is	solates		6	8	20	12	17	25	22	26	98	97
Rank	Subclass	Antibiotic (Resistance breakpoint)										
	Aminoglycosides	Gentamicin	Not	0.0%	0.0%	8.3%	0.0%	0.0%	4.5%	0.0%	2.0%	1.0%
		(MIC ≥ 8)	Tested	0	0	1	0	0	1	0	2	1
	Ketolides	Telithromycin	Not	4.1%	7.2%							
	(MIC ≥ 16)		Tested	4	7							
	Macrolides	Azithromycin	Not	12.5%	10.0%	8.3%	5.9%	4.0%	9.1%	0.0%	3.1%	8.2%
		(MIC ≥ 8)	Tested	1	2	1	1	1	2	0	3	8
1		Erythromycin	0.0%	12.5%	10.0%	8.3%	5.9%	4.0%	9.1%	0.0%	3.1%	8.2%
		(MIC ≥ 32)	0	1	2	1	1	1	2	0	3	8
	Quinolones	Ciprofloxacin	33.3%	0.0%	30.0%	25.0%	47.1%	12.0%	22.7%	30.8%	23.5%	21.6%
		(MIC ≥ 4)	2	0	6	3	8	3	5	8	23	21
		Nalidixic acid	50.0%	50.0%	30.0%	25.0%	47.1%	12.0%	22.7%	34.6%	26.5%	23.7%
		(MIC ≥ 64)	3	4	6	3	8	3	5	9	26	23
	Phenicols	Chloramphenicol	50.0%	37.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	Not	Not
		(MIC ≥ 32)	3	3	0	0	0	0	0	0	Tested	Tested
		Florfenicol*	Not	1.0%	0.0%							
		Susceptible breakpoint: (MIC < 4)	Tested	1	0							
	Tetracyclines	Tetracycline	66.7%	50.0%	30.0%	25.0%	58.8%	40.0%	45.5%	38.5%	30.6%	39.2%
		(MIC ≥ 16)	4	4	6	3	10	10	10	10	30	38
ш	Lincosamides	Clindamycin	16.7%	12.5%	10.0%	8.3%	5.9%	4.0%	9.1%	0.0%	4.1%	9.3%
		(MIC ≥ 8)	1	1	2	1	1	1	2	0	4	9

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important

(Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true. Antimicrobial agents are considered important (Rank III) if neither criterion are true.

[†] Only a susceptible breakpoint (≤ 4 µg/ml) has been established. In this report, isolates with an MIC ≥ 8 µg/ml are categorized as resistant

Limitations to NARMS Campylobacter Surveillance

Three limitations are evident in NARMS *Campylobacter* surveillance: (1) the use of sentinel clinical laboratories in FoodNet states, (2) the sampling scheme implemented during 1997 to 2004, and (3) the limited geographic area under surveillance.

Four of the states that participated in NARMS *Campylobacter* surveillance during 1997 to 2004, (California, Colorado, Connecticut, and Oregon), submitted *Campylobacter* isolates to NARMS from one sentinel clinical laboratory within their state. The other six states (Georgia, Maryland, Minnesota, New Mexico, New York, and Tennessee), submitted *Campylobacter* isolates that were selected from most clinical laboratories within a specific geographic area (metro Atlanta area in Georgia; statewide in Maryland, Minnesota, New Mexico, and Tennessee; and the metro Albany and Rochester areas in New York). In California, Colorado, Connecticut, and Oregon, the sentinel clinical laboratory selected the first *Campylobacter* isolate isolate each week for submission to NARMS; if no isolate was isolated in a week, then no isolate was submitted from that laboratory. From the other six FoodNet sites, one *Campylobacter* isolate among isolates received from participating clinical laboratories was also selected each week. Because none of the sentinel clinical laboratories used an isolation procedure that was more or less likely than the procedure of other clinical laboratory was unlikely to be associated with a change of antimicrobial resistance among *Campylobacter* isolates submitted to NARMS.

From 1997 to 2004, the participating public health laboratories in Georgia, Maryland, Minnesota, New Mexico, New York, and Tennessee, and sentinel clinical laboratories in all other FoodNet sites selected one *Campylobacter* isolate each week and forwarded the isolate to CDC. When the isolates were selected, the antimicrobial resistance pattern of the isolates was not known. Therefore, the antimicrobial resistance pattern of an isolate was unlikely to influence submission of the isolate to NARMS. However, the one-sample-a-week scheme could have resulted in oversampling or undersampling of antimicrobial-resistant isolates if the prevalence of such resistance was not uniform throughout the year. The impact of oversampling or undersampling can vary among states. In 2005, a representative sampling scheme was initiated in the 10 FoodNet sites.

Campylobacter isolates were forwarded to CDC by 10 states participating in FoodNet during 2006, representing approximately 45 million persons (15% of the U.S. population). Because NARMS 2006 *Campylobacter* surveillance was not nationwide, findings should be generalized to the U.S. population with caution because of possible regional differences in the prevalence of antimicrobial resistance among *Campylobacter*.

References

CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2005 Human Isolates Final Report. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2008.

Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria: Approved Guideline. CLSI Document M45-A. CLSI, Wayne, Pennsylvania, 2006.

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement. CLSI Document M100-S19. CLSI, Wayne, Pennsylvania, 2009.

Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Eighth Edition. CLSI Document M07-A8. CLSI, Wayne, Pennsylvania, 2008.

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolates from Animals; Approved Standard-Third Edition. CLSI Document M31-A3. CLSI, Wayne, Pennsylvania, 2008.

Fleiss JL, Levin B, Paik MC. Statistical Methods in for Rates and Proportions. In: Shewart WA, Wilks SS, eds. Wiley Series in Probability and Statistics. Published Online; 2004.

Gonzalez, I, Grant KA, Richardson PT, Park SF, Collins MD. Specific identification of the enteropathogens *Campylobacter jejuni* and *Campylobacter coli* by using a PCR test based on the *ceuE* gene encoding a putative virulence determinant. Journal of Clinical Microbiology 1997; 35:759-63.

Linton D, Lawson AJ, Owen RJ, Stanley J. PCR detection, identification to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. Journal of Clinical Microbiology 1997; 35:2568-72.

Linton D, Owen RJ, Stanley J. Rapid Indentification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Research in Microbiology 1996;147:707-718.

Pruckler, J., et al., Comparison of four real-time PCR methods for the identification of the genus Campylobacter and speciation of C. jejuni and C. coli. ASM 106th General meeting; Poster C282.

NARMS Publications in 2006

1. Arlet G, Barrett TJ, Butaye P, Cloeckaert A, Mulvey MR and White DG. Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes Infect 2006;8:1945–54

2. Butaye P, Michael GB, Schwarz S, Barrett TJ, Brisabois A and White DG. The clonal spread of multidrugresistant non-typhi Salmonella serotypes. Microbes Infect 2006;8:1891–7

3. Carattoli A, Miriagou V, Bertini A, et al. Replicon typing of plasmids encoding resistance to newer beta-lactams. Emerg Infect Dis 2006;12:1145–8

4. Collignon P, Angulo FJ. Fluoroquinolone-resistant Escherichia coli: food for thought. J Infect Dis 2006;194:8–10

5. Dechet AM, Scallan E, Gensheimer K, et al. Outbreak of multidrug-resistant Salmonella enterica serotype Typhimurium Definitive Type 104 infection linked to commercial ground beef, northeastern United States, 2003–2004. Clin Infect Dis 2006;42:747–52

6. Donabedian SM, Perri MB, Vager D, et al. Quinupristin-dalfopristin resistance in Enterococcus faecium isolates from humans, farm animals, and grocery store meat in the United States. J Clin Microbiol 2006;44:3361–5

7. Gay K, Robicsek A, Strahilevitz J, et al. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis 2006;43:297–304

8. Holzbauer S, Chiller TM. Antimicrobial Resistance in Bacteria of Animal Origin [Books and Media]. Emerg Infect Dis 2006;12:1180–1181

9. Nsubuga P, White ME, Thacker SB, et al. Public Health Surveillance: A Tool for Targetting and Monitoring Interventions. In: Jamison D, ed. Disease Control Priorities in Developing Countries. 2 ed. New York: Oxford University Press 2006:1401

10. Qin X, Razia Y, Johnson JR, et al. Ciprofloxacin-resistant gram–negative bacilli in the fecal microflora of children. Antimicrob Agents Chemother 2006;50:3325–9

11. Raymond MJ, Wohrle RD and Call DR. Assessment and promotion of judicious antibiotic use on dairy farms in Washington State. J Dairy Sci 2006;89:3228–40

12. Sivapalasingam S, Nelson JM, Joyce K, Hoekstra M, Angulo FJ and Mintz ED. High prevalence of antimicrobial resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002. Antimicrob Agents Chemother 2006;50:49–54

13. Swaminathan B, Barrett TJ and Fields P. Surveillance for human Salmonella infections in the United States. J AOAC Int 2006;89:553–9

14. Varma JK, Marcus R, Stenzel SA, et al. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002–2003. J Infect Dis 2006;194:222–30

15. Zhao S, McDermott PF, Friedman S, et al. Antimicrobial resistance and genetic relatedness among Salmonella from retail foods of animal origin: NARMS retail meat surveillance. Foodborne Pathog Dis 2006;3:106–17

APPENDIX A

Summary of Escherichia coli Resistance Surveillance Pilot Study, 2006

E. COLI WORKING GROUP

Centers for Disease Control and Prevention

Frederick Angulo, Tim Barrett, Ezra Barzilay, Tom Chiller, Kathryn Gay, Patricia Griffin, Amy Krueger, Katie Joyce, Kevin Joyce, Amie ThurdeKoos, Terrell Miller, Felicita Medalla, Robert Tauxe Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases National Center for Infectious Diseases

Participating State and Local Health Departments

Maryland Department of Health and Mental Hygiene and University of Maryland Karen Cuenco, Jonigene Ruark, David Torpey, Mary Warren

Michigan Department of Community Health and William Beaumont Hospital Sue Donabedian, Mary Beth Perry, Mary Thill, Mark Zervos

INTRODUCTION

Escherichia coli is a Gram–negative coccobacillus bacterium that is part of the intestinal flora of humans and other animals. Because antimicrobial resistance genes commonly reside in mobile genetic elements that can be transferred horizontally to other bacteria, antimicrobial–resistant bacteria of the intestinal flora, including *E. coli*, constitute an important reservoir of resistance genes for pathogenic bacteria of humans and other animals. Furthermore, when introduced into a normally sterile site, *E. coli* is an important cause of infections, including septicemia, urinary tract infections, and wound infections. The human intestinal tract is the predominant source of *E. coli* causing these infections. Antimicrobial resistance among *E. coli* causing such infections complicates treatment options.

The use of antimicrobial agents creates a selective pressure for the emergence and dissemination of resistant bacteria. Use of antimicrobial agents in food animals selects resistant bacteria, including resistant *E. coli* in the intestinal tract of food animals. These resistant bacteria can be transmitted to humans through the food supply. Therefore, monitoring resistance in *E. coli* isolated from the intestinal flora of humans and animals is important to determining the role of these bacteria as human pathogens and as reservoirs of resistance determinants for human pathogens. The *E. coli* Resistance Surveillance Pilot is designed to determine the prevalence of resistance to clinically important antimicrobial agents among *E. coli* isolated from persons in the community.

SUMMARY OF 2006 SURVEILLANCE DATA

Background

Beginning in 2004, NARMS began to prospectively monitor the prevalence of antimicrobial resistance of *E. coli* isolated from human stool samples in two sites: Maryland and Michigan.

SURVEILLANCE AND LABORATORY TESTING METHODS

Participating laboratories in Maryland and Michigan cultured 10 human stool samples each month for *E. coli* using Eosin Methylene Blue agar. One *E. coli* isolate, if present, from each stool sample was sent to CDC for susceptibility testing to antimicrobial agents using broth microdilution (Sensititre[®]) to determine the minimum inhibitory concentration (MIC) for each of 15 antimicrobial agents: amikacin, ampicillin, amoxicillin-clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfonamides, tetracycline, and trimethoprim-sulfamethoxazole (Table A.01).

Interpretive criteria from CLSI were used (<u>Table A.01</u>). The 95% CIs for the percentage of resistant isolates calculated using the Clopper-Pearson exact method, are included in the MIC distribution tables. Similarly, multiclass resistance by CLSI antimicrobial subclass was defined as resistance to two or more subclasses.

RESULTS

In 2006, CDC received and tested 82 viable *E. coli* isolates (<u>Table A.02</u>). MIC was determined for *E. coli* isolates for 15 antimicrobial agents (<u>Table A.03</u>).

Of the *E. coli* isolates, 28.0% were resistant to ampicillin; 17.1%, to sulfonamides; 14.6% to tetracycline; and 11.0% to nalidixic acid (<u>Table A.04</u>).

In 2006, 22.0% of *E. coli* isolates were resistant to two or more CLSI subclasses, and 1.2% were resistant to five or more CLSI subclasses (<u>Table A.05</u>). The level of *E. coli* resistance in this pilot study differs than that observed in NARMS 2005 routine *E. coli* O157. Because of the different sampling methods between this study and NARMS routine surveillance, this observation requires further investigation.

There is a difference in the level of resistance among *E. coli* isolates in this study compared with *E. coli* O157 isolates submitted to NARMS in 2006. Because of the different sampling methods employed between this study and NARMS, this observation requires further investigation.

Multidrug-Resistant E. coli

- 22.0% of 82 E. coli isolates tested were resistant to two or more subclasses of antimicrobial agents.
- 1.2% of 82 *E. coli* isolates tested were resistant to five or more subclasses of antimicrobial agents.

Clinically Important Resistance

Antimicrobial agents commonly used to treat serious *E. coli* infections in humans include third-generation cephalosporins and fluoroquinolones.

- 0.0% of 82 E. coli isolates were resistant to ceftiofur (<u>Table A.04</u>).
- 4.9% of 82 E. coli isolates were resistant to ciprofloxacin (<u>Table A.04</u>).

REFERENCES

- 1. Levy SB, Fitzgerald GB, Macone AB. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. The New England Journal of Medicine 1976;295:583–8.
- 2. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. The American Journal of Medicine 1991;91(Suppl 3B):3B-72S–5S.
- 3. Van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics: links between animals and humans. International Journal of Antimicrobial Agents 2000;14:327–35.
- 4. Corpet DE. Antibiotic resistance from food. The New England Journal of Medicine 1988;318:1206–7.
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement. CLSI Document M100-S19. CLSI, Wayne, Pennsylvania, 2008.

Table A.01: Antimicrobial agents used for susceptibility testing of Escherichia coli, 2006

CLSI Subclass	Antimicrobial Agent	Antimicrobial Agent	Breakpoints						
		Concentration Range	Susceptible	Intermediate	Resistant				
		(µg/mL)							
Aminoglycosides	Amikacin	0.5 – 64	≤16	32	≥64				
	Gentamicin	0.25 – 16	≤4	8	≥16				
	Kanamycin	8 – 64	≤16	32	≥64				
	Streptomycin	32 – 64	≤32		≥64				
Aminopenicillins	Ampicillin	1 – 32	≤8	16	≥32				
β-lactamase inhibitor combinations	Amoxicillin–Clavulanic acid	1/0.5 – 32/16	≤8/4	16/8	≥32/16				
Cephalosporins (3rd Gen.)	Ceftiofur	0.12– 8	≤2	4	≥8				
	Ceftriaxone	0.25 – 64	≤8	16-32	≥64				
Cephamycins	Cefoxitin	0.5 – 32	≤8	16	≥32				
Folate pathway inhibitors	Trimethoprim-Sulfamethoxazole	0.12/2.4 – 4/76	≤2/38		≥4/76				
Phenicols	Chloramphenicol	2 – 32	≤8	16	≥32				
Quinolones	Ciprofloxacin	0.015 – 4	≤1	2	≥4				
	Nalidixic acid	0.5 – 32	≤16		≥32				
Sulfonamides	Sulfisoxazole	16 – 256	≤256		≥512				
Tetracyclines	Tetracycline	4 – 32	≤4	8	≥16				

Table A.02: Escherichia coli isolates received and tested at CDC, by site, 2006

	2006						
Site	n	(%)					
Maryland	27	(32.9%)					
Michigan	55	(67.1%)					
Total	82	(100.0%)					

Table A.03: Minimum inhibition concentrations (MICs) and resistance of *Escherichia coli* isolates to antimicrobial agents, 2006 (N=82)

Denk	Antibiotic			% of is	olates	Percent of all isolates with MIC ($\mu g/mL$) [¶]															
капк			%I [†]	%R‡	[95% CI] [§]	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
	Aminoglycosides	Amikacin	0.0	0.0	[0.0–2.6]						2.4	42.7	52.4	1.2		1.2					
		Gentamicin	1.2	3.7	[2.2–8.3]					26.8	61.0	4.9		2.4	1.2	1.2	2.4				
		Streptomycin	NA	7.3	[9.6–19.2]												92.7	3.7	3.7		
	Aminopenicillins	Ampicillin	0.0	28.0	[24.1–36.7]							13.4	43.9	12.2	2.4			28.0			
I.	β-lactamase inhibitor	Amoxicillin-clavulanic acid	2.4	3.7	[1.6–7.2]							3.7	28.0	39.0	23.2	2.4	3.7				
	Cephalosporins (3rd generation)	Ceftiofur	0.0	0.0	[0.0–2.6]				11.0	58.5	28.0	2.4									
	,	Ceftriaxone	0.0	0.0	[0.0–2.6]					100.0							[
	Quinolones	Ciprofloxacin	0.0	4.9	[5.7–13.9]	85.4	2.4		4.9	1.2	1.2				4.9						
		Nalidixic Acid	NA	11.0	[14.0–24.9]							19.5	63.4	3.7	1.2	1.2	1.2	9.8			
	Aminoglycosides	Kanamycin	0.0	0.0	[0.8–5.3]										97.6	2.4	ĺĺ				
	Cephamycins	Cefoxitin	2.4	1.2	[1.3–6.6]						1.2	9.8	50.0	28.0	7.3	2.4	1.2				
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	NA	12.2	[11.2–21.3]				81.7	6.1				1.2	11.0						
	Phenicols	Chloramphenicol	1.2	3.7	[0.5–4.7]								6.1	58.5	30.5	1.2	1.2	2.4			
	Sulfonamides	Sulfisoxazole	NA	17.1	[17.7–29.4]											56.1	25.6	1.2			17.1
	Tetracyclines	Tetracycline	0.0	14.6	[12.4–22.8]									85.4			1.2	13.4			

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire ¹Percent of isolates with intermediate susceptibility, NA if no MIC range of intermediate susceptibility exists

[‡]Percent of isolates that were resistant

[§]95% confidence intervals (CI) for percent resistant (%R) were calculated using the Clopper-Pearson exact method

¹The unshaded areas indicate the dilution range of the Sensititre plates used to test isolates. Single vertical bars indicate the breakpoints for susceptibility, while double vertical bars indicate breakpoints for resistance. Numbers in the shaded areas indicate the percentages of isolates with MICs greater than the highest concentrations on the Sensititre plate. Numbers listed for the lowest tested concentrations represent the precentages of isolates with MICs equal to or less than the lowest tested concentration. CLSI breakpoints were used when available.

Figure A.01: Antibiotic resistance pattern for Escherichia coli, 2006

Antimicrobial Agent	Susceptible, Intermediate, and Resistant Proportion
Amikacin	
Gentamicin	
Streptomycin	
Ampicillin	
Amoxicillin-clavulanic acid	
Ceftiofur	
Ceftriaxone	
Ciprofloxacin	
Nalidixic acid	
Kanamycin	
Cefoxitin	
Trimethoprim-sulfamethoxazole	
Chloramphenicol	
Sulfisoxazole	
Tetracycline	
	SIR

2000			2004	2005	2000
Tear			2004	2005	2006
	solates		151	119/114'	82
Rank [*]	Subclass	Antibiotic (Resistance breakpoint)			
	Aminoglycosides	Amikacin	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0
		Gentamicin	2.0%	3.4%	3.7%
		(MIC ≥ 16)	3	4	3
		Streptomycin	10.6%	14.3%	7.3%
		(MIC ≥ 64)	16	17	6
	Aminopenicillins	Ampicillin	24.5%	26.1%	28.0%
		(MIC ≥ 32)	37	31	23
	β-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.6%	4.2%	3.7%
		(MIC ≥ 32)	4	5	3
	Cephalosporins (3 rd generation)	Ceftiofur	0.0%	0.8%	0.0%
		(MIC ≥ 8)	0	1	0
		Ceftriaxone	0.0%	0.0%	0.0%
		(MIC ≥ 64)	0	0	0
	Quinolones	Ciprofloxacin	3.3%	7.6%	4.9%
		(MIC ≥ 4)	5	9	4
		Nalidixic Acid	9.3%	9.2%	11.0%
		(MIC ≥ 32)	14	11	9
	Aminoglycosides	Kanamycin	2.0%	0.0%	0.0%
		(MIC ≥ 64)	3	0	0
	Cephamycins	Cefoxitin	2.6%	0.8%	1.2%
		(MIC ≥ 32)	4	1	1
	Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	11.3%	14.9%	12.2%
п		(MIC ≥ 4)	17	17	10
	Phenicols	Chloramphenicol	1.3%	2.5%	3.7%
		(MIC ≥ 32)	2	3	3
	Sulfonamides	Sulfisoxazole	17.9%	18.4%	17.1%
		(MIC ≥ 512)	27	21	14
	Tetracyclines	Tetracycline	13.2%	19.3%	14.6%
		(MIC ≥ 16)	20	23	12

 Table A.04: Percentage and number of *Escherichia coli* isolates resistant to antimicrobial agents, 2004–2006

*Rank of antimicrobials based on World Health Organization's categorization of critical importance in human medicine (Table I). Antimicrobial agents are considered critically important (Rank I) as (1) sole therapies or one of the few alternatives to treat serious human diseases and (2) used to treat disease caused by organisms that may be transmitted via non-human sources or diseases caused by organisms that may acquire resistance genes from non-human sources. Antimicrobials are highly important (Rank II) if either criteria (1) or (2) are true.

[†]Five isolates do not have test results for Trimethoprim-sulfamethoxazole and Sulfamethoxazole/Sulfisoxazole.

Table A.05: Resistance patterns of *Escherichia coli* isolates, 2004–2006

Year	2004	2005	2006
Total Isolates	151	119	82
	%	%	%
	n	n	n
No resistance detected	62.9%	63.0%	63.4%
	95	75	52
Resistance ≥1CLSI subclass*	37.7%	37.0%	36.6%
	57	44	30
Resistance ≥2 CLSI subclasses*	17.9%	22.7%	22.0%
	27	27	18
Resistance ≥3 CLSI subclasses*	9.9%	14.3%	15.9%
	15	17	13
Resistance ≥4 CLSI subclasses*	5.3%	9.2%	8.5%
	8	11	7
Resistance ≥5 CLSI subclasses*	3.3%	7.6%	1.2%
	5	9	1
At least ACSSuT [†]	1.3%	0.8%	0.0%
	2	1	0
At least ACSuTm [‡]	1.3%	0.8%	1.2%
	2	1	1
At least ACSSuTAuCf [§]	0.0%	0.0%	0.0%
	0	0	0
At least AAuC [¶]	0.0%	0.0%	0.0%
	0	0	0
At least A3C**	0.0%	0.0%	0.0%
	0	0	0
At least MDR-AmpC ^{††}	0.0%	0.0%	0.0%
	0	0	0
Resistance to quinolone and cenhalosporin (3 rd generation)	0.0%	0.0%	0.0%
	0	0	0
	0	5	, J

*CLSI: Clinical and Laboratory Standards Institute

[†]ACSSuT: resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

[‡]ACSuTm: resistance to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

[§]ACSSuTAuCf: resistance to ACSSuT + amoxicillin-clavulanic acid, ceftiofur

[¶]AAuC: resistance to ampicillin, amoxicillin-clavulanic acid, ceftiofur

**A3C: resistance to amikacin, ampicillin, amoxicillin-clavulanic acid

⁺⁺MDR-AmpC: resistance to ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥2 µg/mL)

Among isolates of commensal *E. coli* ceftiofur resistance has increased from 0.0% in 2004 to 0.8% in 2005 and decreased to 0.0% in 2006. Ciprofloxacin resistance decreased from 7.6% in 2005 to 4.9% in 2006. A decrease in detected resistance was observed for five drugs; Amoxicillin-clavulanic acid (4.2% to 3.7%), ciprofloxacin (7.6% to 4.9%), streptomycin (14.3%–7.3%), sulfamethoxazole/sulfisoxazole (18.4% to 17.1%) and tetracycline (19.3 to 14.6%).