Human Isolates Final Report, 2003 NARMS

National Antimicrobial Resistance Monitoring System: Enteric Bacteria

Human Isolates Final Report, 2003

NARMS

National Antimicrobial Resistance Monitoring System: Enteric Bacteria

Table of Contents

NARMS Working Group	2
Suggested Citation	5
Materials Available On-Line	6
Introduction	7
Summary of 2003 Surveillance Data	8
Surveillance and Laboratory Testing Methods	10
Results for 2003 Non-Typhi Salmonella Salmonella Typhi Shigella E. coli O157 Campylobacter Summary of Long Term Changes Non-Typhi Salmonella Campylobacter jejuni	15 15 29 32 40 43 43 49 50 50
References	
Publications and Abstracts	53
Appendix A Enterococci Resistance Study, 2001-2003	54
Appendix B List of Abbreviations	66

NARMS Working Group

Centers for Disease Control and Prevention

Foodborne and Diarrheal Diseases Branch Division of Bacterial and Mycotic Diseases National Center for Infectious Diseases Alicia Anderson **Frederick Angulo Nicole Baker Timothy Barrett Richard Bishop Cheryl Bopp** Tom Chiller Alison Drake Patricia Fields Kathryn Gay Lewis Graves Patricia Griffin Michael Hoekstra Kevin Joyce Katie Lewis Ewelina Lyszkowicz Lynn Mauro Amie May ThurdeKoos Felicita Medalla **Terrell Miller** Michael Omondi Jacinta Smith Lauren Stancik Jennifer Stevenson Andrew Stuart **Robert Tauxe Casey Theriot David Wheeler** Jean Whichard

U. S. Food and Drug Administration

Center for Veterinary Medicine Marcia Headrick Linda Tollefson

Participating State and Local Health Departments

Alabama Department of Public Health LaDonna Cranidiotis Michael Likos Sharon Massingale Ethel Oldham Joanna Roberson

Alaska Department of Health and Social Services Tricia Franklin Gregg Herriford Stephanie Massay Shellie Smith

Arizona Department of Health Services Graham Briggs Mary Finnerty Clare Kioski Ken Komatsu Stephanie Kreis William Slanta Victor Waddell Simone Warrack

Arkansas Department of Health Dennis Berry Joanie Jones-Harp Rossina Stefanova

California Department of Health Services Wendy Cheung Claudia Crandall Paul Kimsey Will Probert Sam Shin Duc Vugia

Colorado Department of Public Health and Environment James Beebe Alicia Cronquist Karen Gieseker Joyce Knutsen Michael Rau

Connecticut Department of Public Health Bob Howard Sharon Hurd Charles Welles Delaware Health and Social Services Leroy Hatcock Gaile McLaughlin Marjorie Postell Debra Rutledge Sue Shore

Florida Department of Health Ronald Baker Maria Calcaterra Sonia Etheridge Don Ward

Georgia Division of Public Health Jim Benson Elizabeth Franko Tameka Hayes Susan Lance Alice Li Bob Manning Mahin Park Lynett Poventud Suzanne Segler Stepy Thomas Melissa Tobin-D'Angelo

Hawaii Department of Health Myron Honda Rebecca Kanenaka Norman O'Connor

Houston Health and Human Services Department Raouf Arafat Onesia Bishop Keri Goede Vern Juchau

Idaho Department of Health and Welfare Colleen Greenwalt Corianton Larson Vivian Lockary

Illinois Department of Public Health Mark Dworkin Sue Kubba Kiran Patel Bindu Shah

Indiana State Department of Health Brent Barrett John Radosevic Iowa Department of Public Health, University Hygienic Laboratory Mary DeMartino Randy Groepper

Kansas Department of Health and Environment Cheryl Banez-Ocfemia Robert Flahart Gail Hansen Carissa Pursell June Sexton Kathleen Waters

Kentucky Department of Public Health Robin Cotton Jennifer Everman Karim George Matt Nelson Meloney Russell

Los Angeles County Department of Health Services Sheena Chu Mary Dorado Mary Beth Duke Laurene Mascola Brit Oiulfstad Ferdows Rashidian Roshan Reporter Sohair Sabet Joan Sturgeon

Louisiana Department of Health and Hospitals Gary Balsamo Henry Bradford Wayne Dupree Catrin Jones-Nazar Lori Kravet Raoult Ratard Theresa Sokol Susanne Straif-Bourgeois Annu Thomas Susan Wilson

Maine Department of Human Services Geoff Beckett Kathleen Gensheimer Jennifer Gunderman-King Audrey Littlefield James Martin Jeff Randolph Vicki Rea Susan Schow Donna Wrigley Maryland Department of Health and Mental Hygiene and University of Maryland School of Medicine, Department of Epidemiology and Preventive Medicine Karen Cuenco Marguerite Hawkins Glenn Morris Jafar Razeq Jonigene Ruark Pat Ryan Sonya Seccurro David Torpey Mary Warren

Massachusetts Department of Public Health Frederic Cantor Alfred DeMaria John Fontana Robert Goldbaum Emily Harvey Patricia Kludt Joseph Peppe Tracy Stiles

Michigan Department of Community Health Carrie Anglewicz Frances Downes James Rudrik William Schneider Dawn Sievert Patricia Somsel

Minnesota Department of Health John Besser Billie Juni Fe Leano Kirk Smith Sara Stenzel Charlotte Taylor Theresa Weber Stephanie Wedel

Mississippi Department of Health Jannifer Anderson Jane Campbell Sheryl Hand Cathie Hoover Melanie Pace

Missouri Department of Health David Byrd Steve Gladbach Sandy Hanauer Steve Hynes Harvey Marx JoAnn Rudroff Montana Department of Public Health and Human Services Jim Murphy Anne Weber Susanne Zanto

Nebraska Health and Human Services System and University of Nebraska Medical Center, Department of Pathology and Microbiology Paul Fey Jodi Garrett Peter Iwen Tom Safranek

Nevada Department of Health and Human Services Patricia Armour Stephanie Ernaga Jaime Frank Paul Hug Bradford Lee Mat Mikoleit Lisa Southern Stephanie Van Hooser

New Hampshire Department of Health and Human Services Christine Adamski Elizabeth Gagnon Wendy Lamothe Veronica Malmberg Nancy Taylor Daniel Tullo

New Jersey Department of Health Ruth Besco John Brook Sylvia Matiuck Keith Pilot

New Mexico Department of Health Bernadette Albanese Joan Baumbach Sonya Flores Debra Horensky David Mills Linda Nims C. Mack Sewell

New York City Department of Health Alice Agasan Mel Backer Sharon Balter Tommie Daniels Heather Hanson Dennis Kinney Vasudha Reddy New York State Department of Health Amy Davignon Nellie Dumas Dale Morse Tim Root Shelley Zansky

North Carolina Department of Health and Human Services Denise Griffin Brad Jenkins

North Dakota Department of Health Lisa Elijah Julie Goplin Eric Hieb Nicole Meier Tracy Miller Lisa Well

Ohio Department of Health Rick Bokanyi Tammy Bannerman Jane Carmean Larry King Mary Kay Parrish Ellen Salehi

Oklahoma State Department of Health Rebekah Berry Mike Lytle Jeff Mathewson Mike McDermott

Oregon Department of Human Resources Debbie Berquist Cathy Ciaffoni Paul Cieslak Emilio DeBess Julie Hatch Mayland Heim Steve Mauvais Beletsachew Shiferaw Larry Stauffer Ivor Thomas Janie Tierheimer Robert Vega Veronica Williams

Pennsylvania Department of Health Richard Berman Wayne Chmielecki Tait James Nkuchia Mikanatha James Rankin Stanley Reynolds Nancy Warren Gisela Withers Rhode Island Department of Health Cheryl Campbell Tara Cooper Kerry Patterson Ted Pliakis Deanna Simmons Cindy Vanner

South Carolina Department of Health and Environmental Control Rosalind G. Funk Jennifer Meredith Dixie Roberts Arthur Wozniak

South Dakota Department of Health Christopher Carlson Lon Kightlinger Mike Smith Yvette Thomas

Tennessee Department of Health Jeanette Dill Cynthia Graves Samir Hanna Henrietta Hardin Tim Jones Chris McKeever RuthAnn Spence

Texas Department of State Health Services Tamara Baldwin Leslie Bullion Elizabeth Delamater Marianne Garcia Linda Gaul Eldridge Hutcheson Susan Neill Dennis Perrotta Pushker Raj Ana Valle

Utah Department of Health Dan Andrews Kim Christensen Jana Coombs Cindy Fisher David Jackson Barbara Jepson Susan Mottice Lauren Moulton Marilee Poulson Vermont Department of Health Eunice H. Froeliger Christine Matusevich Natasha Pugsley Mary Spayne Patsy Tassler

Virginia Division of Consolidated Laboratory Services and Virginia Department of Health Ellen Basinger Sherry Giese Sally Henderson Mary Mismas Ann Munson Denise Toney

Washington Department of Health David Boyle Craig Colombel Romesh Gautom Donna Green Kathryn MacDonald Mike McDowell Jennifer Breezee

West Virginia Department of Health and Human Resources Maria del Rosario Danae Bixler Christi Clark Loretta Haddy Andrea Labik Doug McElfresh Ron Ramirez Connie Smith

Wisconsin Department of Health and Family Services Susan Ahrabi-Fard John Archer Jeffrey Davis Diep Hoang-Johnson Ronald Laessig Tim Monson Dave Warshauer Mark Wegner

Wyoming Department of Health Richard Harris John Harrison Tracy Murphy Sandy Novick Scott Seys Jim Walford **Suggested Citation:** CDC. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): 2003 Human Isolates Final Report. Atlanta, Georgia: U.S. Department of Health and Human Services, CDC, 2006.

Disclaimer: Commercial products are mentioned for identification only and do not represent endorsement by the Centers for Disease Control and Prevention or the U. S. Department of Health and Human Services.

Materials Available On-Line

All CDC NARMS Annual Reports and additional information about NARMS are posted on the CDC NARMS website. The address is: <u>http://www.cdc.gov/narms</u>

Additional general information about the NARMS surveillance program is posted on the FDA Center for Veterinary Medicine website at: <u>http://www.fda.gov/cvm/narms_pg.html</u>

Information on animal isolates in NARMS is available on the USDA-ARS website at: http://www.ars-grin.gov/ars/SoAtlantic/Athens/arru/narms.html

General information about antimicrobial resistance is posted on the CDC website at: http://www.cdc.gov/drugresistance

Information regarding CDC's Get Smart program can be found on the following website: <u>http://www.cdc.gov/drugresistance/community</u>

General information about CDC's Foodborne Diseases Active Surveillance Network (FoodNet) can be found on: http://www.cdc.gov/foodnet

General information about the National Molecular Subtyping Network for Foodborne Disease Surveillance (PulseNet) can be found on: <u>http://www.cdc.gov/pulsenet</u>

General information about WHO Global Salm-Surv can be found on: http://www.who.int/salmsurv/en

CDC Salmonella Annual Summaries are posted on the PHLIS website. The address is: http://www.cdc.gov/ncidod/dbmd/phlisdata/salmonella.htm

CDC Shigella Annual Summaries are also posted on the PHLIS website. The address is: http://www.cdc.gov/ncidod/dbmd/phlisdata/shigella.htm

Introduction

The National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria is a collaboration among the Centers for Disease Control and Prevention (CDC), Food and Drug Administration (FDA), and U.S. Department of Agriculture (USDA). CDC monitors antimicrobial resistance among foodborne enteric bacteria isolated from humans. Other components of the interagency NARMS program include surveillance for resistance in foodborne bacterial pathogens isolated from foods, which is conducted by the FDA Center for Veterinary Medicine (http://www.fda.gov/cvm/narms_pg.html), and pathogens isolated from animals, conducted by the USDA Agricultural Research Services (http://www.arsgrin.gov/ars/SoAtlantic/Athens/arru/narms.html).

Many NARMS activities are conducted within the framework of CDC's Emerging Infections Program (EIP), Epidemiology and Laboratory Capacity (ELC) Program, and the Foodborne Diseases Active Surveillance Network (FoodNet). The primary purpose of NARMS is to monitor antimicrobial resistance among foodborne enteric bacteria isolated from humans.

Before NARMS was established, CDC monitored antimicrobial resistance in *Salmonella, Shigella*, and *Campylobacter* using periodic surveys of isolates from a panel of sentinel counties. NARMS at CDC began in 1996 with prospective monitoring of antimicrobial resistance among human non-Typhi *Salmonella* and *Escherichia coli* O157 isolates in 14 sites. In 1997, testing of human *Campylobacter* isolates was initiated in five sites that were participating in FoodNet. Testing of human *Salmonella* Typhi and *Shigella* isolates was added in 1999. Since 2003, 50 states have been forwarding a representative sample of non-Typhi *Salmonella, Salmonella* Typhi, *Shigella*, and *E. coli* O157 isolates to NARMS for antimicrobial susceptibility testing, while 10 FoodNet states have been participating in *Campylobacter* surveillance.

In addition to surveillance of resistance in enteric pathogens, the NARMS program at CDC also includes public health research into the mechanisms of resistance, education efforts to promote prudent use of antimicrobial agents, and studies of resistance in commensal organisms.

This annual report includes CDC's human surveillance data for 2003. Resistance trends and comparisons to previous years are included when appropriate. Unlike previous annual reports, antimicrobial subclasses defined by the Clinical and Laboratory Standards Institute (CLSI) are used in data presentation and analysis. CLSI subclasses constitute major classifications of antimicrobial agents, e.g., aminoglycosides and cephalosporins. Appendix A includes 2001-2003 data from the Enterococci Resistance Study, which is now part of NARMS surveillance on commensal bacteria. Additional NARMS data and more information about NARMS activities can be found at http://www.cdc.gov/narms.

Summary of 2003 Surveillance Data

0

Population

In 2003, all 50 states participated in the National Antimicrobial Resistance Monitoring System (NARMS) for Enteric Bacteria, representing approximately 291 million persons. Antimicrobial resistance surveillance included non-Typhi *Salmonella, Salmonella* Typhi, *Shigella*, and *E. coli* O157. Antimicrobial resistance among *Campylobacter* isolates was monitored in ten states that also participated in the Foodborne Diseases Active Surveillance Network (FoodNet), representing approximately 42 million persons (14% of the United States population). For more information about FoodNet, go to: <u>http://www.cdc.gov/foodnet</u>.

Multidrug Resistance

- Overall, 17.9% (334/1865) of non-Typhi Salmonella were resistant to 2 or more CLSI subclasses and 10.1% (189/1865) were resistant to 5 or more CLSI subclasses.
 - 24.8% (55/222) of Salmonella Newport were resistant to 2 or more CLSI subclasses and 22.1% (49/222) were resistant to 5 or more CLSI subclasses.
 - 40.9% (165/403) of Salmonella Typhimurium were resistant to 2 or more CLSI subclasses and 27.5% (111/403) were resistant to 5 or more CLSI subclasses.
 - 2.7% (7/257) of Salmonella Enteritidis were resistant to 2 or more CLSI subclasses and 0.4% (1/257) were resistant to 5 or more CLSI subclasses.
- A total of 9.3% (173/1865) of non-Typhi Salmonella were found to have the R-type ACS-SuT (resistant to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline), compared with 8.8% (116/1324) in 1996.
 - 25.8% (104/403) of Salmonella Typhimurium were R-type ACSSuT, compared with 33.7% (103/306) in 1996.
 - 21.2% (47/222) of Salmonella Newport were R-type ACSSuT, compared with 5.9% (3/51) in 1996.

- A total of 3.2% (60/1865) of non-Typhi Salmonella were found to have the MDR-AmpC phenotype (resistant to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline, amoxicillin/clavulanic acid, ceftiofur, and with decreased susceptibility to ceftriaxone [minimum inhibitory concentration (MIC) $\ge 2 \mu g/mL$]. These isolates consisted of 7 different serotypes. In 1996, MDR-AmpC resistance was not detected in any serotype.
 - 20.7% (46/222) of Salmonella Newport were at least MDR-AmpC resistant (1996 vs. 2003: 95% CI [4.6, infinity]).
 - 2.2% (9/403) of Salmonella Typhimurium were at least MDR-AmpC resistant.

Clinically Important Resistance

In the U. S., certain quinolones (e.g., ciprofloxacin) and third generation cephalosporins (e.g., ceftriaxone) are commonly used antimicrobial agents for the treatment of severe *Campylobacter* and *Salmonella* infections, including *Salmonella* serotype Typhi. Nalidixic acid is an elementary quinolone; resistance to nalidixic acid correlates with decreased susceptibility to ciprofloxacin and possible treatment failure. Ceftiofur is a third-generation cephalosporin used in food animals in the United States; resistance to ceftiofur correlates with decreased susceptibility to ciprofant proportion of isolates tested by NARMS in 2003 demonstrated resistance to these clinically important antimicrobials.

- A total of 17.7% (58/328) of Campylobacter isolates were resistant to the quinolone ciprofloxacin, compared with 12.9% (28/217) in 1997 (OR=1.8, 95% CI [1.1, 3.0]).
 - 22.7% (5/22) of Campylobacter coli were resistant to ciprofloxacin
 - 17.2% (52/303) of *Campylobacter je-juni* were resistant to ciprofloxacin.
 - A total of 2.3% (43/1865) of non-Typhi Salmonella isolates were resistant to the quinolone nalidixic acid, compared with 0.4% (5/1324) in 1996 (OR=6.7, 95% CI [2.6, 17.7]).
 - S. Enteritidis was the most common serotype among nalidixic acidresistant non-Typhi Salmonella iso-

0

lates: 12 (27.9%) of the 43 quinoloneresistant isolates were *S*. Enteritidis.

- A total of 4.5% (84/1865) of non-Typhi Salmonella isolates were resistant to the 3rd generation cephalosporin ceftiofur, compared with 0.2% (2/1324) in 1996 (OR=43.2, 95% CI [10.5, 177.4]).
 - S. Newport was the most common serotype among ceftiofur-resistant non-

Typhi Salmonella isolates: 49 (58.3%) of the 84 ceftiofur-resistant isolates were S. Newport.

- 0
- A total of 37.7% (126/334) of Salmonella Typhi isolates were resistant to the quinolone nalidixic acid, compared with 18.7% (31/166) in 1999 (OR=2.6, 95% CI [1.6, 4.2]).

Surveillance and Laboratory Testing Methods

Surveillance Sites and Isolate Submission

In 2003, NARMS conducted nationwide surveillance among the population of approximately 291 million persons (based on 2003 U. S. Census Bureau estimates). Public health laboratories systematically selected every 20th non-Typhi *Salmonella, Shigella*, and *E. coli* O157, and every *Salmonella* Typhi isolate received at their laboratory, and forwarded these isolates to CDC for antimicrobial susceptibility testing. Non-Typhi *Salmonella* refers to all *Salmonella* serotypes except serotype Typhi.

Public health laboratories of the 10 state health departments that participated in the Foodborne Diseases Active Surveillance Network (FoodNet) in 2003 forwarded Campvlobacter isolates to CDC for susceptibility testing. The FoodNet sites, which represented approximately 42 million persons (based on 2003 US Census Bureau estimates) included California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Selection of Campylobacter isolates submitted to NARMS was conducted by one of several ways. In Maryland, Minnesota, New York, and Tennessee, one isolate a week was selected (usually the first isolate received each week is selected, but otherwise isolates were randomly selected) from the collection of isolates sent to the state health department laboratory from almost all clinical laboratories in a geographical area (statewide in Maryland, Minnesota, and Tennessee, and metro Albany and Rochester areas in New York). In Georgia, all Campylobacter isolates received at the state laboratory from the Metropolitan Statistical Area (metro Atlanta area) were submitted to CDC. Once received, one isolate a week was selected (usually the first isolate received each week is selected, but otherwise isolates were randomly selected) from the collection of isolates from almost all clinical laboratories in metro Atlanta. In California, Colorado, Connecticut, and Oregon, one isolate a week was selected (usually the first isolate received each week is selected, but otherwise isolates were randomly selected) at one sentinel clinical laboratory. Sentinel clinical laboratories followed routine isolation practices for *Campylobacter*. No more than 53 *Campylobacter* isolates per state were included in the analyses; if more than one isolate was received in a week from a site, only the first isolate was included.

Testing of Salmonella, Shigella, and E. coli O157

Antimicrobial Susceptibility Testing

Salmonella, Shigella, and E. coli O157 isolates were tested using broth microdilution (Sensititre, Trek Diagnostics, Westlake, OH) to determine the minimum inhibitory concentration (MIC) for each of 16 antimicrobial agents: amikacin, ampicillin, amoxicillin/clavulanic acid, cefoxitin, ceftiofur, ceftriaxone, cephalothin, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole, tetracycline, and trimethoprim/sulfamethoxazole [Table 1]. The resistance breakpoint for amikacin, according to Clinical and Laboratory Standards Institute (CLSI) guidelines, is a minimum inhibitory concentration (MIC) of 64µg/mL. For isolates that grew in all amikacin dilutions on the Sensititre panel (MIC>4 µg/mL), E-Test (AB BIODISK, Solna, Sweden) was performed in order to determine amikacin MIC. The amikacin E-Test strip range of dilutions is 0.016-256 µg/mL.

Table 1:	Antimicrobial agents used for susceptibility testing for	r Salmonella, Shigella, I	E. coli O157, and Campylobacter
isolates,	2003		

CLSI Subclass	Antimicrobial Agent	Antimicrobial Agent	E	Breakpoints				
		Concentration Range (µg/ml)	[R]	[1]	[S]			
Aminoglycosides	Amikacin	0.5 – 4*	<u>></u> 64	32	<u><</u> 16			
	Gentamicin	0.25 – 16 0.016 – 256**	<u>></u> 16	8	<u><</u> 4			
	Kanamycin	8 - 64	<u>></u> 64	32	<u><</u> 16			
	Streptomycin	32 – 64	<u>></u> 64		<u><</u> 32			
Aminopenicillins	Ampicillin	1 – 32	<u>></u> 32	16	<u><</u> 8			
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1/0.5 – 32/16	<u>></u> 32/16	16/8	<u><</u> 8/4			
Cephalosporin (1st Gen.)	Cephalothin	2 – 32	<u>></u> 32	16	<u><</u> 8			
Cephalosporins (3rd Gen.)	Ceftiofur***	0.12-8	<u>></u> 8	4	<u><</u> 2			
	Ceftriaxone	0.25 – 64	<u>></u> 64	16 - 32	<u><</u> 8			
Cephamycins	Cefoxitin	0.5 – 16	<u>></u> 32	16	≤ 8			
Folate pathway inhibitors	Trimethoprim– sulfamethoxazole	0.12/2.4 – 4/76	<u>></u> 4/76		<u><</u> 2/38			
Lincosamides	Clindamycin	0.016 – 256**	<u>></u> 4	1-2	<u><</u> 0.5			
Macrolides	Azithromycin	0.016 – 256**	<u>></u> 2	0.5-1	<u><</u> 0.25			
	Erythromycin	0.016 – 256**	<u>></u> 8	1-4	<u><</u> 0.5			
Phenicols	Chloramphenicol	2 – 32 0.016 – 256**	<u>></u> 32	16	<u><</u> 8			
Quinolones	Ciprofloxacin	0.015 - 4 0.002 - 32**	<u>></u> 4	2	<u><</u> 1			
	Nalidixic acid	0.5 – 32 0.016 – 256**	<u>></u> 32		<u><</u> 16			
Sulfonamides	Sulfamethoxazole	16 – 512	<u>></u> 512		<u><</u> 256			
Tetracyclines	Tetracycline	4 – 16 0.016 – 256**	<u>></u> 16	8	<u><</u> 4			

* The resistance breakpoint for amikacin, according to Clinical and Laboratory Standards Institute (CLSI) guidelines, is 64µg/mL. For isolates that grew in all amikacin dilutions on the Sensititre panel (minimum inhibitory concentration [MIC] >4 µg/mL), E-Test (AB BIODISK, Solna, Sweden) was performed in order to determine amikacin MIC. The amikacin E-Test strip range of dilutions is 0.016-256 µg/mL.
**E-test dilution range used for testing *Campylobacter*.
***No CLSI breakpoints; resistance breakpoint used in NARMS is 8 µg/mL.

Cephalosporin Retesting

Upon review of previously reported results, conflicting cephalosporin susceptibility results were noted among *Salmonella* isolates tested in NARMS from 1996-1998. That is, some isolates NARMS previously reported to be ceftiofur-resistant exhibited a low ceftriaxone MIC, and in some cases, did not exhibit an elevated MIC to other β -lactams tested in NARMS. These findings indicated that some previously reported ceftiofur-resistant results were spurious. We therefore retested, using the 2003 NARMS Sensititre plate, isolates tested in NARMS from 1996-1998 that exhibited a MIC ≥ 2 ug/mL to ceftiofur or ceftriaxone. Totals reported here reflect the retest results.

Serotype Confirmation/Categorization

To distinguish S. Paratyphi B from S. Paratyphi B var L(+) tartrate-positive (formerly S. Paratyphi B var Java), tartrate testing was performed at CDC on all S. Paratyphi B isolates from 1996 to present for which the tartrate result was not reported. Jordan's tartrate test was used to determine tartrate fermentation, and Kauffman's tartrate test was subsequently performed on isolates that were negative for tartrate fermentation by Jordan's tartrate test. Isolates that were negative for tartrate fermentation by both assays were categorized as S. Paratyphi B. Isolates that were positive for tartrate fermentation by either assay were categorized as S. Paratyphi B var L(+) tartrate-positive, and are referred to as serotype Java in this report. Confirmation of other biochemical reactions or somatic and flagellar antigens was not performed at CDC.

Salmonella serotype was accepted as reported with few exceptions. As decribed above, tartrate testing was performed on all S. Paratyphi B isolates for which the tartrate result was not reported. Due to increased submissions of S. Typhimurium isolates lacking the second phase flagellar antigen (i.e., S. I 4,[5],12:i:-), reports of such isolates tested in NARMS from 1996 to 2003 were reviewed. Isolates identified by NARMS as Serogroup B that exhibited first phase flagellar antigen "i" but lacked a second phase are listed in this report as "monophasic Typhimurium." Serogroup B isolates for which the first phase flagellar antigen was not reported were not included in this category since several common serogroup B serotypes could be the basis for these monophasic variants with other first phase flagellar antigens.

Identification/Speciation and Antimicrobial Susceptibility Testing

Isolates were confirmed as Campylobacter by dark field microscopy and oxidase test. Identification to species level was performed using the hippurate hydrolvsis test. Hippurate-positive isolates were identified as C. jejuni. Hippurate-negative isolates were identified by polymerase chain reaction (PCR) as C. jejuni by the hippuricase gene-based PCR assay¹, or as C. coli based on the C. coli-specific ceuE gene². Isolates determined not to be C. jejuni or C. coli were referred to the National Campylobacter Reference Laboratory at CDC for identification using genotypic and phenotypic methods. The E-test methodology (AB Biodisk, Solna, Sweden) was used to determine the MICs for 8 antimicrobial agents: azithromycin, chloramphenicol, ciprofloxacin, clindamycin, erythromycin, gentamicin, nalidixic acid, and tetracycline [Table 1].

Retesting

Known mechanisms of quinolone resistance in *Campylobacter* are expected to confer equivalent susceptibilities to nalidixic acid and ciprofloxacin. Similarly, known mechanisms of macrolide resistance are expected to confer equivalent susceptibilities to erythromycin and azithromycin. Confirmatory testing of isolates with conflicting results was performed by E-test (AB Biodisk, Solna, Sweden). Totals reported here reflect the retest results.

Data Analysis

For all pathogens in this report, MIC results were categorized as resistant, intermediate susceptibility (if applicable), and susceptible. Analysis was restricted to one isolate (per pathogen) per patient. When established, CLSI interpretive criteria were used; ceftiofur resistance was defined as MIC $\geq 8\mu g/mL$ [Table 1]. The 95% confidence intervals (CI) for the percent isolates resistant are included in the MIC distribution tables. The 95% CI was calculated using the Clopper-Pearson exact method. Multidrug resistance by antimicrobial agent was defined as resistance to two or more agents. Similarly, multidrug resistance by CLSI antimicrobial subclass was defined as resistance two or more subclasses.

When describing results for several years, multidrug resistance for *Salmonella* and *E. coli* O157 isolates was limited to the 14 agents tested in all years from

1996 to 2003 (amoxicillin/clavulanic acid, ampicillin, ceftiofur, ceftriaxone, cephalothin, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline, trimethoprim-sulfamethoxazole). For S. Typhi and Shigella, results for several years included 15 agents tested in all years from 1999 to 2003 (14 antimicrobial agents and amikacin). Similarly, when describing multidrug resistance for several years for Campylobacter isolates, multidrug resistance was limited to the six agents tested in all years from 1997 to 2003 (chloramphenicol, ciprofloxacin, clindamycin, erythromycin, nalidixic acid, and tetracycline).

Logistic regression was performed to assess the change in antimicrobial resistance among *Salmonella* and *Campylobacter* isolates tested in NARMS in 2003 compared to previous years for the following:

- Non-Typhi Salmonella: resistance to nalidixic acid, decreased susceptibility to ciprofloxacin (MIC≥0.12 µg/mL), decreased susceptibility to ceftriaxone (MIC≥2 µg/mL), resistance to ceftiofur, resistance to one or more CLSI subclass
- 2) S. Typhimurium: resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT)
- 3) S. Enteritidis: resistance to nalidixic acid
- S. Newport: resistance to at least ACSSuT, amoxicillin/clavulanic acid, and ceftiofur, with decreased susceptibility to ceftriaxone (MDR-AmpC)

- 5) S. Typhi: resistance to nalidixic acid
- 6) *Campylobacter* species: resistance to ciprofloxacin, resistance to tetracycline
- 7) Campylobacter jejuni: resistance to ciprofloxacin

The final regression models for non-Typhi Salmonella, S. Typhimurium, and S. Typhi adjusted for site using the nine geographic regions described in PHLIS (Pub-Health Laboratory Information lic System. [http://www.cdc.gov/ncidod/dbmd/phlisdata/) based on the patient's state of residence. The PHLIS regions are: East North Central, East South Central, Mid-Atlantic, Mountain, New England, Pacific, South Atlantic, West North Central, and West South Central. The final regression models for S. Enteritidis and S. Newport only included year. For Campylobacter, the final regression models adjusted for site using patient's state of residence. All analyses only included observations from state/local health departments that participated at least two years. The adequacy of model fit was assessed in several ways. The significance of the main effect of year was assessed using the likelihood ratio test. The likelihood ratio test was also used to test for significance of interaction between site and year, although the power of the test to detect a single site-specific interaction was low. The Hosmer and Lemeshow goodness-of-fit test was also used. Finally, residual analysis was performed to examine the influence of individual observations. Odds ratios that did not include 1.0 in the 95% confidence interval were reported as significant.

		Non-	Tvnhi									
		Salmonella		<u> </u>	vnhi	Shia	ella	E coli	0157	Campvlobacter**		
State/Site	Population Size*	N	%	N N	ypin %	N	0/4	N N	%	N	%	
Alaska	648 280	2	0.1	1	03	0	0	0	<i>7</i> 0	NA	70	
Alabama	4 503 726	36	2	1	1	10	2	2	1	NA		
Arkansas	2 727 774	12	1		0	0	0	0	0	NA		
Arizona	5 579 222	31	2	2	1	11	2	2	1	NA		
California ¹	25 602 330	148	8	56	17	1	02	11	7	23	7	
Colorado	4 547 633	21	1	2	1	2 2	2	0	0	20	0	
Connecticut	3 486 060	21	1	12	1	5	2 1	2	2	20		
District of Columbia	5,400,900	20	0	13	4	0	0	0	2	30		
District of Columbia	818 166	0 8	0.4	1	03	0	1.9	2	13			
Elorida	16 000 181	54	2	12	0.5	3	0.4	2 1	1.5			
Georgia	8 676 / 60	112	6	6	2	13	0.4	16	10	40	12	
Hawaii	1 248 755	12	1	2	2 1	40	9	0	0	40	12	
	1,240,733	37	2	2	0	0	0.4	0	0			
Housion, Texas	2,009,009	37	2	0	0	0	0	0	0			
lowa	2,941,970	14	0.5		0.2	1	0	0	0			
Idano	1,307,034	10	0.5	10	0.3	1	0.2	3	2	NA NA		
IIIIIIOIS	6 100 571	99	5	10	5	43	9	5	3			
Indiana	0,199,571	29	2	4	1	7	0.2	3	2	NA NA		
Kantuaku	2,724,700	12	1	0	0	5	1	1	1			
Leuisione	4,118,189	19	1	0	0	3	1	1	1	NA NA		
	4,493,005	43 E4	2	0	0	9	2	1	1	NA NA		
Los Angeles	9,860,382	54	3	25	1	6	1	1	1	NA		
Massachusetts	6,420,357	59	3	15	4	11	2	3	2	NA		
Maryland	5,512,310	5/	3	12	4	27	5	4	3	25	8	
Maine	1,309,205	1	0.4	0	0	1	0.2	1	0.6	NA		
iviicnigan	10,082,364	40	2	11	3	8	2	2	1	NA	40	
IVIInnesota	5,064,172	29	2	1	0.3	3	1	6	4	51	16	
Missouri Mississingi	5,719,204	55	3	1	0.3	13	3	6	4	NA		
Mississippi	2,882,594	34	2	0	0	1	0.2	0	0	NA		
Nontana	918,157	2	0.1	0	0	0	0	0	0	NA		
North Carolina	8,421,190	70	4	8	2	15	3	1	1	NA		
North Dakota	633,400	2	0.1	0	0	1	0.2	2	1.3	NA		
Nebraska	1,737,475	15	1	1	0.3	8	2	5	3	NA		
New Hampshire	1,288,705	9	0.5	47	0.6	0	0	1	0.6	NA		
New Jersey	0,042,412	34	2	17	5	12	2	8	5	NA 02	7	
New Wexico	1,070,002	21	1	1	0.3	0	2	C d	3	23	1	
	2,242,207	9	0.5		0.6		0.4	10	0.6	NA	16	
New York	11,102,799	12	4	13	4	19	4	10	0	53	10	
New York City	8,109,626	63	3	45	13	9	2	4	3	NA		
Ohio	11,437,680	68	4	4	1	11	2	5	3	NA		
Oklahoma	3,506,469	25	1	1	0.3	35	7	1	1	NA	_	
Oregon	3,564,330	19	1	4	1	4	1	3	2	17	5	
Pennsylvania	12,370,761	69	4	7	2	39	8	5	3	NA		
Rhode Island	1,076,084	8	0.4	2	0.6	1	0.2	0	0	NA		
South Carolina	4,148,744	26	1	1	0.3	17	3	0	0	NA		
South Dakota	764,905	12	1	0	0	6	1	6	4	NA	10	
Tennessee	5,845,208	49	3	4	1	24	5	3	2	32	10	
Texas [°]	20,093,705	62	3	18	5	26	5	1	1	NA		
Utah	2,352,119	15	1	0	0	3	1	3	2	NA		
Virginia	7,365,284	55	3	13	4	11	2	2	1	NA		
Vermont	619,343	2	0.1	0	0	0	0	1	0.6	NA		
Washington	6,131,298	40	2	3	1	10	2	6	4	NA		
Wisconsin	5,474,290	35	2	0	0	4	1	5	3	NA		
West Virginia	1,811,440	18	1	0	0	3	1	4	3	NA		
Wyoming	502,111	5	0.3	0	0	1	0.2	1	0.6	NA		
TOTAL	290,788,976	1865	100	334	100	495	100	157	100	328	100	

Table 1.1: Population size and number of isolates received and tested, by site, 2003

*US Census Bureau, 2003

** Campylobacter isolates are submitted only from FoodNet sites; total population size of FoodNet sites is 41,850,620

¹ Exlcuding Los Angeles County ² Houston County

³ Los Angeles County

⁴ Excluding New York City

⁵ Five burroughs of New York City (Bronx, Brooklyn, Manhattan, Queens, Staten Island)

⁶ Excluding Houston, Texas

Results for 2003

1. Non-Typhi Salmonella

A total of 1898 non-Typhi Salmonella isolates were received at CDC in 2003; of these isolates, 1873 (98.7%) were viable and tested for antimicrobial susceptibility. Of these 1873 isolates, eight isolates were not included in the analysis because they were duplicate submissions from the same patient, leaving 1865 isolates for analysis. Table 1.1 shows the number of isolates included in the final analysis by site and the population represented.

Table 1.2 shows the MIC distributions for the 16 antimicrobial agents tested and prevalence of antimicrobial resistance for the 1865 non-Typhi Salmonella isolates tested in 2003.

Fluoroquinolones (e.g., ciprofloxacin) and third generation cephalosporins (e.g., ceftriaxone) are commonly used antimicrobial agents for the treatment of severe

Notes

Salmonella infections. Nalidixic acid is an elementary quinolone; resistance to nalidixic acid correlates with decreased susceptibility to ciprofloxacin and possible treatment failure. Ceftiofur is a third-generation cephalosporin used in food animals in the United States; resistance to ceftiofur correlates with decreased susceptibility to ceftriaxone. In 2003, the prevalence of resistance among Salmonella isolates was 2.3% for quinolones (represented by nalidixic acid) and 4.5% for third generation cephalosporins (represented by ceftiofur).

The antimicrobial agents with the highest prevalence of resistance were tetracycline (16.3%), sulfamethoxazole (15.1%), streptomycin (15.0%), and ampicillin (13.7%).

		% of Is	solates							Percen	t of all iso	lates with	MIC (µg/	mL) of:						
Antibiotic	%I	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.0	0.0	[0.0 - 0.2]						3.6	62.3	31.2	2.7	0.1	0.2						
Gentamicin	0.5	1.4	[0.9 - 2.0]					35.9	38.7	23.3	0.1	0.1	0.5	0.6	0.8					
Kanamycin	0.2	3.4	[2.7 - 4.4]										96.1	0.3	0.2	0.2	3.3			
Streptomycin	N/A	15.0	[13.4 - 16.7]												84.8	7.1	7.9			
Aminopenicillins Ampicillin	0.1	13.7	[12.1 - 15.3]							49.7	32.8	3.4	0.3	0.1	0.1	13.6				
Beta-lactamase inhibitor combinations Amoxicillin/Clavulanic Acid	5.0	4.6	[3.7 - 5.7]							83.3	2.6	1.0	3.5	5.0	0.8	3.8				
Cephalosporins (1 st Gen.) Cephalothin	0.9	5.4	[4.4 - 6.5]								68.6	21.7	3.4	0.9	0.8	4.7				
Cephalosporins (3 rd Gen.) Ceftiofur	0.1	4.5	[3.6 - 5.5]				0.3	1.0	61.8	31.3	1.1	0.1	0.1	4.5						
Ceftriaxone	3.4	0.4	[0.2 - 0.8]					95.3	0.2	0.1	0.1		0.5	2.3	1.1	0.2	0.2			
Cephamycins Cefoxitin	0.6	4.3	[3.4 - 5.3]						0.2	16.1	63.1	13.5	2.1	0.6	4.3					
Folate pathway inhibitors Trimethoprim/Sulfamethoxazole	N/A	1.9	[1.4 - 2.7]				84.9	12.5	0.6	0.1			1.9							
Phenicols Chloramphenicol	1.0	10.0	[8.7 - 11.5]								2.0	55.3	31.6	1.0	0.3	9.8				
Quinolones Ciprofloxacin	0.1	0.2	[0.0 - 0.5]	96.4	1.3	0.3	0.8	0.7	0.4	0.1	0.1		0.2							
Nalidixic Acid	N/A	2.3	[1.7 - 3.1]						0.1	0.2	4.7	84.9	7.5	0.4	0.2	2.1				
Sulfonamides Sulfamethoxazole	N/A	15.1	[13.5 - 16.8]											76.6	7.9	0.4		0.1	0.4	14.7
Tetracyclines Tetracycline	0.2	16.3	[14.7 - 18.1]									83.6	0.2	3.6	4.1	8.6				

Table 1.2: Distribution of MICs and occurrence of resistance among non-Typhi Salmonella isolates, 2003 (N=1865)

* A single vertical bar indicates the CLSI Susceptible breakpoints for each drug * Double vertical bars indicate the CLSI Resistant breakpoints for each drug * Unshaded areas indicate the dilution range of the Sensititre plate used to test the 2003 isolates

* Figures outside the Sensititre plate range were reported as ">" the plate's highest dilution for that drug * 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Year		1996	1997	1998	1999	2000	2001	2002	2003
Total Isolates		1324	1301	1460	1498	1377	1419	2008	1865
	Antibiotic								
Subclass	(Resistance breakpoint)								
Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	Tested	0	0	1	0	0	0	0
	Gentamicin	4.8%	2.9%	2.8%	2.1%	2.7%	1.9%	1.3%	1.4%
	(MIC ≥ 16)	63	38	41	32	37	27	27	26
	Kanamycin	5.0%	5.1%	5.7%	4.3%	5.6%	4.8%	3.8%	3.4%
	(MIC ≥ 64)	66	67	83	65	77	68	76	64
	Streptomycin	20.6%	21.4%	18.6%	16.8%	16.3%	17.0%	13.2%	15.0%
	(MIC ≥ 64)	273	278	272	252	224	241	265	280
Aminopenicillins	Ampicillin	20.7%	18.3%	16.5%	15.6%	15.9%	17.4%	12.9%	13.7%
	(MIC ≥ 32)	274	238	241	233	219	247	259	255
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.1%	1.0%	1.7%	2.3%	3.9%	4.7%	5.3%	4.6%
	(MIC ≥ 32)	15	13	25	35	54	66	106	86
Cephalosporin (1 st Gen.)	Cephalothin	2.9%	2.2%	2.3%	3.7%	4.0%	4.0%	5.0%	5.4%
	(MIC ≥ 32)	39	29	33	55	55	57	101	101
Cephalosporins (3 rd Gen.)	Ceftiofur	0.2%	0.5%	0.8%	2.1%	3.2%	4.1%	4.3%	4.5%
,	(MIC ≥ 8)	2	6	12	31	44	58	87	84
	Ceftriaxone	0.0%	0.1%	0.0%	0.4%	0.0%	0.0%	0.2%	0.4%
	(MIC ≥ 64)	0	1	0	6	0	0	4	8
Cephamycins	Cefoxitin	Not	Not	Not	Not	3.2%	3.4%	4.3%	4.3%
	(MIC ≥ 32)	Tested	Tested	Tested	Tested	44	48	86	80
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	3.9%	1.8%	2.3%	2.1%	2.1%	2.0%	1.4%	1.9%
	(MIC ≥ 4)	51	24	34	31	29	28	28	36
Phenicols	Chloramphenicol	10.6%	10.1%	9.9%	9.2%	10.1%	11.6%	8.6%	10.0%
	(MIC ≥ 32)	140	131	145	138	139	164	172	187
Quinolones	Ciprofloxacin	0.0%	0.0%	0.1%	0.1%	0.4%	0.2%	0.0%	0.2%
	(MIC ≥ 4)	0	0	1	1	5	3	1	3
	Nalidixic Acid	0.4%	0.9%	1.4%	1.1%	2.5%	2.6%	1.8%	2.3%
	(MIC ≥ 32)	5	12	20	16	34	37	36	43
Sulfonamides	Sulfamethoxazole	20.3%	22.8%	19.4%	18.1%	17.1%	17.7%	12.8%	15.1%
	(MIC ≥ 512)	269	297	283	271	235	251	258	281
Tetracyclines	Tetracycline	24.2%	21.7%	20.2%	19.4%	18.6%	19.7%	14.9%	16.3%
	(MIC ≥ 16)	320	282	295	291	256	280	299	304

Table 1.3: Percent and number of isolates resistant to antimicrobial agents among non-Typhi *Salmonella*, 1996-2003

The trends for individual antimicrobial resistance prevalences over time are shown in Table 1.3. The prevalence of nalidixic acid resistance increased from 0.4% (5/1324) in 1996 to 2.3% (43/1865) in 2003; a statistically significant increase (OR=6.7, 95% CI [2.6, 17.7]). The prevalence of ceftiofur resistance increased from 0.2% (2/1324) in 1996 to 4.5% (84/1865) in 2003; a statistically significant increase (OR=43.2, 95% CI [10.5, 177.4]).

The proportion of isolates resistant to ampicillin, tetracycline, streptomycin, and sulfamethoxazole was slightly higher in 2003 compared with 2002. However, for each of these antimicrobial agents, there has been an overall decrease from 1996.

Table 1.4 shows the percent of isolates with no detected resistance, and the percent of isolates resistant to one or more antibiotics, and resistant to one or more CLSI subclass from 1996 – 2003. In addition, five multidrug resistant phenotypes are also shown in Table 1.4.

Among the 1865 non-Typhi *Salmonella* isolates from 2003, 77.5% (1446) of the isolates had no detected resistance, a decrease compared with 78.9% isolates in 2002. In 2003, 419 (22.5%) were resistant to one or more CLSI subclass, 334 (17.9%) were resistant to

two or more subclasses, 269 (14.4%) were resistant to three or more subclasses, 235 (12.6%) were resistant to four or more subclasses, and 189 (10.1%) were resistant to five or more subclasses. There was a statistically significant decline in resistance to one or more subclass from 33.8% in 1996 to 22.5% in 2003 (OR=0.7, 95% CI [0.6, 0.8]).

In 2003, the most common multidrug resistant phenotype among non-Typhi *Salmonella* was ACSSuT; 9.3% of isolates had this pattern. Since 1996, there has been no change in the prevalence of ACSSuT among non-Typhi *Salmonella*. Another common multidrug resistant phenotype among non-Typhi *Salmonella* was MDR-AmpC; 3.2% of isolates had this pattern. The prevalence of MDR-AmpC increased from 0% (0/1324) in 1996 to 3.2% (60/1865) in 2003.

Non-Typhi *Salmonella* isolates resistant to quinolones and third generation cephalosporins are also shown in Table 1.4. In 2003, five (0.3%) isolates were resistant to nalidixic acid and ceftiofur. This multidrug resistance pattern was first detected in 1997.

Year	1996	1997	1998	1999	2000	2001	2002	2003
Non-Typhi Salmonella isolates	1324	1301	1460	1498	1377	1419	2008	1865
No detected resistance	66.2%	68.3%	72.9%	74.0%	74.4%	72.2%	78.9%	77.5%
	876	888	1064	1109	1024	1025	1585	1446
Resistant to ≥ 1 antimicrobial agent	33.8%	31.7%	27.1%	26.0%	25.6%	27.8%	21.1%	22.5%
	448	413	396	389	353	394	423	419
Resistant to ≥ 2 antimicrobial agents	28.3%	24.4%	22.8%	21.1%	20.6%	22.2%	16.0%	18.0%
	375	317	333	316	284	315	321	336
Resistant to ≥ 3 antimicrobial agents	20.6%	19.3%	18.5%	16.1%	16.9%	18.9%	13.2%	15.1%
	273	251	270	241	233	268	266	281
Resistant to ≥ 4 antimicrobial agents	15.7%	15.3%	15.0%	14.1%	14.5%	15.6%	11.1%	13.3%
	208	199	219	211	200	222	223	248
Resistant to ≥ 5 antimicrobial agents	11.9%	13.2%	12.8%	11.4%	11.5%	11.8%	9.4%	10.9%
	158	172	187	171	159	168	188	203
Resistant to \geq 1 CLSI subclass ¹	33.8%	31.7%	27.1%	26.0%	25.6%	27.8%	21.1%	22.5%
	448	413	396	389	353	394	423	419
Resistant to ≥ 2 CLSI subclasses ¹	27.8%	24.4%	22.7%	21.1%	20.6%	22.2%	16.0%	17.9%
	368	317	332	316	283	315	321	334
Resistant to \geq 3 CLSI subclasses ¹	18.6%	17.8%	17.0%	15.2%	15.7%	17.0%	12.5%	14.4%
	246	231	248	228	216	241	250	269
Resistant to \geq 4 CLSI subclasses ¹	14.4%	14.1%	13.7%	13.0%	13.5%	14.9%	10.7%	12.6%
	191	184	200	195	186	211	215	235
Resistant to \geq 5 CLSI subclasses ¹	10.3%	10.5%	10.3%	9.1%	9.9%	10.9%	8.4%	10.1%
	137	137	150	136	137	154	169	188
At least ACSSuT resistant ²	8.8%	9.5%	8.9%	8.4%	8.9%	10.0%	7.8%	9.3%
	116	124	130	126	122	142	156	173
At least ACSuTm resistant ³	0.8%	0.4%	0.9%	1.0%	1.0%	0.5%	1.0%	1.2%
	10	5	13	15	14	7	21	23
At least ACSSuTAuCf resistant ⁴	0.0%	0.3%	0.3%	1.5%	2.6%	2.5%	3.3%	3.2%
	0	4	5	23	36	36	67	60
At least MDR-AmpC resistant ⁵	0.0%	0.3%	0.3%	1.5%	2.6%	2.5%	3.3%	3.2%
· · · · · · ·	0	4	5	23	36	36	67	60
Quinolone and cephalosporin (3 rd gen.)	0.0%	0.2%	0.1%	0.1%	0.3%	0.3%	0.2%	0.3%
resistant	0	2	1	2	4	4	5	5

Table 1.4: Resistance patterns of non-Typhi Salmonella isolates, 1996-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

5: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC $\ge 2\mu g/mL$)

	NARM	S			PHLIS		
Rank	Serotype	ISOLATES	%ТОТ	Rank	Serotype	CASES	%TOT
1	Typhimurium	403	21.6	1	Typhimurium	6,631	19.8
2	Enteritidis	257	13.8	2	Enteritidis	4,863	14.5
3	Newport	222	11.9	3	Newport	3,847	11.5
4	Heidelberg	96	5.1	4	Heidelberg	1,810	5.4
5	Javiana	85	4.6	5	Javiana	1,659	5.0
6	Saintpaul	58	3.1	6	Montevideo	849	2.5
7	Muenchen	48	2.6	7	Saintpaul	823	2.5
8	Oranienburg	43	2.3	8	Muenchen	781	2.3
9	Montevideo	43	2.3	9	Oranienburg	554	1.7
10	"Monophasic Typhimurium"	38	2.0	10	Infantis	539	1.6
11	Agona	32	1.7	11	Braenderup	530	1.6
12	Braenderup	31	1.7	12	Agona	510	1.5
13	Infantis	31	1.7	13	Thompson	494	1.5
14	Java	30	1.6	14	I 4,[5],12:i:- (Monophasic Typhimurium)	489	1.5
15	Mississippi	30	1.6	15	Mississippi	438	1.3
16	Thompson	24	1.3	16	Paratyphi B var.L(+) tartrate+ (Java)	331	1.0
17	Hadar	19	1.0	17	Hadar	280	0.8
18	Anatum	18	1.0	18	Bareilly	234	0.7
19	Bareilly	18	1.0	19	Stanley	224	0.7
20	Senftenberg	18	1.0	20	Paratyphi B	215	0.6
	Subtotal	1,544	82.8		Subtotal	26,101	78.0
	All Other serotyped	290	15.5		All Other serotyped	5,239	15.7
	Unknown serotype	4	0.2		Unknown serotype	735	2.2
	Partially serotyped	19	1.0		Partially serotyped	1,351	4.0
	Rough/nonmotile isolates	8	0.4	_	Rough/nonmotile isolates	19	0.1
	Subtotal	321	17.2		Subtotal	7,344	22.0
	Grand Total	1,865	100.0		Grand Total	33,445	100.0

Table 1.5: Twenty most common serotypes non-Typhi Salmonella serotypes in NARMS and PHLIS, 2003

Table 1.5 shows the 20 most common serotypes identified among the 1865 non-Typhi *Salmonella* isolates tested compared with the 20 most common serotypes reported nationally through the Public Health Laboratory Information System (PHLIS). When comparing the distribution of serotypes in NARMS and PHLIS, it should be noted that a higher proportion of isolates had serotype identified in NARMS (98.4%) than PHLIS (93.7%). The 20 most common serotypes accounted for 82.8% of isolates in NARMS and 78.0% in PHLIS. The five most common serotypes accounted for 57.0% of isolates in NARMS and 56.2% in PHLIS.

A. Salmonella Typhimurium

In 2003, Typhimurium was the most common Salmonella serotype found in NARMS and accounted for 21.6% (403/1865) of non-Typhi Salmonella isolates. Table 1.6 shows the MIC distributions for the 16 antimicrobial agents tested and the prevalence of antimicrobial resistance for the 403 Salmonella Typhimurium isolates.

Notes:

Among 403 S. Typhimurium isolates tested in 2003, resistance was highest to sulfamethoxazole (38.2%), tetracycline (37.7%), ampicillin (35.7%), streptomycin (35.0%), and chloramphenicol (27.5%). The prevalence of resistance among clinically important antibiotic classes was 1.2% for quinolones (nalidixic acid) and 4.7% for third generation cephalosporins (ceftiofur).

Table 1.6: Distribution of MICs and occurrence of resistance among Salmonella Typhimurium isolates, 2003 (N=403)

		% of Is	olates							Percent	t of all iso	lates with	MIC (µg/i	nL) of:						
Antibiotic	%	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.0	0.0	[0.0 - 0.9]						1.2	58.1	37.7	2.7		0.2						
Gentamicin	0.7	2.0	[0.9 - 3.9]					24.3	48.1	24.6		0.2	0.7	0.5	1.5					
Kanamycin	0.0	7.2	[4.9 - 10.2]										91.8	1.0			7.2			
Streptomycin	N/A	35.0	[30.3 - 39.9]												65.0	20.3	14.6			
Aminopenicillins Ampicillin	0.2	35.7	[31.0 - 40.6]							32.5	28.8	2.7	0.5		0.2	35.5				
Beta-lactamase inhibitor combinations Amoxicillin/Clavulanic Acid	19.4	5.2	[3.3 - 7.9]							61.8	2.7	0.7	10.4	19.4	0.7	4.5				
Cephalosporins (1 st Gen.) Cephalothin	1.7	6.0	[3.9 - 8.7]								57.1	27.3	7.9	1.7	0.7	5.2				
Cephalosporins (3 rd Gen.) Ceftiofur	0.2	4.7	[2.9 - 7.3]				0.7	0.7	60.5	31.8	1.5	0.2		4.7						
Ceftriaxone	3.2	0.2	[0.0 - 1.4]					95.0			0.2		1.2	2.5	0.7		0.2			
Cephamycins Cefoxitin	1.5	4.2	[2.5 - 6.7]						0.2	12.4	70.7	7.4	3.5	1.5	4.2					
Folate pathway inhibitors Trimethoprim/Sulfamethoxazole	N/A	3.5	[1.9 - 5.8]				69.5	26.1	1.2				3.5							
Phenicols Chloramphenicol	1.0	27.5	[23.2 - 32.2]								3.0	43.9	24.6	1.0	0.2	27.3				
Quinolones Ciprofloxacin	0.0	0.0	[0.0 - 0.9]	96.3	2.7	0.2		1.0												
Nalidixic Acid	N/A	1.2	[0.4 - 2.9]						0.2	0.2	4.7	83.4	9.9	0.5	0.2	1.0				
Sulfonamides Sulfamethoxazole	N/A	38.2	[33.4 - 43.2]											60.0	1.2			0.5	1.0	37.2
Tetracyclines Tetracycline	0.2	37.7	[33.0 - 42.6]									62.3	0.2	14.4	9.7	13.6				

* A single vertical bar indicates the CLSI Susceptible breakpoints for each drug * Double vertical bars indicate the CLSI Resistant breakpoints for each drug * Unshaded areas indicate the dilution range of the Sensitire plate used to test the 2003 isolates * Figures outside the Sensitire plate range were reported as *>* the plate's highest dilution for that drug * 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

							-		
Year		1996	1997	1998	1999	2000	2001	2002	2003
Total Isolates		306	328	377	362	303	325	393	403
	Antibiotic								
Subclass	(Resistance breakpoint)								
Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	Tested	0	0	0	0	0	0	0
	Gentamicin	4.2%	4.6%	3.7%	2.2%	2.6%	1.5%	2.3%	2.0%
	(MIC ≥ 16)	13	15	14	8	8	5	9	8
	Kanamycin	14.4%	15.5%	15.9%	13.0%	13.2%	8.3%	7.6%	7.2%
	(MIC ≥ 64)	44	51	60	47	40	27	30	29
	Streptomycin	51.6%	55.2%	47.2%	43.1%	39.3%	40.0%	31.8%	35.0%
	(MIC ≥ 64)	158	181	178	156	119	130	125	141
Aminopenicillins	Ampicillin	50.0%	50.3%	45.1%	41.2%	41.9%	42.5%	33.6%	35.7%
	(MIC ≥ 32)	153	165	170	149	127	138	132	144
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.6%	3.4%	4.5%	2.8%	6.3%	6.2%	7.6%	5.2%
	(MIC ≥ 32)	8	11	17	10	19	20	30	21
Cephalosporin (1 st Gen.)	Cephalothin	2.0%	4.3%	4.0%	4.4%	4.3%	3.1%	5.6%	6.0%
	(MIC ≥ 32)	6	14	15	16	13	10	22	24
Cephalosporins (3 rd Gen.)	Ceftiofur	0.0%	1.5%	1.9%	1.9%	3.6%	3.1%	4.3%	4.7%
	(MIC ≥ 8)	0	5	7	7	11	10	17	19
	Ceftriaxone	0.0%	0.3%	0.0%	0.3%	0.0%	0.0%	0.3%	0.2%
	(MIC ≥ 64)	0	1	0	1	0	0	1	1
Cephamycins	Cefoxitin	Not	Not	Not	Not	3.6%	3.1%	4.3%	4.2%
	(MIC ≥ 32)	Tested	Tested	Tested	Tested	11	10	17	17
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	4.6%	3.0%	4.5%	2.8%	3.6%	2.5%	2.3%	3.5%
	(MIC ≥ 4)	14	10	17	10	11	8	9	14
Phenicols	Chloramphenicol	39.9%	36.0%	33.4%	28.7%	30.7%	31.7%	23.2%	27.5%
	(MIC ≥ 32)	122	118	126	104	93	103	91	111
Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%
	(MIC ≥ 4)	0	0	0	0	0	1	0	0
	Nalidixic Acid	0.3%	0.9%	0.5%	0.0%	1.3%	0.6%	1.3%	1.2%
	(MIC ≥ 32)	1	3	2	0	4	2	5	5
Sulfonamides	Sulfamethoxazole	53.3%	56.7%	49.6%	45.6%	45.2%	43.1%	32.1%	38.2%
	(MIC ≥ 512)	163	186	187	165	137	140	126	154
Tetracyclines	Tetracycline	49.3%	52.4%	45.9%	41.7%	43.2%	43.4%	31.8%	37.7%
	(MIC ≥ 16)	151	172	173	151	131	141	125	152

Table 1.7: Percent and number of isolates resistant to antimicrobial agents among Salmonella Typhimurium, 1996-2003

Changes in resistance to individual antimicrobial agents over time are shown in Table 1.7. The most dramatic increase occurred with ceftiofur resistance, increasing from 0% in 1996 to 4.7%. Nalidixic acid resistance increased from 0.3% in 1996 to 1.2% in 2003. Resistance to many of the other antimicrobial agents decreased since 1996 [Table 1.7]. Resistance to tetracycline decreased from 49.3% in 1996 to 37.7% in 2003. Similar decreases occurred in sulfamethoxazole (53.3% to 38.2%), ampicillin (50.0% to 35.7%), streptomycin (51.6% to 35.0%), chloramphenicol (39.9% to 27.5%), and gentamicin (4.2% to 2.0%).

Table 1.8 shows the percent of *Salmonella* Typhimurium isolates with no detected resistance, and the percent of isolates resistant to one or more antibiotics, and resistant to one or more CLSI subclass from 1996 – 2003. Among the 403 *Salmonella* Typhimurium isolates from 2003, 55.1% (222) of the isolates had no detected resistance, a decrease compared with 60.1% of isolates in 2002. In 2003, 40.9% (165/403) were resistant to two or more CLSI subclasses compared to 36.4% in 2002. Similarly, in 2003, 27.5% (111/403) were resistant to at least five subclasses compared to 23.4% in 2002.

In 2003, the most common multidrug resistant phenotype among *Salmonella* Typhimurium was ACSSuT; 25.8% of isolates had this pattern. In *Salmonella* Typhimurium, ACSSuT is a phenotype commonly associated with Definitive Phage Type 104 (DT104). Since 1996, the prevalence of ACSSuT among *S*. Typhimurium decreased from 33.7% to 25.8%. In the logistic regression, this decrease is not statistically significant (95% CI [0.5, 1.1]).

No *S.* Typhimurium isolates were resistant to both quinolones and third generation cephalosporins in 2003. Since 1996, five *S.* Typhimurium isolates have had this multidrug resistance pattern.

Table 1.8:	Resistance	patterns of	Salmonella	Typhimurium	isolates,	1996-2003
------------	------------	-------------	------------	--------------------	-----------	-----------

Year 1996 1997 1998 1999 2000 2011 2002 22 S. Typhimurium isolates 306 328 377 362 303 325 393 393 No detected resistance 37.9% 39.0% 46.9% 50.6% 49.5% 49.2% 60.1% 5 Resistant to ≥ 1 aptimicropial agent 62.1% 61.0% 53.1% 49.4% 50.5% 50.8% 39.9% 4	2003 403 55.1% 222 44.9% 181 41.2%
S. Typhimurium isolates 306 328 377 362 303 325 393 No detected resistance 37.9% 39.0% 46.9% 50.6% 49.5% 49.2% 60.1% 5 116 128 177 183 150 160 236 Resistant to ≥ 1 aptimicropial agent 62.1% 61.0% 53.1% 49.4% 50.5% 50.8% 39.9% 4	403 55.1% 222 44.9% 181 41.2%
No detected resistance 37.9% 39.0% 46.9% 50.6% 49.5% 49.2% 60.1% 5 116 128 177 183 150 160 236 Resistant to ≥ 1 aptimicropial agent 62.1% 61.0% 53.1% 49.4% 50.5% 50.8% 39.9% 4	55.1% 222 44.9% 181 41.2%
116 128 177 183 150 160 236 Resistant to ≥ 1 antimicrobial agent 62 1% 61 0% 53 1% 49 4% 50 5% 50 8% 39 9% 4	222 44.9% 181 41.2%
Resistant to ≥ 1 antimicropial agent 62.1% 61.0% 53.1% 49.4% 50.5% 50.8% 39.9% 4	44.9% 181 41.2%
	181 41.2%
190 200 200 179 153 165 157	41.2%
Resistant to ≥ 2 antimicrobial agents 57.2% 56.7% 51.2% 46.1% 47.2% 48.0% 36.4% 4	
175 186 193 167 143 156 143	166
Resistant to ≥ 3 antimicrobial agents 52.9% 54.6% 48.0% 43.6% 42.8% 33.8% 3	37.2%
162 179 181 158 132 139 133	150
Resistant to ≥ 4 antimicrobial agents 48.7% 51.2% 45.6% 41.7% 41.9% 40.3% 30.8% 3	35.0%
149 168 172 151 127 131 121	141
Resistant to ≥ 5 antimicrobial agents 40.8% 46.6% 41.9% 35.6% 35.6% 33.8% 27.2% 3	30.0%
125 153 158 129 108 110 107	121
Resistant to ≥ 1 CLSI subclasses ¹ 62.1% 61.0% 53.1% 49.4% 50.5% 50.8% 39.9% 4	44.9%
<u> </u>	181
Resistant to ≥ 2 CLSI subclass ¹ 56.9% 56.7% 51.2% 46.1% 47.2% 48.0% 36.4% 4	40.9%
174 186 193 167 143 156 143	165
Resistant to ≥ 3 CLSI subclasses ¹ 51.3% 52.4% 47.5% 43.1% 43.2% 41.8% 32.8% 3	36.5%
157 172 179 156 131 136 129	147
Resistant to ≥ 4 CLSI subclasses ¹ 45.4% 49.1% 43.2% 40.1% 40.9% 39.4% 30.3% 3	33.7%
<u> </u>	136
Resistant to ≥ 5 CLSI subclasses ¹ 35.9% 37.5% 34.5% 28.7% 30.4% 30.5% 23.4% 2	27.5%
<u> </u>	111
At least ACSSuT resistant ² 33.7% 35.1% 31.8% 27.6% 27.7% 29.5% 21.4% 2	25.8%
<u> </u>	104
At least ACSuTm resistant ³ 2.0% 0.6% 2.7% 2.2% 1.7% 0.9% 2.0% 3	3.2%
<u> </u>	13
At least ACSSuTAuCf resistant ⁴ 0.0% 1.2% 1.1% 0.6% 2.0% 1.2% 1.8% 2	2.2%
	9
At least MDR-AmpC resistant ⁵ 0.0% 1.2% 1.1% 0.6% 2.0% 1.2% 1.8% 2	2.2%
0 4 4 2 6 4 7	9
Quinolone and cephalosporin (3 rd gen.) 0.0% 0.3% 0.0% 0.0% 0.3% 0.3% 0.5% 0.5%	0.0%
resistant 0 1 0 0 1 1 2	0

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

5: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC $\ge 2\mu g/mL$)

B. Salmonella Enteriditis

In 2003, Salmonella Enteritidis was the second most common serotype in NARMS and accounted for 13.8% (257/1865) of non-Typhi Salmonella isolates.

Table 1.9 shows the MIC distributions for the 16 antimicrobial agents tested and the prevalence of antimicrobial resistance for the 257 S. Enteritidis isolates.

Among 257 S. Enteritidis isolates tested in 2003, resistance was uncommon. The most dramatic increase

Notes

occurred with nalidixic acid resistance. In 2003, 4.7% of S. Enteritidis isolates were resistant to nalidixic acid. S. Enteritidis was the most prevalent non-Typhi Salmonella serotype with nalidixic acid resistance. The percent of S. Enteritidis isolates resistant to nalidixic acid was 0.9% in 1996 and 4.7% in 2003 [Table 1.10]. This is not a statistically significant increase (95% CI [0.8, 27.5]), however, in the logistic regression model, there was a statistically significant increase in nalidixic acid resistance from 1996 to 2002 (95% CI [1.3, 25.6]).

Antibiotic	%I	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.0	0.0	[0.0 - 1.4]						10.9	71.2	16.7	1.2								
Gentamicin	0.0	0.4	[0.0 - 2.1]					63.4	22.2	14.0					0.4					
Kanamycin	0.0	0.0	[0.0 - 1.4]										100.0							
Streptomycin	N/A	1.2	[0.2 - 3.4]												98.8	0.4	0.8			
Aminopenicillins Ampicillin	0.0	2.3	[0.9 - 5.0]							33.5	55.3	8.6	0.4			2.3				
Beta-lactamase inhibitor combinations Amoxicillin/Clavulanic Acid	0.8	0.0	[0.0 - 1.4]							94.2	3.5		1.6	0.8						
Cephalosporins (1 st Gen.) Cephalothin	0.8	1.2	[0.2 - 3.4]								75.1	22.2	0.8	0.8	0.8	0.4				
Cephalosporins (3 rd Gen.) Ceftiofur	0.0	0.0	[0.0 - 1.4]					1.9	47.9	48.2	1.9									
Ceftriaxone	0.0	0.0	[0.0 - 1.4]					100.0												
Cephamycins Cefoxitin	0.0	0.0	[0.0 - 1.4]						0.4	14.4	79.8	4.7	0.8							
Folate pathway inhibitors Trimethoprim/Sulfamethoxazole	N/A	0.8	[0.1 - 2.8]				93.8	5.1	0.4				0.8							
Phenicols Chloramphenicol	0.4	0.4	[0.0 - 2.1]								1.6	65.4	32.3	0.4		0.4				
Quinolones Ciprofloxacin	0.0	0.0	[0.0 - 1.4]	94.2	1.2	0.8	3.1	0.4	0.4											
Nalidixic Acid	N/A	4.7	[2.4 - 8.0]							0.4	1.9	81.7	11.3			4.7				
Sulfonamides Sulfamethoxazole	N/A	1.2	[0.2 - 3.4]											86.8	11.7	0.4				1.2
Tetracyclines Tetracycline	0.0	1.6	[0.4 - 3.9]									98.4		0.4	0.4	0.8				

A single vertical bar indicates the CLSI Susceptible breakpoints for each drug

A single vertical bars indicates the CLSI susceptible break/birts to reach drug Double vertical bars indicate the CLSI resistant break/points for each drug Unshaded areas indicate the dilution range of the Sensititre plate used to test the 2003 isolates Figures outside the Sensititre plate range were reported as "5" the plate's highest dilution for that drug 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

2003									
Year		1996	1997	1998	1999	2000	2001	2002	2003
Total Isolates		351	301	244	269	319	276	337	257
	Antibiotic								
Subclass	(Resistance breakpoint)								
Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	Tested	0	0	0	0	0	0	0
	Gentamicin	4.8%	0.3%	0.4%	0.0%	0.3%	0.0%	0.3%	0.4%
	(MIC ≥ 16)	17	1	1	0	1	0	1	1
	Kanamycin	0.0%	0.7%	0.4%	0.4%	0.3%	0.7%	0.3%	0.0%
	(MIC ≥ 64)	0	2	1	1	1	2	1	0
	Streptomycin	2.0%	4.3%	1.6%	2.2%	0.0%	1.4%	1.8%	1.2%
	(MIC ≥ 64)	7	13	4	6	0	4	6	3
Aminopenicillins	Ampicillin	20.5%	11.3%	6.1%	10.8%	7.5%	8.7%	7.1%	2.3%
	(MIC ≥ 32)	72	34	15	29	24	24	24	6
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6%	0.0%	0.0%	0.4%	0.0%	1.4%	0.6%	0.0%
	(MIC ≥ 32)	2	0	0	1	0	4	2	0
Cephalosporin (1 st Gen.)	Cephalothin	4.0%	1.3%	0.0%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2%			
	(MIC ≥ 32)	14	4	0	5	3	3	2	3
Cephalosporins (3 rd Gen.)	Ceftiofur	0.0%	0.3%	0.0%	0.4%	0.0%	2.2%	0.0%	0.0%
	(MIC ≥ 8)	0	1	0	1	0	6	0	0
	Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0	0	0	0
Cephamycins	Cefoxitin	Not	Not	Not	Not	0.0%	0.4%	0.0%	0.0%
	(MIC ≥ 32)	Tested	Tested	Tested	Tested	0	1	0	0
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	6.6%	1.3%	0.8%	0.7%	0.0%	0.7%	0.6%	0.8%
	(MIC ≥ 4)	23	4	2	2	0	2	2	2
Phenicols	Chloramphenicol	0.0%	0.7%	0.0%	0.4%	0.0%	0.0%	0.6%	0.4%
	(MIC ≥ 32)	0	2	0	1	0	0	2	1
Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 4)	0	0	0	0	0	0	0	0
	Nalidixic Acid	0.9%	1.7%	2.0%	2.2%	2.2%	4.3%	3.9%	4.7%
	(MIC ≥ 32)	3	5	5	6	7	12	13	12
Sulfonamides	Sulfamethoxazole	8.5%	9.0%	2.0%	3.0%	0.9%	2.2%	1.8%	1.2%
	(MIC ≥ 512)	30	27	5	8	3	6	6	3
Tetracyclines	Tetracycline	16.8%	9.6%	6.6%	8.2%	1.9%	1.8%	4.5%	1.6%
	(MIC ≥ 16)	59	29	16	22	6	5	15	4

Table 1.10: Percent and number of isolates resistant to antimicrobial agents among Salmonella Enteritidis, 1996-2003

Year	1996	1997	1998	1999	2000	2001	2002	2003
S. Enteritidis isolates	351	301	244	269	319	276	337	257
No detected resistance	73.5%	77.4%	87.7%	83.6%	89.0%	86.6%	87.2%	91.4%
	258	233	214	225	284	239	294	235
Resistant to ≥ 1 antimicrobial agents	26.5%	22.6%	12.3%	16.4%	11.0%	13.4%	12.8%	8.6%
	93	68	30	44	35	37	43	22
Resistant to ≥ 2 antimicrobial agents	20.2%	10.3%	6.6%	10.0%	2.8%	5.1%	4.2%	2.7%
	71	31	16	27	9	14	14	7
Resistant to \geq 3 antimicrobial agents	9.4%	3.0%	1.2%	1.1%	0.3%	2.9%	2.7%	0.8%
	33	9	3	3	1	8	9	2
Resistant to \geq 4 antimicrobial agents	5.1%	1.3%	0.0%	1.1%	0.0%	2.2%	1.8%	0.4%
	18	4	0	3	0	6	6	1
Resistant to ≥ 5 antimicrobial agents	2.3%	1.0%	0.0%	0.4%	0.0%	0.7%	0.6%	0.4%
	8	3	0	1	0	2	2	1
Resistant to \geq 1 CLSI subclasses ¹	26.5%	22.6%	12.3%	16.4%	11.0%	13.4%	12.8%	8.6%
	93	68	30	44	35	37	43	22
Resistant to ≥ 2 CLSI subclasses ¹	20.2%	10.3%	6.6%	10.0%	2.8%	5.1%	4.2%	2.7%
	71	31	16	27	9	14	14	7
Resistant to \geq 3 CLSI subclasses ¹	9.4%	3.0%	0.8%	1.1%	0.3%	2.9%	2.7%	0.8%
	33	9	2	3	1	8	9	2
Resistant to \geq 4 CLSI subclasses ¹	4.8%	1.3%	0.0%	0.7%	0.0%	1.8%	1.5%	0.4%
	17	4	0	2	0	5	5	1
Resistant to \geq 5 CLSI subclasses ¹	2.0%	1.0%	0.0%	0.4%	0.0%	0.7%	0.6%	0.4%
	7	3	0	1	0	2	2	1
At least ACSSuT resistant ²	0.0%	0.3%	0.0%	0.4%	0.0%	0.0%	0.3%	0.4%
	0	1	0	1	0	0	1	1
At least ACSuTm resistant ³	0.0%	0.3%	0.0%	0.4%	0.0%	0.0%	0.0%	0.4%
	0	1	0	1	0	0	0	1
At least ACSSuTAuCf resistant ⁴	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%
	0	0	0	1	0	0	0	0
At least MDR-AmpC resistant ⁵	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%
	0	0	0	1	0	0	0	0
Quinolone and cephalosporin (3 rd gen.)	0.0%	0.3%	0.0%	0.0%	0.3%	0.0%	0.0%	0.4%
resistant	0	1	0	0	1	0	0	1

Table 1.11: Resistance patterns of Salmonella Enteritidis isolates, 1996-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

5: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 2µg/mL)

Table 1.11 shows the percent of *S*. Enteritidis isolates with no detected resistance. Among the 257 S. Enteri-

tidis isolates from 2003, 91.4% had no detected resistance, an increase compared to 87.2% in 2002.

C. Salmonella Newport

In 2003, Newport was the third most common Salmonella serotype in NARMS and accounted for 11.9% (222/1865) of non-Typhi Salmonella isolates. Table 1.12 shows the MIC distributions for the 16 antimicrobial agents tested and the prevalence of antimicrobial resistance for the 222 S. Newport isolates.

cycline (23.9%), streptomycin (23.9%), ampicillin (22.1%),chloramphenicol (21.6%), amoxicillin/clavulanic acid (21.2%) and ceftiofur (22.1%). The prevalence of resistance among clinically important antibiotic classes was 0.5% for quinolones (nalidixic acid) and 22.1% for third generation cephalosporins (ceftiofur). Ceftiofur resistance was more prevalent among S. Newport than any other serotype.

Among 222 S. Newport isolates tested in 2003, resistance was highest to sulfamethoxazole (24.3%), tetra-

Table 1.12: Distribution of MICs and occurrence of resistance among Salmonella Newport isolates, 2003 (N=222)

		% of Is	olates							Percent	t of all iso	lates with	n MIC (µg/	mL) of:						
Antibiotic	%	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.0	0.0	[0.0 - 1.6]						1.4	78.4	18.0	1.4	0.9							
Gentamicin	0.5	3.2	[1.3 - 6.4]					44.6	35.6	16.2			0.5	1.4	1.8					
Kanamycin	0.5	4.5	[2.2 - 8.1]										95.0		0.5		4.5			
Streptomycin	N/A	23.9	[18.4 - 30.0]												76.1	1.8	22.1			
Aminopenicillins Ampicillin	0.0	22.1	[16.8 - 28.1]							49.5	25.7	1.8	0.5	0.5		22.1				
Beta-lactamase inhibitor combinations Amoxicillin/Clavulanic Acid	0.5	21.2	[16.0 - 27.1]							75.7	1.4	0.9	0.5	0.5	3.6	17.6				
Cephalosporins (1 st Gen.) Cephalothin	0.5	22.1	[16.8 - 28.1]								63.1	13.1	1.4	0.5	0.9	21.2				
Cephalosporins (3 rd Gen.) Ceftiofur	0.0	22.1	[16.8 - 28.1]					0.9	50.5	25.7	0.9			22.1						
Ceftriaxone	18.9	1.8	[0.5 - 4.5]					78.4					0.9	11.7	7.2	0.9	0.9			
Cephamycins Cefoxitin	0.5	21.6	[16.4 - 27.6]							12.2	59.5	5.4	0.9	0.5	21.6					
Folate pathway inhibitors Trimethoprim/Sulfamethoxazole	N/A	0.9	[0.1 - 3.2]				82.4	15.8	0.5	0.5			0.9		•					
Phenicols Chloramphenicol	0.5	21.6	[16.4 - 27.6]								0.9	65.8	11.3	0.5		21.6				
Quinolones Ciprofloxacin	0.0	0.0	[0.0 - 1.6]	99.1	0.5					0.5										
Nalidixic Acid	N/A	0.5	[0.0 - 2.5]								3.2	86.9	8.6	0.9		0.5				
Sulfonamides Sulfamethoxazole	N/A	24.3	[18.8 - 30.5]											62.2	12.6	0.9			0.9	23.4
Tetracyclines Tetracycline	0.0	23.9	[18.4 - 30.0]									76.1			5.4	18.5				

A single vertical bar indicates the CLSI Susceptible breakpoints for each drug * Double vertical bars indicate the CLSI Resistant breakpoints for each drug

¹ Unshaded traces indicate the Output reason of the Sensitive plate used to test the 2003 isolates
 ² Figures outside the Sensitive plate range were reported as ">" the plate's highest dilution for that drug
 ³ 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Year		1996	1997	1998	1999	2000	2001	2002	2003
Total Isolates		51	46	77	99	121	124	239	222
	Antibiotic								
Subclass	(Resistance breakpoint)								
Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	Tested	0	0	0	0	0	0	0
	Gentamicin	5.9%	4.3%	0.0%	0.0%	2.5%	3.2%	3.3%	3.2%
	(MIC ≥ 16)	3	2	0	0	3	4	8	7
	Kanamycin	2.0%	0.0%	1.3%	1.0%	5.0%	7.3%	9.6%	4.5%
	(MIC ≥ 64)	1	0	1	1	6	9	23	10
	Streptomycin	7.8%	4.3%	2.6%	19.2%	24.0%	31.5%	24.7%	23.9%
	(MIC ≥ 64)	4	2	2	19	29	39	59	53
Aminopenicillins	Ampicillin	5.9%	6.5%	2.6%	18.2%	23.1%	29.8%	24.3%	22.1%
	(MIC ≥ 32)	3	3	2	18	28	37	58	49
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	2.0%	0.0%	2.6%	18.2%	22.3%	26.6%	22.2%	21.2%
	(MIC ≥ 32)	1	0	2	18	27	33	53	47
Cephalosporin (1 st Gen.)	Cephalothin	3.9%	4.3%	2.6%	18.2%	22.3%	26.6%	22.2%	22.1%
	(MIC ≥ 32)	2	2	2	18	27	33	53	49
Cephalosporins (3 rd Gen.)	Ceftiofur	0.0%	0.0%	1.3%	18.2%	22.3%	27.4%	22.2%	22.1%
	(MIC ≥ 8)	0	0	1	18	27	34	53	49
	Ceftriaxone	0.0%	0.0%	0.0%	3.0%	0.0%	0.0%	0.8%	1.8%
	(MIC ≥ 64)	0	0	0	3	0	0	2	4
Cephamycins	Cefoxitin	Not	Not	Not	Not	22.3%	25.8%	22.2%	21.6%
	(MIC ≥ 32)	Tested	Tested	Tested	Tested	27	32	53	48
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	3.9%	4.3%	1.3%	2.0%	4.1%	1.6%	4.2%	0.9%
	(MIC ≥ 4)	2	2	1	2	5	2	10	2
Phenicols	Chloramphenicol	5.9%	4.3%	2.6%	18.2%	23.1%	28.2%	24.7%	21.6%
	(MIC ≥ 32)	3	2	2	18	28	35	59	48
Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 4)	0	0	0	0	0	0	0	0
	Nalidixic Acid	0.0%	0.0%	0.0%	0.0%	0.8%	0.0%	0.8%	0.5%
	(MIC ≥ 32)	0	0	0	0	1	0	2	1
Sulfonamides	Sulfamethoxazole	11.8%	4.3%	3.9%	22.2%	23.1%	32.3%	25.1%	24.3%
	(MIC ≥ 512)	6	2	3	22	28	40	60	54
Tetracyclines	Tetracycline	7.8%	4.3%	2.6%	19.2%	23.1%	30.6%	25.1%	23.9%
	(MIC ≥ 16)	4	2	2	19	28	38	60	53

 Table 1.13: Percent and number of isolates resistant to antimicrobial agents among Salmonella Newport, 1996-2003

Changes in resistance to individual antimicrobial agents over time are shown in Table 1.13. The most dramatic increase occurred with ceftiofur resistance, increasing from 0% in 1996 to 22.1% in 2003.

In Table 1.14 shows the percent of *S*. Newport isolates with no detected resistance. In contrast to other common serotypes, there has been a decrease in the percent of *S*. Newport isolates with no detected resistance from 86.3% in 1996 to 73.9% in 2003. In addition, resistance to at least five subclasses of antimicrobial agents in *S*. Newport increased from 5.9% in 1996 to 22.1% in 2003.

In 2003, the most common multidrug resistant phenotype among S. Newport was MDR-AmpC; 20.7% of isolates had this pattern. Since 1996, the prevalence of MDR-AmpC among S. Newport increased. In 1996 and 1997, none of the S. Newport isolates were MDR-AmpC. This proportion increased to 1.3% in 1998, 18.2% in 1999, 22.3% in 2000, 25.0% in 2001, 22.2% in 2002, and 20.7% in 2003. In the logistic regression model, this represents a statistically significant increase (95% CI [4.6, infinity]).

Year	1996	1997	1998	1999	2000	2001	2002	2003
S. Newport isolates	51	46	77	99	121	124	239	222
No detected resistance	86.3%	93.5%	94.8%	75.8%	75.2%	64.5%	72.8%	73.9%
	44	43	73	75	91	80	174	164
Resistant to ≥ 1 antimicrobial agent	13.7%	6.5%	5.2%	24.2%	24.8%	35.5%	27.2%	26.1%
	7	3	4	24	30	44	65	58
Resistant to ≥ 2 antimicrobial agents	7.8%	4.3%	2.6%	18.2%	23.1%	32.3%	25.1%	24.8%
	4	2	2	18	28	40	60	55
Resistant to ≥ 3 antimicrobial agents	5.9%	4.3%	2.6%	18.2%	23.1%	31.5%	24.7%	23.4%
	3	2	2	18	28	39	59	52
Resistant to ≥ 4 antimicrobial agents	5.9%	4.3%	2.6%	18.2%	23.1%	31.5%	24.7%	22.5%
	3	2	2	18	28	39	59	50
Resistant to ≥ 5 antimicrobial agents	5.9%	4.3%	2.6%	18.2%	23.1%	27.4%	23.4%	22.1%
	3	2	2	18	28	34	56	49
Resistant to ≥ 1 CLSI subclass ¹	13.7%	6.5%	5.2%	24.2%	24.8%	35.5%	27.2%	26.1%
	7	3	4	24	30	44	65	58
Resistant to ≥ 2 CLSI subclasses ¹	7.8%	4.3%	2.6%	18.2%	23.1%	32.3%	25.1%	24.8%
	4	2	2	18	28	40	60	55
Resistant to \geq 3 CLSI subclasses ¹	5.9%	4.3%	2.6%	18.2%	23.1%	31.5%	24.7%	23.0%
	3	2	2	18	28	39	59	51
Resistant to \geq 4 CLSI subclasses ¹	5.9%	4.3%	2.6%	18.2%	23.1%	31.5%	24.7%	22.5%
	3	2	2	18	28	39	59	50
Resistant to \geq 5 CLSI subclasses ¹	5.9%	4.3%	2.6%	18.2%	23.1%	27.4%	23.0%	22.1%
	3	2	2	18	28	34	55	49
At least ACSSuT resistant ²	5.9%	4.3%	1.3%	18.2%	23.1%	25.8%	23.0%	21.2%
	3	2	1	18	28	32	55	47
At least ACSuTm resistant ³	3.9%	4.3%	1.3%	2.0%	4.1%	0.8%	3.8%	0.9%
	2	2	1	2	5	1	9	2
At least ACSSuTAuCf resistant ⁴	0.0%	0.0%	1.3%	18.2%	22.3%	25.0%	22.2%	20.7%
	0	0	1	18	27	31	53	46
At least MDR-AmpC resistant ⁵	0.0%	0.0%	1.3%	18.2%	22.3%	25.0%	22.2%	20.7%
'	0	0	1	18	27	31	53	46
Quinolone and cephalosporin (3 rd gen.)	0.0%	0.0%	1.3%	0.0%	0.0%	0.0%	0.4%	0.5%
resistant	0	0	1	0	0	0	1	1

Table 1.14: Resistance patterns of Salmonella Newport isolates, 1996-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

5: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 2µg/mL)

D. Specific Phenotypes

The multidrug resistant phenotypes ACSSuT and MDR-AmpC, and resistance to nalidixic acid and ceftiofur were found in several other serotypes in 2003 [Table 1.15].

In 2003, 173 (9.3%) non-Typhi *Salmonella* isolates were at least resistant to ACSSuT. Among the isolates resistant to at least ACSSuT, 60.1% were sero-type Typhimurium, 27.2% Newport, 2.9% Java, 1.2% Hadar, 0.6% Enteritidis, 0.6% Oranienburg, 0.6% "monophasic Typhimurium," and 0.6% Agona.

In 2003, 60 (3.2%) non-Typhi Salmonella isolates were at least MDR-AmpC resistant. Among the isolates with at least MDR-AmpC resistance, 76.7% were sero-

type Newport, 15.0% Typhimurium, 1.7% Agona, and 1.7% Hadar.

In 2003, 43 (2.3%) non-Typhi *Salmonella* isolates were nalidixic acid resistant. Among the nalidixic acid-resistant isolates, 27.9% were serotype Enteritidis, 11.6% Typhimurium, 4.7% Agona, 4.7% Hadar, 4.7% Infantis, and 2.3% Newport.

In 2003, 84 (4.5%) non-Typhi *Salmonella* isolates were ceftiofur resistant. Among the ceftiofur-resistant isolates, 58.3% were serotype Newport, 22.6% Typhimurium, 6.0% Heidelberg, 2.4% Agona, 2.4% "monophasic Typhimurium," 1.2% Hadar, 1.2% Muenchen, and 1.2% Senftenberg.

Table 1.15: Number and percent of ACSSuT, MDRAmpC, nalidixic acid- and ceftiofur-resistant isolates among the twenty most common non-Typhi *Salmonella* serotypes, 2003

Pank	Sorotypo	No. Isolatos Tostad	ACS	SSuT ¹	MDF	RAmpC ²	Nalid	ixic Acid	Ce	ftiofur
Marik	Serotype	NO. ISUIALES TESLEU	Ν	% Total	Ν	% Total	Ν	% Total	Ν	% Total
1	Typhimurium	403	104	60.1%	9	15.0%	5	11.6%	19	22.6%
2	Enteritidis	257	1	0.6%	0	0.0%	12	27.9%	0	0.0%
3	Newport	222	47	27.2%	46	76.7%	1	2.3%	49	58.3%
4	Heidelberg	96	0	0.0%	0	0.0%	0	0.0%	5	6.0%
5	Javiana	85	0	0.0%	0	0.0%	0	0.0%	0	0.0%
6	Saintpaul	59	0	0.0%	0	0.0%	0	0.0%	0	0.0%
7	Muenchen	48	0	0.0%	0	0.0%	0	0.0%	1	1.2%
8	Oranienburg	43	1	0.6%	0	0.0%	0	0.0%	0	0.0%
9	Montevideo	43	0	0.0%	0	0.0%	0	0.0%	0	0.0%
10	"Monophasic Typhimurium"	38	1	0.6%	0	0.0%	0	0.0%	2	2.4%
11	Agona	32	1	0.6%	1	1.7%	2	4.7%	2	2.4%
12	Braenderup	31	0	0.0%	0	0.0%	0	0.0%	0	0.0%
13	Infantis	31	0	0.0%	0	0.0%	2	4.7%	0	0.0%
14	Java	30	5	2.9%	0	0.0%	0	0.0%	0	0.0%
15	Mississippi	30	0	0.0%	0	0.0%	0	0.0%	0	0.0%
16	Thompson	24	0	0.0%	0	0.0%	0	0.0%	0	0.0%
17	Hadar	19	2	1.2%	1	1.7%	2	4.7%	1	1.2%
18	Anatum	18	0	0.0%	0	0.0%	0	0.0%	0	0.0%
19	Bareilly	18	0	0.0%	0	0.0%	0	0.0%	0	0.0%
20	Senftenberg	18	0	0.0%	0	0.0%	4	9.3%	1	1.2%
	Subtotal	1545	162	93.6%	57	95.0%	28	65.1%	80	95.2%
	All Other Serotyped	321	11	6.4%	3	5.0%	15	34.9%	4	4.8%
	Total	1865	173	100.0%	60	100.0%	43	100.0%	84	100.0%

1: ACSSuT: ampicillin, chloramphenicol, Streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

2: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 0.12µg/ml)

2. Salmonella Typhi

A total of 393 S. Typhi isolates were received at CDC in 2003; of these isolates 352 (89.6%) were viable and tested for antimicrobial susceptibility. Of these 352 isolates, 18 isolates were not included in the analysis because they were duplicate submissions from the same patient, leaving 334 isolates for analysis. Table 1.1 shows the number of isolates included in the final analysis by site and the population represented. Table 2.1 shows the MIC distributions for the 16 antimicrobial agents tested and the prevalence of antimicrobial resistance for the 334 S. Typhi isolates tested in 2003.

Antimicrobial agents with the highest prevalence of resistance were nalidixic acid (37.7%), trimethoprimsulfamethoxazole (16.8%), chloramphenicol (16.5%), ampicillin (16.2%), and tetracycline (15.6%). Two isolates were resistant to ceftiofur. There was one ciprofloxacin-resistant isolate in 2003, the first reported since NARMS began testing S. Typhi in 1999.

		% of I	solates							Percen	t of all iso	lates with	n MIC (µg/	mL) of:						
Antibiotic	%	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.3	0.0	[0.0 - 1.1]						14.7	78.4	6.6				0.3					
Gentamicin	0.0	0.0	[0.0 - 1.1]					85.6	13.5	0.6	0.3									
Kanamycin	0.0	0.0	[0.0 - 1.1]										99.7	0.3						
Streptomycin	N/A	14.4	[10.8 - 18.6]												85.6		14.4			
Aminopenicillins Ampicillin	0.0	16.2	[12.4 - 20.6]							52.7	29.9	0.6	0.6			16.2				
Beta-lactamase inhibitor combinations Amoxicillin-clavulanic acid	0.6	0.3	[0.0 - 1.7]							82.6	0.6	7.5	8.4	0.6		0.3				
Cephalosporins (1 st Gen.) Cephalothin	1.8	0.6	[0.1 - 2.1]								65.6	24.3	7.8	1.8	0.3	0.3				
Cephalosporins (3 rd Gen.) Ceftiofur	0.0	0.6	[0.1 - 2.1]				2.4	12.3	73.7	11.1				0.6						
Ceftriaxone	0.3	0.3	[0.0 - 1.7]					99.1	0.3					0.3			0.3			
Cephamycins Cefoxitin	0.9	0.9	[0.2 - 2.6]						2.7	37.7	14.7	24.9	18.3	0.9	0.6	0.3				
Folate pathway inhibitors Trimethoprim-sulfamethoxazole	N/A	16.8	[12.9 - 21.2]				76.3	6.9					16.8							
Phenicols Chloramphenicol	0.0	16.5	[12.7 - 20.9]								5.1	68.3	10.2		0.3	16.2				
Quinolones Ciprofloxacin	0.0	0.3	[0.0 - 1.7]	59.9	0.6	0.9	9.6	27.5	1.2				0.3							
Nalidixic acid	N/A	37.7	[32.5 - 43.2]							0.9	26.0	30.8	3.9	0.6		37.7				
Sulfonamides Sulfamethoxazole	N/A	17.1	[13.2 - 21.5]											81.4	1.5				0.3	16.8
Tetracyclines Tetracycline	0.0	15.6	[11.9 - 19.9]									84.4			0.6	15.0				

Notes:

A single vertical bar indicates the CLSI Susceptible breakpoints for each drug
 Double vertical bars indicate the CLSI Resistant breakpoints for each drug
 Unshaded areas indicate the dilution range of the Sensititre plate used to test the 2003 isolates
 Figures outside the Sensitire plate range were reported as ">⁵ the plate's highest dilution for that drug
 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Table 2.2: Percent and number of isolates resistant to antimicrobialagents among Salmonella Typhi, 1999-2003

Year		1999	2000	2001	2002	2003
Total Isolates		166	177	197	195	334
	Antibiotic					
Subclass	(Resistance breakpoint)					
Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0
	Gentamicin	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 16)	0	0	0	0	0
	Kanamycin	0.0%	0.0%	0.5%	0.0%	0.0%
	(MIC ≥ 64)	0	0	1	0	0
	Streptomycin	13.3%	9.0%	20.3%	7.2%	14.4%
	(MIC ≥ 64)	22	16	40	14	48
Aminopenicillins	Ampicillin	12.7%	9.0%	20.3%	5.6%	16.2%
	(MIC ≥ 32)	21	16	40	11	54
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.6%	0.0%	0.0%	0.0%	0.3%
	(MIC ≥ 32)	1	0	0	0	1
Cephalosporin (1 st Gen.)	Cephalothin	2.4%	1.1%	0.5%	1.5%	0.6%
	(MIC ≥ 32)	4	2	1	3	2
Cephalosporins (3 rd Gen.)	Ceftiofur	0.6%	0.0%	0.0%	0.0%	0.6%
	(MIC ≥ 8)	1	0	0	0	2
	Ceftriaxone	0.6%	0.0%	0.0%	0.0%	0.3%
	(MIC ≥ 64)	1	0	0	0	1
Cephamycins	Cefoxitin	Not	0.6%	0.5%	0.0%	0.9%
	(MIC ≥ 32)	Tested	1	1	0	3
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	12.7%	9.0%	20.8%	6.7%	16.8%
	(MIC ≥ 4)	21	16	41	13	56
Phenicols	Chloramphenicol	12.0%	10.7%	20.8%	6.2%	16.5%
	(MIC ≥ 32)	20	19	41	12	55
Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.3%
	(MIC ≥ 4)	0	0	0	0	1
	Nalidixic acid	18.7%	22.0%	29.9%	23.6%	37.7%
	(MIC ≥ 32)	31	39	59	46	126
Sulfonamides	Sulfamethoxazole	16.3%	11.3%	20.8%	6.2%	17.1%
	(MIC ≥ 512)	27	20	41	12	57
Tetracyclines	Tetracycline	9.0%	9.6%	20.8%	6.7%	15.6%
	(MIC ≥ 16)	15	17	41	13	52

Resistance to individual antimicrobial agents in 2003 increased among most of the drugs tested as compared to 2002 [Table 2.2]. Nalidixic acid resistance increased from 23.6% to 37.7%, trimethoprim/sulfamethoxazole resistance increased from 6.7% to 16.8%, chloramphenicol resistance increased from 5.6% to 16.5%, ampicillin resistance increased from 5.6% to 16.2%, and tetracycline resistance increased from 6.7% to 15.6%.

Nalidixic acid resistance increased from 18.7% in 1999 to 37.7% in 2003; a statistically significant increase (OR=2.6, 95% CI [1.6, 4.2]).

Table 2.3 shows the percent of *S*. Typhi isolates resistant to one or more CLSI subclass from 1999-2003. In 1999, 12.0% of *S*. Typhi isolates were resistant to at least ampicillin, chloramphenicol, and trimethoprimsulfamethoxazole (ACSuTm) compared with 15.6% in 2003. One isolate was resistant to nalidixic acid and ceftiofur in 2003; it is the first isolate with this phenotype since NARMS began testing in 1999.

Table 2.3: Resistance patterns of 3	Saimonella	а турп	i isolat	es, 195	9-2003
Year	1999	2000	2001	2002	2003
S. Typhi isolates	166	177	197	195	334
No detected resistance	71.7%	72.9%	58.9%	74.4%	56.6%
	119	129	116	145	189
Resistant to ≥ 1 antimicrobial agent	28.3%	27.1%	41.1%	25.6%	43.4%
	47	48	81	50	145
Resistant to ≥ 2 antimicrobial agents	14.5%	10.7%	22.8%	7.2%	18.0%
	24	19	45	14	60
Resistant to ≥ 3 antimicrobial agents	12.7%	9.6%	22.8%	6.7%	17.7%
	21	17	45	13	59
Resistant to \geq 4 antimicrobial agents	12.7%	9.0%	21.8%	6.7%	17.1%
	21	16	43	13	57
Resistant to \geq 5 antimicrobial agents	12.7%	9.0%	19.3%	5.6%	16.5%
	21	16	38	11	55
Resistant to \geq 1 CLSI subclass ¹	28.3%	27.1%	41.1%	25.6%	43.4%
	47	48	81	50	145
Resistant to ≥ 2 CLSI subclasses ¹	14.5%	10.7%	22.8%	7.2%	18.0%
	24	19	45	14	60
Resistant to \geq 3 CLSI subclasses ¹	12.7%	9.6%	22.8%	6.7%	17.7%
	21	17	45	13	59
Resistant to \geq 4 CLSI subclasses ¹	12.7%	9.0%	21.8%	6.7%	17.1%
	21	16	43	13	57
Resistant to \geq 5 CLSI subclasses ¹	12.7%	9.0%	18.8%	5.6%	16.5%
	21	16	37	11	55
At least ACSSuT resistant ²	9.0%	7.9%	16.8%	5.6%	12.6%
	15	14	33	11	42
At least ACSuTm resistant ³	12.0%	9.0%	17.8%	5.6%	15.6%
	20	16	35	11	52
At least ACSSuTAuCf resistant ⁴	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0
At least MDR-AmpC resistant ⁵	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0
Quinolone and cephalosporin (3 rd gen.) resistant	0.0%	0.0%	0.0%	0.0%	0.3%
	0	0	0	0	1

Table 2.3: Resistance patterns of Salmonella Typhi isolates, 1999-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

5: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 2µg/mL)

3. Shigella

A total of 552 Shigella isolates were received at CDC in 2003; of these isolates, 495 (89.7%) were viable and tested for antimicrobial susceptibility. Of these 495 isolates, 434 (87.7%) were S. sonnei, 51 (10.3%) S. flexneri, 5 (1.0%) S. boydii, and 2 (0.4%) S. dysenteriae [Table 3.1].

Table 3.1: Frequency of Shigella species, 2003

Species	N	%
sonnei	434	87.7
flexneri	51	10.3
boydii	5	1.0
dysenteriae	2	0.4
Other	3	0.6
Total	495	100

Table 1.1 shows the number of isolates included in the final analysis by site and the population represented. Table 3.2 shows the MIC distributions for the 16 antimicrobial agents tested and the prevalence of antimicrobial resistance for the 495 Shigella isolates tested in Among the 495 Shigella isolates tested in 2003. 2003, resistance was highest to ampicillin (78.8%), trimethoprim-sulfamethoxazole (38.2%), and chloramphenicol (8.9%).

Table 3.2: Distribution of MICs and occurrence of resistance among Shigella i solates, 2003 (N=495)

		% of Is	solates							Percen	t of all iso	lates with	n MIC (µg/	mL) of:						
Antibiotic	%	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.0	0.0	[0.0 - 0.7]						0.2	7.1	65.3	26.1	0.6							
Gentamicin	0.0	0.0	[0.0 - 0.7]					1.6	41.8	54.3	1.4									
Kanamycin	0.0	0.4	[0.0 - 1.5]										98.8			0.2	0.2			
Streptomycin	N/A	56.8	[52.3 - 61.2]												42.4	28.1	28.7			
Aminopenicillins Ampicillin	0.4	78.8	[74.9 - 82.3]							1.8	10.3	7.1	0.6	0.6	0.4	78.4				
Beta-lactamase inhibitor combinations Amoxicillin-clavulanic acid	19.6	1.6	[0.7 - 3.2]							3.4	3.4	17.6	53.5	19.6	1.4	0.2				
Cephalosporins (1 st Gen.) Cephalothin	18.6	9.3	[6.9 - 12.2]								3.4	11.5	56.4	18.6	6.7	2.6				
Cephalosporins (3 rd Gen.) Ceftiofur	0.0	0.4	[0.0 - 1.5]				16.0	72.7	8.5	1.4	0.2			0.4						
Ceftriaxone	0.4	0.0	[0.0 - 0.7]					98.8						0.2	0.2					
Cephamycins Cefoxitin	0.0	0.2	[0.0 - 1.1]							8.5	70.5	18.8	1.2		0.2					
Folate pathway inhibitors Trimethoprim-sulfamethoxazole	N/A	38.2	[33.9 - 42.6]				36.6	3.2	5.5	9.3	6.5	1.8	36.4		•					
Phenicols Chloramphenicol	2.2	8.9	[6.5 - 11.7]								9.1	71.7	7.3	2.2	2.4	6.5				
Quinolones Ciprofloxacin	0.0	0.0	[0.0 - 0.7]	97.6	0.6		0.2		0.8											
Nalidixic acid	N/A	1.0	[0.3 - 2.3]							26.9	63.8	6.7	0.8			1.0				
Sulfonamides Sulfamethoxazole	N/A	0.0	[25.3 - 33.5]									69.1	0.8	1.2	4.2	23.8				
Tetracyclines Tetracycline	0.0	99.2	[30.0 - 38.5]											63.6	1.0	0.2		0.2	1.0	33.1

Notes

* A single vertical bar indicates the CLSI Susceptible breakpoints for each drug
* Double vertical bars indicate the CLSI Resistant breakpoints for each drug

* Unshaded areas indicate the dilution range of the Sensititre plate used to test the 2003 isolates * Figures outside the Sensititre plate range were reported as "> the plate's highest dilution for that drug * 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Tables 3.3 and 3.4 show the MIC distributions for the 16 antimicrobial agents tested and the prevalence of antimicrobial resistance for the two most common species of Shigella, Shigella sonnei and Shigella flexneri. Isolates of S. flexneri had a higher prevalence of resistance to most antimicrobial agents. Important differences between the species include the prevalence of nalidixic acid resistance which was 5.9% in S. flexneri compared with 0.5% in S. sonnei, and chloramphenicol resistance which was 68.6% in S. flexneri compared with 1.6% in S. sonnei.

Table 3.3: Distribution of MICs and occurrence of resistance among Shigella sonnei isolates, 2003 (N=464)

		% of I	solates							Percen	t of all iso	lates with	MIC (µg/	mL) of:						
Antibiotic	%	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.0	0.0	[0.0 - 0.8]						0.2	6.7	70.5	21.7								
Gentamicin	0.0	0.0	[0.0 - 0.8]					1.2	41.7	55.1	1.2	1				-				
Kanamycin	0.0	0.0	[0.0 - 0.8]										99.1							
Streptomycin	N/A	56.2	[51.4 - 60.9]												42.9	30.0	26.3			
Aminopenicillins Ampicillin	0.5	79.0	[74.9 - 82.8]							0.7	10.1	7.8	0.7	0.7	0.5	78.6				
Beta-lactamase inhibitor combinations Amoxicillin-clavulanic acid	15.7	1.6	[0.7 - 3.3]							2.1	3.0	18.9	57.8	15.7	1.4	0.2				
Cephalosporins (1 st Gen.) Cephalothin	19.8	10.1	[7.5 - 13.4]								2.3	7.6	59.2	19.8	7.4	2.8				
Cephalosporins (3 rd Gen.) Ceftiofur	0.0	0.2	[0.0 - 1.3]				11.3	78.3	7.8	1.2	0.2			0.2						
Ceftriaxone	0.2	0.0	[0.0 - 0.8]					98.8					· 1		0.2					
Cephamycins Cefoxitin	0.0	0.2	[0.0 - 1.3]							9.0	74.7	14.1	1.2		0.2					
Folate pathway inhibitors Trimethoprim-sulfamethoxazole	N/A	38.0	[33.4 - 42.8]				35.7	2.1	5.5	10.4	7.4	2.1	35.9							
Phenicols Chloramphenicol	2.5	1.6	[0.7 - 3.3]								6.7	80.6	7.6	2.5	0.7	0.9				
Quinolones	0.0	0.0	[0.00.8]	08.2	0.5		0.2		0.2											
Ciprofloxacin	0.0	0.0	[0.0 - 0.0]	50.2	0.0		0.2		0.2											
Nalidixic acid	N/A	0.5	[0.1 - 1.7]							28.3	64.3	5.5	0.5		l	0.5				
Sulfamethoxazole	N/A	31.6	[27.2 - 36.2]											66.4	0.9	0.2			0.7	30.9
Tetracyclines Tetracycline	0.7	22.4	[18.5 - 26.6]									76.0	0.7	0.7	2.8	18.9				

Notes:

* A single vertical bar indicates the CLSI Susceptible breakpoints for each drug * Double vertical bars indicate the CLSI Resistant breakpoints for each drug * Unshaded areas indicate the dilution range of the Sensititre plate used to test the 2003 isolates * Figures outside the Sensititre plate range were reported as *s the plates highest dilution for that drug * 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Table 3.4: Distribution of MICs and occurrence of resistance among Shigella flexneri isolates, 2003 (N=51)

		% of Is	solates							Percen	t of all iso	plates with	n MIC (µg/	mL) of:						
Antibiotic	%I	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512	1024
Aminoglycosides Amikacin	0.0	0.0	[0.0 - 7.0]							9.8	27.5	58.8	3.9							
Gentamicin	0.0	0.0	[0.0 - 7.0]					3.9	45.1	51.0										
Kanamycin	0.0	3.9	[0.5 - 13.5]										96.1			2.0	2.0			
Streptomycin	N/A	60.8	[46.1 - 74.2]												39.2	13.7	47.1			
Aminopenicillins	0.0	84.3	[71 4 - 93 0]							78	59	2.0				84.3				
Ampicillin	0.0		[1111 00.0]							1.0	0.0	2.0								
Beta-lactamase inhibitor combinations Amoxicillin-clavulanic acid	52.9	2.0	[0.0 - 10.4]							11.8	3.9	2.0	27.5	52.9	2.0					
Cephalosporins (1 st Gen.)	9.8	3.9	[0.5 - 13.5]								7.8	41.2	37.3	9.8	2.0	2.0				
Cephalothin																				
Cephalosporins (3 rd Gen.)	0.0	2.0	[0.0 - 10.4]				49.0	35.3	11.8	2.0				2.0						
Cettiofur		~ ~	10.0 7.01					00.0				1 1		0.0						
Cettriaxone	2.0	0.0	[0.0 - 7.0]					98.0						2.0						
Cephanycins	0.0	0.0	[0.0 - 7.0]							2.0	37.3	60.8								
Folato pathway inhibitors											1	1			I					
Trimothonrim culfamethoxazolo	N/A	39.2	[25.8 - 53.9]				41.2	11.8	5.9	2.0			39.2							
Phenicols												1		L 1	1					
Chloramphenicol	0.0	68.6	[54.1 - 80.9]								21.6	3.9	5.9		17.6	51.0				
Quinolones			10 0 T 01																	
Ciprofloxacin	0.0	0.0	[0.0 - 7.0]	92.2	2.0				5.9											
Nalidixic acid	N/A	5.9	[1.2 - 16.2]							15.7	58.8	15.7	3.9			5.9				
Sulfonamides	NI/A	E2 0	[20 E C7 4]											42.4	2.0			2.0	2.0	E4 0
Sulfamethoxazole	IN/A	52.9	[30.5 - 67.1]											45.1	2.0			2.0	2.0	51.0
Tetracyclines Tetracycline	2.0	82.4	[69.1 - 91.6]									15.7	2.0	5.9	13.7	62.7				

Notes

* A single vertical bar indicates the CLSI Susceptible breakpoints for each drug * Double vertical bars indicate the CLSI Resistant breakpoints for each drug * Unshaded areas indicate the dilution range of the Sensititre plate used to test the 2003 isolates * Figures outside the Sensititre plate range were reported as ">* the plate's highest dilution for that drug * 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Year		1999	2000	2001	2002	2003
Total Isolates		375	450	344	620	495
Subclass	Antibiotic (Resistance breakpoint)					
Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0
	Gentamicin	0.3%	0.2%	0.0%	0.2%	0.0%
	(MIC ≥ 16)	1	1	0	1	0
	Kanamycin	0.5%	1.3%	0.6%	0.8%	0.4%
	(MIC ≥ 64)	2	6	2	5	2
	Streptomycin	55.7%	57.1%	53.2%	54.5%	56.8%
	(MIC ≥ 64)	209	257	183	338	281
Aminopenicillins	Ampicillin	77.6%	79.1%	79.7%	76.6%	78.8%
	(MIC ≥ 32)	291	356	274	475	390
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	1.1%	2.2%	4.4%	2.6%	1.6%
	(MIC ≥ 32)	4	10	15	16	8
Cephalosporin (1 st Gen.)	Cephalothin	3.2%	8.0%	9.0%	6.6%	9.3%
	(MIC ≥ 32)	12	36	31	41	46
Cephalosporins (3 ^{ra} Gen.)	Ceftiofur	0.0%	0.0%	0.0%	0.2%	0.4%
	(MIC ≥ 8)	0	0	0	1	2
	Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0
Cephamycins		Not	0.2%	1.2%	0.3%	0.2%
	(MIC ≥ 32)	lested	1	4	2	1
Folate pathway inhibitors	I rimethoprim-sulfamethoxazole	51.5%	52.9%	46.8%	37.3%	38.2%
Dharlan	$(MIC \ge 4)$	193	238	161	231	189
Phenicols		17.3%	14.0%	21.5%	7.6%	8.9%
Ovinglands	$(N C \ge 32)$	65	63	74	47	44
Quinoiones		0.0%	0.0%	0.3%	0.0%	0.0%
	$(V C \ge 4)$	0	0	1 70/	0	0
	(MIC > 32)	1.0%	0.9%	1.7%	1.0%	1.0%
Sulfonamidos	$(MIC \ge 32)$	56.0%	4 55.9%	0 56.4%	21.9%	3/ 10/
Suironamues	(MIC > 512)	210	251	10/	107	160
Tetracyclines		57 3%	Z31 11 Q0/	50 30/	30.6%	20.3%
i ou doyolinos	$(MIC \ge 16)$	215	202	204	190	145

Table 3.5: Percent and number of isolates resistant to antimicrobial agents among *Shigella*, 1999-2003

Tables 3.5 (all *Shigella* spp.), 3.6 (*S. sonnel*), and 3.7 (*S. flexneri*) show the percent of resistance to individual antimicrobial agents from 1999-2003.

Among *Shigella sonnei*, the percent of isolates resistant to trimethoprim/sulfamethoxazole was 53.1% in 1999 compared with 38.0% in 2003; nalidixic acid resistance was 1.5% or less from 1999-2003.

Among *Shigella flexneri*, the percent of isolates resistant to trimethoprim/sulfamethoxazole was 48.3% in 1999 compared to 39.2% in 2003, and 1.1% were resistant to nalidixic acid in 1999 compared to 5.9% in 2003.

Table 3.6: Percent and number of isolates resistant to antimicrobial agentsamong Shigella sonnei, 1999-2003

Year		1999	2000	2001	2002	2003
Total Isolates		275	366	239	536	434
	Antibiotic					
Subclass	(Resistance breakpoint)					
Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0
	Gentamicin	0.4%	0.3%	0.0%	0.0%	0.0%
	(MIC ≥ 16)	1	1	0	0	0
	Kanamycin	0.7%	1.6%	0.4%	0.4%	0.0%
	(MIC ≥ 64)	2	6	1	2	0
	Streptomycin	52.0%	56.0%	54.0%	55.4%	56.2%
	(MIC ≥ 64)	143	205	129	297	244
Aminopenicillins	Ampicillin	79.6%	80.6%	82.8%	77.6%	79.0%
	(MIC ≥ 32)	219	295	198	416	343
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.4%	1.9%	4.6%	2.2%	1.6%
	(MIC ≥ 32)	1	7	11	12	7
Cephalosporin (1 st Gen.)	Cephalothin	2.9%	8.7%	12.6%	7.3%	10.1%
	(MIC ≥ 32)	8	32	30	39	44
Cephalosporins (3 rd Gen.)	Ceftiofur	0.0%	0.0%	0.0%	0.0%	0.2%
	(MIC ≥ 8)	0	0	0	0	1
	Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0
Cephamycins	Cefoxitin	Not	0.3%	1.7%	0.4%	0.2%
	(MIC ≥ 32)	Tested	1	4	2	1
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	53.1%	54.9%	50.6%	37.9%	38.0%
	(MIC ≥ 4)	146	201	121	203	165
Phenicols	Chloramphenicol	1.8%	2.7%	1.3%	0.2%	1.6%
	(MIC ≥ 32)	5	10	3	1	7
Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 4)	0	0	0	0	0
	Nalidixic acid	1.5%	1.1%	0.8%	1.5%	0.5%
	(MIC ≥ 32)	4	4	2	8	2
Sulfonamides	Sulfamethoxazole	54.5%	56.0%	54.4%	29.9%	31.6%
	(MIC ≥ 512)	150	205	130	160	137
Tetracyclines	Tetracycline	46.2%	34.4%	44.8%	23.5%	22.4%
	(MIC ≥ 16)	127	126	107	126	97

0 ,			-	-		-
Year		1999	2000	2001	2002	2003
Total Isolates		87	75	91	73	51
	Antibiotic					
Subclass	(Resistance breakpoint)					
Aminoglycosides	Amikacin	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0
	Gentamicin	0.0%	0.0%	0.0%	1.4%	0.0%
	(MIC ≥ 16)	0	0	0	1	0
	Kanamycin	0.0%	0.0%	1.1%	4.1%	3.9%
	(MIC ≥ 64)	0	0	1	3	2
	Streptomycin	63.2%	61.3%	47.3%	45.2%	60.8%
	(MIC ≥ 64)	55	46	43	33	31
Aminopenicillins	Ampicillin	77.0%	77.3%	72.5%	75.3%	84.3%
	(MIC ≥ 32)	67	58	66	55	43
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	3.4%	4.0%	4.4%	5.5%	2.0%
	(MIC ≥ 32)	3	3	4	4	1
Cephalosporin (1 st Gen.)	Cephalothin	4.6%	2.7%	1.1%	2.7%	3.9%
	(MIC ≥ 32)	4	2	1	2	2
Cephalosporins (3 rd Gen.)	Ceftiofur	0.0%	0.0%	0.0%	1.4%	2.0%
	(MIC ≥ 8)	0	0	0	1	1
	Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0
Cephamycins	Cefoxitin	Not	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 32)	Tested	0	0	0	0
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	48.3%	42.7%	34.1%	28.8%	39.2%
	(MIC ≥ 4)	42	32	31	21	20
Phenicols	Chloramphenicol	64.4%	69.3%	74.7%	63.0%	68.6%
	(MIC ≥ 32)	56	52	68	46	35
Quinolones	Ciprofloxacin	0.0%	0.0%	1.1%	0.0%	0.0%
	(MIC ≥ 4)	0	0	1	0	0
	Nalidixic acid	1.1%	0.0%	3.3%	2.7%	5.9%
	(MIC ≥ 32)	1	0	3	2	3
Sulfonamides	Sulfamethoxazole	58.6%	53.3%	57.1%	41.1%	52.9%
	(MIC ≥ 512)	51	40	52	30	27
Tetracyclines	Tetracycline	92.0%	92.0%	94.5%	78.1%	82.4%
	(MIC ≥ 16)	80	69	86	57	42

Table 3.7: Percent and number of isolates resistant to antimicrobial agents among Shigella flexneri, 1999-2003

Table 5.6. Resistance patterns of Omge		, IJJJ [_]	2003		
Year	1999	2000	2001	2002	2003
Shigella isolates	375	450	344	620	495
No detected resistance	9.1%	7.3%	4.9%	8.2%	9.1%
	34	33	17	51	45
Resistant to ≥ 1 antimicrobial agent	90.9%	92.7%	95.1%	91.8%	90.9%
	341	417	327	569	450
Resistant to ≥ 2 antimicrobial agents	65.3%	66.9%	70.9%	57.9%	60.8%
	245	301	244	359	301
Resistant to \geq 3 antimicrobial agents	61.1%	62.9%	62.2%	42.7%	43.2%
	229	283	214	265	214
Resistant to \geq 4 antimicrobial agents	54.4%	56.7%	54.1%	31.0%	33.5%
	204	255	186	192	166
Resistant to \geq 5 antimicrobial agents	40.5%	26.9%	36.3%	21.0%	23.2%
	152	121	125	130	115
Resistant to \geq 1 CLSI subclass ¹	90.9%	92.7%	95.1%	91.8%	90.9%
	341	417	327	569	450
Resistant to ≥ 2 CLSI subclasses ¹	65.3%	66.9%	70.9%	57.9%	60.8%
	245	301	244	359	301
Resistant to \geq 3 CLSI subclasses ¹	61.1%	62.9%	62.2%	42.7%	43.2%
	229	283	214	265	214
Resistant to \geq 4 CLSI subclasses ¹	54.1%	56.7%	54.1%	31.0%	33.5%
	203	255	186	192	166
Resistant to \geq 5 CLSI subclasses ¹	40.5%	26.9%	36.0%	20.8%	23.2%
	152	121	124	129	115
At least ACSSuT resistant ²	8.5%	5.6%	6.4%	1.9%	3.6%
	32	25	22	12	18
At least ACSuTm resistant ³	9.9%	6.9%	7.0%	2.7%	3.6%
	37	31	24	17	18
At least ASuTm resistant ⁴	44.3%	44.4%	37.5%	29.8%	33.3%
	166	200	129	185	165
At least ANSuTm resistant ⁵	0.3%	0.0%	0.6%	0.3%	0.8%
	1	0	2	2	4
At least ACSSuTAuCf resistant ⁶	0.0%	0.0%	0.0%	0.0%	0.2%
	0	0	0	0	1
At least MDR-AmpC resistant ⁷	0.0%	0.0%	0.0%	0.0%	0.2%
·	0	0	0	0	1
Quinolone and cephalosporin (3 rd gen.) resistant	0.0%	0.0%	0.0%	0.0%	0.2%
	0	0	0	0	1

 Table 3.8: Resistance patterns of Shigella isolates, 1999-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ASuTm: ampicillin, trimethoprim-sulfamethoxazole

5: ANSuTm: ASuTm + naladixic acid

6: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

7: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 2µg/mL)

Changes in resistance from 1999-2003 to multiple antimicrobial classes among *Shigella* isolates are shown in Table 3.8. In all years, over 90% of isolates tested were resistant to at least one CLSI subclass. A total of 40.5% were resistant to at least five subclasses in 1999 compared with 23.2% in 2003.

Table 5.5. Resistance patterns of Omgena	3011101	13014103	, 1333-	2005	
Year	1999	2000	2001	2002	2003
S. sonnei isolates	275	366	239	536	434
No detected resistance	10.5%	7.7%	5.4%	7.1%	9.2%
	29	28	13	38	40
Resistant to ≥ 1 antimicrobial agent	89.5%	92.3%	94.6%	92.9%	90.8%
, i i i i i i i i i i i i i i i i i i i	246	338	226	498	394
Resistant to ≥ 2 antimicrobial agents	58.2%	63.4%	62.3%	55.0%	57.6%
	160	232	149	295	250
Resistant to \geq 3 antimicrobial agents	54.5%	58.7%	54.4%	37.7%	38.2%
	150	215	130	202	166
Resistant to \geq 4 antimicrobial agents	50.9%	54.1%	49.0%	26.7%	29.5%
	140	198	117	143	128
Resistant to \geq 5 antimicrobial agents	38.5%	24.3%	36.0%	19.8%	21.0%
	106	89	86	106	91
Resistant to \geq 1 CLSI subclass ¹	89.5%	92.3%	94.6%	92.9%	90.8%
	246	338	226	498	394
Resistant to ≥ 2 CLSI subclasses ¹	58.2%	63.4%	62.3%	55.0%	57.6%
	160	232	149	295	250
Resistant to \geq 3 CLSI subclasses ¹	54.5%	58.7%	54.4%	37.7%	38.2%
	150	215	130	202	166
Resistant to \geq 4 CLSI subclasses ¹	50.5%	54.1%	49.0%	26.7%	29.5%
	139	198	117	143	128
Resistant to \geq 5 CLSI subclasses ¹	38.5%	24.3%	36.0%	19.8%	21.0%
	106	89	86	106	91
At least ACSSuT resistant ²	0.4%	0.8%	0.0%	0.0%	0.7%
	1	3	0	0	3
At least ACSuTm resistant ³	1.8%	1.9%	0.8%	0.2%	0.9%
	5	7	2	1	4
At least ASuTm resistant ⁴	45.1%	46.2%	41.0%	30.2%	33.2%
	124	169	98	162	144
At least ANSuTm resistant ⁵	0.0%	0.0%	0.0%	0.2%	0.2%
	0	0	0	1	1
At least ACSSuTAuCf resistant ⁶	0.0%	0.0%	0.0%	0.0%	0.2%
	0	0	0	0	1
At least MDR-AmpC resistant ⁷	0.0%	0.0%	0.0%	0.0%	0.2%
	0	0	0	0	1
Quinolone and cephalosporin (3 rd gen.) resistant	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0

Table 3.9: Resistance patterns of Shigella sonnei isolates, 1999-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ASuTm: ampicillin, trimethoprim-sulfamethoxazole

5: ANSuTm: ASuTm + naladixic acid

6: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

7: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 2µg/mL)

Changes in resistance to multiple antimicrobial classes and specific combinations from 1999-2003 among *Shigella sonnei* and *Shigella flexneri* isolates are shown in Tables 3.9 and 3.10. One *Shigella* (*S. flexneri*) isolate was resistant to both nalidixic acid and ceftiofur in 2003; this is the first isolate with this phenotype since NARMS began monitoring *Shigella* in 1999.

Table 5.10. Resistance patterns of Shi	yella llexilel	1 1501al	65, 1993	9-2003	
Year	1999	2000	2001	2002	2003
S. flexneri isolates	87	75	91	73	51
No detected resistance	4.6%	4.0%	3.3%	15.1%	7.8%
	4	3	3	11	4
Resistant to ≥ 1 antimicrobial agent	95.4%	96.0%	96.7%	84.9%	92.2%
	83	72	88	62	47
Resistant to ≥ 2 antimicrobial agents	83.9%	82.7%	90.1%	76.7%	86.3%
	73	62	82	56	44
Resistant to \geq 3 antimicrobial agents	80.5%	81.3%	80.2%	75.3%	82.4%
	70	61	73	55	42
Resistant to \geq 4 antimicrobial agents	67.8%	69.3%	65.9%	58.9%	66.7%
	59	52	60	43	34
Resistant to \geq 5 antimicrobial agents	49.4%	40.0%	33.0%	30.1%	45.1%
	43	30	30	22	23
Resistant to \geq 1 CLSI subclass ¹	95.4%	96.0%	96.7%	84.9%	92.2%
	83	72	88	62	47
Resistant to ≥ 2 CLSI subclasses ¹	83.9%	82.7%	90.1%	76.7%	86.3%
	73	62	82	56	44
Resistant to \geq 3 CLSI subclasses ¹	80.5%	81.3%	80.2%	75.3%	82.4%
	70	61	73	55	42
Resistant to \geq 4 CLSI subclasses ¹	67.8%	69.3%	65.9%	58.9%	66.7%
	59	52	60	43	34
Resistant to \geq 5 CLSI subclasses ¹	49.4%	40.0%	31.9%	28.8%	45.1%
	43	30	29	21	23
At least ACSSuT resistant ²	33.3%	29.3%	22.0%	16.4%	29.4%
	29	22	20	12	15
At least ACSuTm resistant ³	34.5%	32.0%	23.1%	21.9%	27.5%
	30	24	21	16	14
At least ASuTm resistant ⁴	44.8%	38.7%	25.3%	27.4%	37.3%
	39	29	23	20	19
At least ANSuTm resistant ⁵	1.1%	0.0%	1.1%	1.4%	5.9%
	1	0	1	1	3
At least ACSSuTAuCf resistant ⁶	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0
At least MDR-AmpC resistant ⁷	0.0%	0.0%	0.0%	0.0%	0.0%
·	0	0	0	0	0
Quinolone and cephalosporin (3 rd gen.) resistant	0.0%	0.0%	0.0%	0.0%	2.0%
	0	0	0	0	1

 Table 3.10:
 Resistance patterns of Shigella flexneri isolates, 1999-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ASuTm: ampicillin, trimethoprim-sulfamethoxazole

5: ANSuTm: ASuTm + naladixic acid

6: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

7: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 2µg/mL)

4. E. Coli 0157

A total of 170 E. coli O157 isolates were received at CDC in 2003, of these isolates, 158 (92.9%) were viable and tested for antimicrobial susceptibility. Of these 158 isolates, one isolate was not included in the analysis because it was a duplicate submission from the same patient, leaving 157 isolates for analysis.

Table 1.1 shows the number of isolates included in the final analysis by site and the population represented.

Notes:

Table 4.1 shows the MIC distributions for the 16 antimicrobial agents tested and the prevalence of antimicrobial resistance for the 157 E. coli O157 isolates tested in 2003.

Antimicrobial agents with the highest prevalence of resistance were sulfamethoxazole (3.8%) and streptomycin (1.9%). Two isolates in 2003 were resistant to ceftiofur [Table 4.2].

Table 4.1: Distribution of MICs and occurrence of resistance among E. coli O157 isolates, 2003 (N=157)	ļ
--	---

Antibiotic %I %R Cl 0.015 0.03 0.06 0.125 0.25 0.50 1 2 4 8 16 32 64 128 256 Aminoglycosides Amikacin Gentamicin 0.0 0.0 [0.0 - 2.3] - - 1.9 61.8 31.8 4.5 -	512 1024
Aminoglycosides Amikacin 0.0 0.0 [0.0 - 2.3] 1.9 61.8 31.8 4.5 Gentamicin 0.0 0.0 [0.0 - 2.3] 24.8 40.1 34.4 0.6	
Gentamicin 0.0 0.0 [0.0 - 2.3] 24.8 40.1 34.4 0.6	
Kanamyein 0.0 0.0 [0.0-2.3] 100.0	
Streptomycin N/A 1.9 [0.4 - 5.5] 98.1 0.6 1.3	
Aminopenicillins 0.0 3.2 [1.0 - 7.3] 3.8 29.3 56.1 7.0 0.6 3.2	
Beta-lactamase inhibitor combinations Amoxicillin-clavulanic acid 0.0 1.3 [0.2 - 4.5] 3.2 9.6 84.1 1.9 1.3	
Cephalosporins (1st Gen.) 6.4 2.5 13.4 75.2 6.4 1.3 1.3	
Cephalosporins (3 rd Gen.) 0.0 1.3 [0.2 - 4.5] 2.5 39.5 56.1 0.6 1.3	
Celtriaxone 1.3 0.0 [0.0-2.3] 98.7 1.3	
Cephamycins Cefoxitin 1.3 1.3 [0.2 - 4.5] 1.3 8.3 63.1 24.8 1.3 1.3	
Folate pathway inhibitors N/A 0.6 [0.0 - 3.5] 97.5 1.9 0.6	
Phenicols 0.6 1.3 (0.2 - 4.5) 1.3 41.4 55.4 0.6 0.6 0.6	
Quinolones 0.0 0.0 [0.0 - 2.3] 98.7 0.6 0.6	
Nalidixic acid N/A 0.6 [0.0-3.5] 27.4 70.7 1.3 0.6	
Sulfamethoxazole N/A 3.8 [1.4 - 8.1] 95.5 0.6	3.8
Tetracyclines 0.6 5.7 [2.7 - 10.6] 93.6 0.6 0.6 5.1	

A single vertical bar indicates the CLSI Susceptible breakpoints for each drug

* Double vertical bars indicate the CLSI Resistant breakpoints for each drug

¹ Unshaded areas indicate the Octor reason reage of the Sensitive plate used to test the 2003 isolates
 ² Figures outside the Sensitive plate range were reported as ">" the plate's highest dilution for that drug
 ³ 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Table 4.2: Percent and number of isolates resistant to antimicrobial agents among E.coli O157, 1996-2003

Year		1996	1997	1998	1999	2000	2001	2002	2003
Total Isolates		201	161	318	292	407	277	399	157
	Antibiotic	-	-		-	-			
Subclass	(Resistance breakpoint)								
Aminoglycosides	Amikacin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	Tested	0	0	0	0	0	0	0
	Gentamicin	0.0%	0.0%	0.0%	0.3%	0.5%	0.4%	0.0%	0.0%
	(MIC ≥ 16)	0	0	0	1	2	1	0	0
	Kanamycin	0.0%	0.0%	0.3%	0.7%	1.0%	0.0%	0.5%	0.0%
	(MIC ≥ 64)	0	0	1	2	4	0	2	0
	Streptomycin	2.0%	2.5%	1.9%	2.7%	5.2%	1.8%	2.3%	1.9%
	(MIC ≥ 64)	4	4	6	8	21	5	9	3
Aminopenicillins	Ampicillin	1.5%	0.0%	2.5%	1.4%	2.7%	2.2%	1.5%	3.2%
	(MIC ≥ 32)	3	0	8	4	11	6	6	5
Beta-lactamase inhibitor combinations	Amoxicillin-clavulanic acid	0.0%	0.0%	0.0%	0.3%	1.0%	0.7%	0.0%	1.3%
	(MIC ≥ 32)	0	0	0	1	4	2	0	2
Cephalosporin (1 st Gen.)	Cephalothin	1.5%	2.5%	0.0%	0.7%	1.2%	1.4%	1.5%	2.5%
	(MIC ≥ 32)	3	4	0	2	5	4	6	4
Cephalosporins (3 rd Gen.)	Ceftiofur	0.0%	0.0%	0.0%	0.0%	1.0%	1.1%	0.0%	1.3%
	(MIC ≥ 8)	0	0	0	0	4	3	0	2
	Ceftriaxone	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 64)	0	0	0	0	0	0	0	0
Cephamycins	Cefoxitin	Not	Not	Not	Not	1.0%	0.7%	0.0%	1.3%
	(MIC ≥ 32)	Tested	Tested	Tested	Tested	4	2	0	2
Folate pathway inhibitors	Trimethoprim-sulfamethoxazole	0.0%	0.0%	0.6%	1.4%	0.7%	0.7%	0.5%	0.6%
	(MIC ≥ 4)	0	0	2	4	3	2	2	1
Phenicols	Chloramphenicol	0.5%	0.0%	0.3%	0.0%	3.7%	1.4%	1.3%	1.3%
	(MIC ≥ 32)	1	0	1	0	15	4	5	2
Quinolones	Ciprofloxacin	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 4)	0	0	0	0	0	0	0	0
	Nalidixic acid	0.0%	0.0%	0.0%	0.7%	0.5%	1.1%	1.0%	0.6%
	(MIC ≥ 32)	0	0	0	2	2	3	4	1
Sulfonamides	Sulfamethoxazole	11.9%	9.9%	5.7%	8.2%	5.9%	5.1%	3.5%	3.8%
	(MIC ≥ 512)	24	16	18	24	24	14	14	6
Tetracyclines	Tetracycline	5.0%	3.1%	4.4%	3.4%	7.1%	5.4%	3.0%	5.7%
	(MIC ≥ 16)	10	5	14	10	29	15	12	9

Tuble fiel Reolocance patterne el	E. 00// 01		atoo, 1		00			
Year	1996	1997	1998	1999	2000	2001	2002	2003
E. coli O157 isolates	201	161	318	292	407	277	399	157
No detected resistance	85.1%	88.8%	92.8%	89.7%	90.2%	91.3%	93.0%	89.2%
	171	143	295	262	367	253	371	140
Resistant to ≥ 1 antimicrobial agent	14.9%	11.2%	7.2%	10.3%	9.8%	8.7%	7.0%	10.8%
-	30	18	23	30	40	24	28	17
Resistant to ≥ 2 antimicrobial agents	5.0%	6.2%	5.3%	4.1%	6.6%	5.4%	3.8%	5.1%
	10	10	17	12	27	15	15	8
Resistant to ≥ 3 antimicrobial agents	1.5%	0.6%	1.9%	3.1%	4.7%	2.5%	2.3%	3.2%
	3	1	6	9	19	7	9	5
Resistant to ≥ 4 antimicrobial agents	0.5%	0.0%	0.9%	1.7%	4.2%	2.2%	1.0%	2.5%
	1	0	3	5	17	6	4	4
Resistant to ≥ 5 antimicrobial agents	0.5%	0.0%	0.3%	0.7%	1.7%	1.1%	0.5%	0.6%
	1	0	1	2	7	3	2	1
Resistant to \geq 1 CLSI subclass ¹	14.9%	11.2%	7.2%	10.3%	9.8%	8.7%	7.0%	10.8%
	30	18	23	30	40	24	28	17
Resistant to \geq 2 CLSI subclasses ¹	5.0%	6.2%	5.3%	4.1%	6.6%	5.4%	3.8%	5.1%
	10	10	17	12	27	15	15	8
Resistant to \geq 3 CLSI subclasses ¹	1.5%	0.6%	1.9%	3.1%	4.7%	2.2%	2.3%	3.2%
	3	1	6	9	19	6	9	5
Resistant to \geq 4 CLSI subclasses ¹	0.5%	0.0%	0.9%	1.0%	3.7%	2.2%	1.0%	2.5%
	1	0	3	3	15	6	4	4
Resistant to \geq 5 CLSI subclasses ¹	0.5%	0.0%	0.0%	0.7%	1.5%	1.1%	0.3%	0.6%
	1	0	0	2	6	3	1	1
At least ACSSuT resistant ²	0.5%	0.0%	0.0%	0.0%	1.2%	0.4%	0.0%	0.0%
	1	0	0	0	5	1	0	0
At least ACSuTm resistant ³	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%
	0	0	0	0	1	0	0	0
At least ACSSuTAuCf resistant ⁴	0.0%	0.0%	0.0%	0.0%	1.0%	0.4%	0.0%	0.0%
	0	0	0	0	4	1	0	0
At least MDR-AmpC resistant ⁵	0.0%	0.0%	0.0%	0.0%	1.0%	0.4%	0.0%	0.0%
	0	0	0	0	4	1	0	0
Quinolone and cephalosporin (3 rd gen.) resistant	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0	0

Table 4.3: Resistance patterns of E. coli O157 isolates, 1996-2003

2: ACSSuT: ampicillin, chloramphenicol, streptomycin, sulfamethoxazole/sulfisoxazole, tetracycline

3: ACSuTm: ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole

4: ACSSuTAuCf: ACSSuT + amoxicillin-clavulanic acid, ceftiofur

5: MDR-AmpC: ACSSuTAuCf + decreased susceptibility to ceftriaxone (MIC ≥ 2µg/mL)

Isolates resistant to at least one CLSI subclass increased from 7.0% in 2002 to 10.8% in 2003 [Table 4.3]. Resistance to at least two CLSI subclasses increased from 3.8% in 2002 to 5.1% in 2003. Isolates resistant to at least five subclasses was 0.3% (1/399) in 2002 and 0.6% (1/157) in 2003.

Antimicrobial treatment of *E. coli* O157 infections is not recommended, but resistance changes, particularly appearance of third generation cephalosporin resistance, might prove useful in understanding exchange of mobile resistance elements in bovine production settings.

5. Campylobacter

A total of 428 *Campylobacter* isolates were received at CDC in 2003; of these isolates, 405 (95%) were viable upon receipt and tested for antimicrobial susceptibility. Of these 405 isolates, 77 were not included in the analysis because they were duplicate submissions (four isolates) from the same patient, were not part of the sampling scheme (68 isolates), or were not *Campylobacter* (five isolates), leaving 328 isolates for analysis. Of the 328 isolates tested, 303 (92.4%) were *C. jejuni* and 22 (6.7%) were *C. coli* [Table 5.1].

Table 1.1 shows the number of isolates included in the final analysis by site and the population represented. Table 5.2 shows the MIC distributions for the 8 antimicrobial agents tested and the prevalence of antimicrobial resistance for the 328 *Campylobacter* isolates tested in 2003. Among 328 *Campylobacter* isolates

tested in 2003, resistance was highest to tetracycline (38.4%), nalidixic acid (18.9%), and ciprofloxacin (17.7%). Of note, 33.8% of MIC results for erythromycin fell within the intermediate range and were non-susceptible. None of the *Campylobacter* isolates tested were resistant to chloramphenicol.

Table 5.1: Frequency ofCampylobacter species, 2003

Species	Ν	%
jejuni	303	92.4%
coli	22	6.7%
other species	3	0.9%
Total	328	100.0%

1000000000000000000000000000000000000	Table 5.2:	Distribution of MICs and	occurrence of resistance among	g Campylobacter iso	olates, 2003 (N=328
---------------------------------------	------------	--------------------------	--------------------------------	---------------------	----------------	-------

		% of I	solates						Perc	cent of al	l isolates	s with MI	IC (µg/mi	L) of:					
Antibiotic	%I	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
Aminoglycosides Gentamicin	0.0	0.3	[0.0 - 1.7]		0.3	0.3	1.2	15.9	64.0	15.9	2.1								0.3
Lincosamides Clindamycin	5.2	1.2	[0.3 - 3.1]		0.3	4.6	22.0	46.6	20.1	4.6	0.6	0.6	0.3						0.3
Macrolides Azithromycin	1.2	0.9	[0.2 - 2.6]		5.5	31.7	45.4	14.9	0.9	0.3			_						0.9
Erythromycin	33.8	0.9	[0.2 - 2.6]			0.3	2.1	15.9	47.3	24.1	7.3	2.4							0.9
Phenicols Chloramphenicol	0.9	0.0	[0.0 - 1.1]					0.3	10.4	47.9	31.7	7.6	1.2	0.9					
Quinolones Ciprofloxacin	0.3	17.7	[13.7 - 22.3]	1.8	50.0	23.8	5.5	0.3	0.6		0.3			0.3		17.4			
Nalidixic acid	N/A	18.9	[14.8 - 23.6]				0.3		1.8	24.4	40.2	10.7	3.7	0.6					18.9
Tetracyclines Tetracycline	1.8	38.4	[33.1 - 43.9]		15.2	25.3	11.9	4.6	1.8	0.3	0.9		1.8	2.4	4.0	4.6	1.2		26.2
			Notes:	* A single	vertical b	ar indicate	s the CLS	I Suscepti	ble breakr	points for e	each drug								

* A single vertical bar indicates the CLSI Susceptible breakpoints for each drug * Double vertical bars indicate the CLSI Resistant breakpoints for each drug

* Unshaded areas represent E-test MIC ranges

* Figures outside the Sensititre plate range were reported as ">" the plate's highest dilution for that drug

* 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Year		1997	1998	1999	2000	2001	2002	2003
Total Isolates		217	310	317	324	384	354	328
Subclass	Antibiotic (Resistance breakpoint)							
Aminoglycosides	Gentamicin	Not	0.0%	0.0%	0.3%	0.0%	0.0%	0.3%
	(MIC ≥ 16)	Tested	0	0	1	0	0	1
Lincosamides	Clindamycin	2.3%	1.3%	1.6%	1.2%	2.9%	2.0%	1.2%
	(MIC ≥ 4)	5	4	5	4	11	7	4
Macrolides	Azithromycin	Not	1.3%	3.2%	1.9%	2.1%	2.0%	0.9%
	(MIC ≥ 2)	Tested	4	10	6	8	7	3
	Erythromycin	3.2%	1.9%	2.8%	1.9%	2.1%	2.0%	0.9%
	(MIC ≥ 8)	7	6	9	6	8	7	3
Phenicols	Chloramphenicol	5.1%	2.9%	0.6%	0.0%	0.3%	0.3%	0.0%
	(MIC ≥ 32)	11	9	2	0	1	1	0
Quinolones	Ciprofloxacin	12.9%	13.9%	18.3%	14.8%	19.5%	20.1%	17.7%
	(MIC ≥ 4)	28	43	58	48	75	71	58
	Nalidixic acid	20.3%	18.4%	21.1%	16.7%	20.8%	20.6%	18.9%
	(MIC ≥ 32)	44	57	67	54	80	73	62
Tetracyclines	Tetracycline	47.9%	45.5%	43.8%	38.3%	40.9%	41.2%	38.4%
	(MIC ≥ 16)	104	141	139	124	157	146	126

Table 5.3: Percent and number of isolates resistant to antimicrobial agents among Campylobacter, 1997-2003

Table 5.3 shows the percent of *Campylobacter* isolates resistant to each antimicrobial agent from 1997-2003. The antimicrobial agent with a statistically significant increase in resistance was ciprofloxacin; the percent of *Campylobacter* isolates resistant to ciprofloxacin was 12.9% in 1997 and 17.7% in 2003 (OR=1.8, 95% CI [1.1, 3.0]). Table 5.4 shows the percent of *Campylobacter* isolates resistant to one or more CLSI subclasses from 1997-2003. In 2003, 48.8% of *Campylobacter* isolates were resistant to one or more CLSI subclasses compared to 52.0% in 2002. In 2003, 9.1% of *Campylobacter* isolates were resistant to two or more subclasses compared to 12.7% in 2002.

Table 5.4: Resistance patterns of Campylobacter, 1997-20	03
--	----

Year	1997	1998	1999	2000	2001	2002	2003
Campylobacter isolates	217	310	317	324	384	354	328
No detected resistance	43.8%	44.8%	47.0%	51.9%	48.7%	48.0%	51.2%
	95	139	149	168	187	170	168
Resistant to ≥ 1 antimicrobial agent	56.2%	55.2%	53.0%	48.1%	51.3%	52.0%	48.8%
	122	171	168	156	197	184	160
Resistant to ≥ 2 antimicrobial agents	22.1%	18.1%	20.5%	15.7%	21.4%	21.2%	18.3%
	48	56	65	51	82	75	60
Resistant to ≥ 3 antimicrobial agents	12.4%	8.7%	12.3%	7.7%	12.5%	12.1%	8.5%
	27	27	39	25	48	43	28
Resistant to ≥ 4 antimicrobial agents	0.5%	1.9%	1.6%	0.9%	1.3%	0.8%	0.9%
	1	6	5	3	5	3	3
Resistant to ≥ 5 antimicrobial agents	0.5%	0.0%	0.9%	0.3%	0.0%	0.0%	0.3%
	1	0	3	1	0	0	1
Resistant to \geq 1 CLSI subclass ¹	56.2%	55.2%	53.0%	48.1%	51.3%	52.0%	48.8%
	122	171	168	156	197	184	160
Resistant to ≥ 2 CLSI subclasses ¹	19.4%	11.3%	14.2%	8.6%	13.5%	12.7%	9.1%
	42	35	45	28	52	45	30
Resistant to \geq 3 CLSI subclasses ¹	2.8%	2.6%	1.6%	0.9%	1.8%	1.4%	0.9%
	6	8	5	3	7	5	3
Resistant to \geq 4 CLSI subclasses ¹	0.5%	1.0%	1.3%	0.3%	0.3%	0.0%	0.3%
	1	3	4	1	1	0	1
Resistant to \geq 5 CLSI subclasses ¹	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	0	0	0	0	0	0	0

1: CLSI: Clinical and Laboratory Standards Institute

Table 5.5: Distribution of MICs and occurrence of resistance among Campylobacter jejuni isolates, 2003 (N=303)

		% of I	solates		Percent of all isolates with MIC (µg/mL) of:														
Antibiotic	%	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
Aminoglycosides Gentamicin	0.0	0.0	[0.0 - 1.2]			0.3	1.3	16.8	65.7	13.5	2.3								
Lincosamides Clindamycin	4.0	0.3	[0.0 - 1.8]			5.0	23.4	49.2	18.2	3.6	0.3	0.3							
Macrolides Azithromycin	1.0	0.3	[0.0 - 1.8]		5.9	34.0	45.9	12.5	1.0				_						0.3
Erythromycin	32.3	0.3	[0.0 - 1.8]				2.3	16.2	49.2	25.1	5.9	1.3							0.3
Phenicols Chloramphenicol	0.7	0.0	[0.0 - 1.2]					0.3	11.2	50.8	30.0	5.9	1.0	0.7					
Quinolones Ciprofloxacin	0.3	17.2	[13.1 - 21.9]	2.0	51.5	23.8	5.0		0.3		0.3			0.3		16.8			
Nalidixic acid	N/A	17.8	[13.7 - 22.6]				0.3		2.0	26.1	40.9	10.2	2.6	0.7					17.8
Tetracyclines Tetracycline	2.0	38.3	[32.8 - 44.0]		16.2	26.7	10.6	4.3	1.7		0.7		2.0	2.3	4.3	5.0	1.3		25.4
			Notoci	* A cingle	vortical by	ar indicato	a tha CI SI	Cucconti	blo brookr	pointe for a	ach drug								

* Double vertical bars indicates the CLSI Resistant breakpoints for each drug

* Unshaded areas represent E-test MIC ranges * Figures outside the Sensititre plate range were reported as ">" the plate's highest dilution for that drug

* 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Table 5.5 shows the MIC distributions for the eight antimicrobial agents tested and the prevalence of antimicrobial resistance for the 303 Campylobacter jejuni isolates tested in 2003. Antimicrobial agents with the highest prevalence of resistance among the 303 Campylobacter jejuni isolates were tetracycline (38.3%)

followed by nalidixic acid (17.8%) and ciprofloxacin (17.2%). Of note, 32.3% of MIC results for C. jejuni for erythromycin fell within the intermediate range and were non-susceptible. No C. jejuni isolates were resistant to gentamicin or chloramphenicol.

Table 5.6: Percent and number of isolates resistant to antimicrobial agents among Campylobacter jejuni, 1997-2003

Year		1997	1998	1999	2000	2001	2002	2003
Total Isolates		209	297	293	306	365	329	303
	Antibiotic							
Subclass	(Resistance breakpoint)							
Aminoglycosides	Gentamicin	Not	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 16)	Tested	0	0	0	0	0	0
Lincosamides	Clindamycin	1.4%	1.0%	1.0%	1.0%	2.5%	1.8%	0.3%
	(MIC ≥ 4)	3	3	3	3	9	6	1
Macrolides	Azithromycin	Not	0.3%	2.7%	1.6%	1.9%	1.8%	0.3%
	(MIC ≥ 2)	Tested	1	8	5	7	6	1
	Erythromycin	2.9%	1.0%	2.4%	1.6%	1.9%	1.8%	0.3%
	(MIC ≥ 8)	6	3	7	5	7	6	1
Phenicols	Chloramphenicol	3.8%	1.0%	0.7%	0.0%	0.3%	0.3%	0.0%
	(MIC ≥ 32)	8	3	2	0	1	1	0
Quinolones	Ciprofloxacin	12.4%	13.8%	17.7%	14.7%	18.4%	20.7%	17.2%
	(MIC ≥ 4)	26	41	52	45	67	68	52
	Nalidixic acid	19.1%	16.5%	20.1%	16.0%	19.5%	21.3%	17.8%
	(MIC ≥ 32)	40	49	59	49	71	70	54
Tetracyclines	Tetracycline	47.8%	46.1%	45.4%	39.2%	40.3%	41.3%	38.3%
	(MIC ≥ 16)	100	137	133	120	147	136	116

Table 5.7: Distribution of MICs and occurrence of resistance among Campylobacter coli isolates, 2003 (N=22)

		% of I	solates						Perc	cent of a	Il isolates	s with MI	C (µg/ml	_) of:					
Antibiotic	%I	%R	CI	0.015	0.03	0.06	0.125	0.25	0.50	1	2	4	8	16	32	64	128	256	512
Aminoglycosides Gentamicin	0.0	4.5	[0.1 - 22.8]						45.5	50.0									4.5
Lincosamides Clindamycin	18.2	13.6	[2.9 - 34.9]				4.5	18.2	45.5	13.6	4.5	4.5	4.5						4.5
Macrolides Azithromycin	4.5	9.1	[1.1 - 29.2]			4.5	40.9	40.9		4.5		-	_						9.1
Erythromycin	54.5	9.1	[1.1 - 29.2]					13.6	22.7	13.6	22.7	18.2							9.1
Phenicols Chloramphenicol	4.5	0.0	[0.0 - 15.4]							13.6	54.5	22.7	4.5	4.5					
Quinolones Ciprofloxacin	0.0	22.7	[7.8 - 45.4]		36.4	27.3	9.1	4.5							_	22.7			
Nalidixic acid	N/A	22.7	[7.8 - 45.4]							4.5	36.4	18.2	18.2						22.7
Tetracyclines Tetracycline	0.0	45.5	[24.4 - 67.8]		4.5	9.1	31.8	4.5	4.5					4.5					40.9
			Notes:	* A single	vertical b	ar indicate	es the CLS	I Suscepti	ible break	points for e	each drug								

A single vertical bar indicates the CLSI Susceptible breakpoints for each drug * Double vertical bars indicate the CLSI Resistant breakpoints for each drug * Unshaded areas represent E-test MIC ranges

* Figures outside the Sensititre plate range were reported as ">" the plate's highest dilution for that drug * 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

Table 5.6 shows the percent of C. jejuni isolates resistant for each antimicrobial agent from 1997-2003. The percent of C. jejuni resistant to ciprofloxacin was 12.4% in 1997 and 17.2% in 2003; a statistically significant increase (OR=1.8, 95% CI [1.1, 3.1]).

Table 5.7 shows the MIC distributions for the eight antimicrobial agents tested and the prevalence of antimicrobial resistance for the 22 Campylobacter coli isolates tested in 2003. Antimicrobial agents with the highest prevalence of resistance among the 22 C. coli isolates were tetracycline (45.5%), ciprofloxacin (22.7%), nalidixic acid (22.7%), clindamycin (13.6%) and azithromycin (9.1%).

Table 5.8 shows the percent of C. coli isolates resistant for each antimicrobial agent from 1997-2003. The percent of C. coli isolates resistant to ciprofloxacin was 33.3% in 1997 and 22.7% in 2003. The percent of C. coli isolates resistant to azithromycin was 37.5% in 1998 and 9.1% in 2003.

Table 5.8: Percent and number of isolates resistant to antimicrobial agents among Campylobacter coli, 1997-2003

Year		1997	1998	1999	2000	2001	2002	2003
Total Isolates		6	8	20	12	17	25	22
	Antibiotic							
Subclass	(Resistance breakpoint)							
Aminoglycosides	Gentamicin	Not	0.0%	0.0%	8.3%	0.0%	0.0%	4.5%
	(MIC ≥ 16)	Tested	0	0	1	0	0	1
Lincosamides	Clindamycin	16.7%	12.5%	10.0%	8.3%	11.8%	4.0%	13.6%
	(MIC ≥ 4)	1	1	2	1	2	1	3
Macrolides	Azithromycin	Not	37.5%	10.0%	8.3%	5.9%	4.0%	9.1%
	(MIC ≥ 2)	Tested	3	2	1	1	1	2
	Erythromycin	0.0%	37.5%	10.0%	8.3%	5.9%	4.0%	9.1%
	(MIC ≥ 8)	0	3	2	1	1	1	2
Phenicols	Chloramphenicol	50.0%	37.5%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 32)	3	3	0	0	0	0	0
Quinolones	Ciprofloxacin	33.3%	0.0%	30.0%	25.0%	47.1%	12.0%	22.7%
	(MIC ≥ 4)	2	0	6	3	8	3	5
	Nalidixic acid	66.7%	50.0%	30.0%	25.0%	47.1%	12.0%	22.7%
	(MIC ≥ 32)	4	4	6	3	8	3	5
Tetracyclines	Tetracycline	66.7%	50.0%	30.0%	25.0%	58.8%	40.0%	45.5%
	(MIC ≥ 16)	4	4	6	3	10	10	10

Limitations

Three limitations are evident in NARMS *Campylobacter* surveillance; the use of sentinel clinical laboratories in some states, the sampling scheme, and the limited geographic area under surveillance.

In four states that participated in NARMS Campylobacter surveillance in 2003 (California, Colorado, Connecticut, and Oregon), Campylobacter isolates were submitted to NARMS from one sentinel clinical laboratory. In Georgia, Maryland, Minnesota, New York, and Tennessee, the Campylobacter isolates submitted to NARMS were selected from all Campylobacter isolates from most clinical laboratories within a specific geographical area (metro Atlanta area in Georgia, statewide in Maryland and Minnesota, the metro Albany and Rochester areas in New York, and the metro Gallatin, Knoxville, and Nashville areas in Tennessee). In California, Colorado, Connecticut, and Oregon, the sentinel clinical laboratory selected the first Campylobacter isolate isolated each week for submission to NARMS; if no isolate was isolated in a week, then no isolate was submitted from that laboratory. Since none of the sentinel clinical laboratories used an isolation procedure that was more or less likely to yield antimicrobial-resistant Campylobacter isolates than other clinical laboratories in their respective states, it is unlikely that the use of a sentinel clinical laboratory

would be associated with an increased or decreased likelihood of antimicrobial resistance among *Campylobacter* isolates submitted to NARMS.

In 2003, the NARMS participating public health laboratory in Georgia, Maryland, Minnesota, New York, and Tennessee, and sentinel clinical laboratories in all other FoodNet sites, selected one Campylobacter isolate each week and forwarded the isolate to CDC. When the isolates were selected, the antimicrobial resistance pattern of the isolates was not known. Therefore, it is unlikely that the antimicrobial resistance pattern of an isolate would influence submission of the isolate to NARMS. However, the one-a-week sampling scheme could result in over- or under-sampling of antimicrobialresistant isolates if the prevalence of such resistance is not uniform throughout the year. The impact of the over- or under-sampling may be variable among states. Campylobacter isolates were forwarded to CDC by ten FoodNet participating states in 2003, representing approximately 42 million persons or 14% of the United States population. Because NARMS 2003 Campylobacter surveillance was not nationwide, generalization to the United States population should be done with caution due to potential regional differences in the prevalence of antimicrobial resistance among Campylobacter.

Summary of Long Term Changes

Non-Typhi Salmonella, 1979-2003

Sentinel county studies: 1979-1980, 1984-1985, NARMS: 1996-2003 1989-1990, and 1994-1995 20 20 Percent of Isolates resistant Percent of Isolates resistant 15 15 10 10 5 5 0 0 2000 2001 1996 1997 1998 1999 2002 2003 1979-80 1984-85 1989-90 1994-95 Year Year Third-generation cephalosporins ACSSuT* Trimethoprim-Sulfamethoxazole Nalidixic Acid

*ACSSuT = resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline

For non-Typhi *Salmonella*, sentinel county surveys were conducted in 1979-1980, 1984-1985, 1989-1990, and 1994-1995.^{3,4,5,6} Isolates were tested at CDC by disk diffusion. NARMS began testing *Salmonella* in 1996. There were 14 participating sites in 1996. In 2003, NARMS expanded to become nationwide. From 1996 to 2002, participating sites forwarded every 10th non-Typhi *Salmonella* received at their public health laboratories to CDC. In 2003, sites forwarded every 20th isolate. In NARMS, isolates were tested by broth microdilution to determine minimum inhibitory concentrations (MICs) to 16 antimicrobial agents.

Over the last quarter century, resistance among non-Typhi Salmonella has increased to a number of clini-

cally important antimicrobial agents. Resistance to ampicillin and trimethoprim/sulfamethoxazole increased first, reaching 21% and 4%, respectively, in 1996. Resistance to third-generation cephalosporins (e.g., ceftriaxone), quinolones (e.g., nalidixic acid), and the ACSSuT resistance pattern increased more recently. A public health concern raised by this resistance is the loss of efficacious agents to treat serious Salmonella infections, especially in children. The clinical implications of current resistance levels are potential treatment failure, increased duration of illness, and increased length of hospitalization.^{5,7,8} For more information on treatment of Salmonella see Diagnosis and Management of Foodborne Illness: A Primer for Physicians.

Campylobacter jejuni, 1989-2003

For *Campylobacter jejuni*, a sentinel county survey was conducted in 1989-1990.¹⁰ Isolates were received and tested at CDC. NARMS began testing *Campylobacter* in 1997. In NARMS, there were five participating sites in 1997, seven in 1998, eight in 1999, nine in 2000-2002, and 10 in 2003. In 2003, one *Campylobacter* isolate per week was forwarded to CDC from 10 states and tested by E-test for susceptibility to eight antimicrobial agents.

Over the last 15 years, resistance among *Campylobacter jejuni* to a number of clinically important antimicrobial agents has changed. Resistance to tetracycline was already 42% in 1989-1990 and has declined in more recent years. Resistance to ciprofloxacin increased more recently. No isolates resistant to cipro-

floxacin were identified in 1989-1990. 12% were resistant in 1997, 21% in 2002, and 17% in 2003. Resistance to erythromycin has remained low at 3% or less. Because the primary reservoir for Campylobacter jejuni is among poultry, it is likely that this increasing ciprofloxacin resistance is related to the use of fluoroquinolones, which were approved for use in poultry farming in 1995. Public health concern was raised by this resistance because of the threat it posed to the efficacy of fluoroquinolones for treating campylobacteriosis. The clinical implications of resistance to fluoroquinolones include an increased duration of illness and potential treatment failure.¹¹ For more information on treatment of Campylobacter see Diagnosis and Management of Foodborne Illness: A Primer for Physicians.

For *Shigella*, sentinel county surveys were conducted in 1985-1986 and 1995-1996.¹² Isolates were received and tested at CDC. NARMS began testing *Shigella* in 1999. In NARMS, every 10th *Shigella* isolate received at participating state public health laboratories was forwarded to CDC in 1999-2002, and every 20th isolate in 2003. Isolates were tested by broth microdilution to determine MICs to 16 antimicrobial agents.

Over the last 18 years, resistance among *Shigella* has increased to a number of clinically important antimicrobial agents. Resistance to ampicillin was already 32% in 1985-1986 and increased to 67% by 1995. Resistance to nalidixic acid emerged more recently. One *Shigella* isolate resistant to nalidixic acid was identified in 1985-1986. The percentage of *Shigella* isolates resistant to nalidixic acid increased to nearly 2% in 1999 but has remained at 2% or less. A single isolate was resistant to ciprofloxacin in 2001. No resistance to ceftriaxone has been identified.

As *Shigella* have no environmental or animal reservoir except humans, it is likely that this resistance is related to the use of antimicrobials in human medicine. A public health concern raised by these resistances is the loss of efficacious agents to treat *Shigella* infections. The clinical implication of current resistance levels is potential treatment failure. This may be particularly important for infections related to international travel.¹³ For more information on treatment of *Shigella* see <u>Diagnosis and Management of Foodborne Illness:</u> <u>A Primer for Physicians</u>.⁹

51

References

- Linton D, Lawson AJ, Owen RJ, Stanley J. PCR detection, identification to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. J Clin Microbiol 1997; 35(10): 2568-72.
- Gonzalez I, Grant KA, Richardson PT, Park SF, Collins MD. Specific identification of the enteropathogens *Campylobacter jejuni* and *Campylobacter coli* by using a PCR test based on the *ceuE* gene encoding a putative virulence determinant. J Clin Microbiol 1997; 35(3): 759-63.
- Riley L, Cohen M, Seals J, Blaser M, Birkness K, Hargrett N, Martin S, Feldman R. Importance of host factors in human salmonellosis caused by multiresistant strains of *Salmonella*. J Infect Dis 1984; 149: 878-83.
- MacDonald K, Cohen M, Hargrett-Bean N, Wells J, Puhr N, Collin S, Blake P. Changes in antimicrobial resistance of *Salmonella* isolated from humans in the United States. JAMA 1987; 258: 1496-9.
- Lee L, Puhr N, Maloney E, Bean N, Tauxe R. Increase in antimicrobial-resistance *Salmonella* infectious in the United States, 1989-1990. J Infect Dis 1994; 170: 128-34.
- Herikstad H, Hayes PS, Hogan J, Floyd P, Snyder L, Angulo FJ. Ceftriaxone-resistant *Salmonella* in the United States. Pediatr Infect Dis J 1997; 16(9): 904-5.
- Molbak K, Baggesen D, Aarestrup F, Ebbesen J, Engberg J, Frydendahl K, Gerner-Smidt P, Petersen A, Wegener H. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype Typhimurium DT104. N Engl J Med 1999; 341(19): 1420-5.

- Holmberg S, Solomon S, Blake P. Health and economic impacts of antimicrobial resistance. Rev of Infect Dis 1987; 9: 1065-78.
- Centers for Disease Control and Prevention. Diagnosis and Management of Foodborne Illnesses: A Primer for Physicians and Other Health Care Professionals. MMWR 2004; 53(RR-4): 1-33.
- Gupta A, Nelson JM, Barrett TJ, Tauxe RV, Rossiter SP, Friedman CR, Joyce KW, Smith KE, Jones TF, Hawkins MA, Shiferaw B, Beebe JL, Vugia DJ, Rabatsky-Ehr, T, Benson JA, Root TP, Angulo FJ. Antimicrobial resistance among *Campylobacter* strains, United States, 1997-2001. Emerg Infect Dis 2004; 10(6): 1102-9.
- Nelson JM, Smith KE, Vugia DJ, Rabatsky-Her T, Segler S, Kassenborg H, Zansky S, Joyce K, Marano N, Hoekstra M, Angulo FJ. Prolonged diarrhea due to ciprofloxacin-resistant *Campylobacter* infections. J Infect Dis 2004; 190: 1150-7.
- 12. Cook K, Boyce T, Puhr N, Tauxe R, Mintz E. Increasing antimicrobial-resistant *Shigella* infections in the United States. *In* Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, LA, September 1996.
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement. CLSI Document M100-S15. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, 2005.

Publications

- 1. Anderson AD, Nelson JM, Rossiter S, Angulo FJ. Public health consequences of use of antimicrobial agents in food animals in the United States. Microb Drug Resist 2003; 9(4): 373-9.
- 2. Crump JA, Barrett TJ, Nelson JT, Angulo FJ. Reevaluating fluoroquinolone breakpoints for *Salmonella enterica* serotype Typhi and for non-Typhi salmonellae. Clin Infect Dis 2003; 37(1): 75-81.
- Donabedian SM, Thal LA, Hershberger E, Perri MB, Chow JW, Bartlett P, Jones R, Joyce K, Rossiter S, Gay K, Johnson J, Mackinson C, Debess E, Madden J, Angulo F, Zervos MJ. Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol 2003; 41(3): 1109-13.
- Gupta A, Fontana J, Crowe C, Bolstorff B, Stout A, Van Duyne S, Hoekstra MP, Whichard JM, Barrett TJ, Angulo FJ. The National Antimicrobial Resistance Monitoring System PulseNet Working Group. Emergence of multidrug-resistant Salmonella enterica serotype Newport infections resistant to expanded-spectrum cephalosporins in the United States. J Infect Dis 2003; 188(11): 1707-16.
- Miriagou V, Tzouvelekis LS, Rossiter S, Tzelepi E, Angulo FJ, Whichard JM. Imipenem resistance in a *Salmonella* clinical strain due to plasmidmediated class A carbapenemase KPC-2. Antimicrob Agents Chemother 2003; 47(4): 1297-300.
- Whichard JM, Sriranganathan N, Pierson FW. Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters J Food Prot 2003; 66(2): 220-5.

Abstracts

- 1. Baker N, Nelson J, Joyce K, Gay K, Angulo F, and the NARMS Working Group. Quinolone Resistance Among *Shigella*: NARMS 1999-2001. Conference on Antibiotic Resistance. June 2003.
- Drake A, Stevenson J, Lewis K, Gay K, Angulo F, and the NARMS Enterococci Working Group. Vancomycin-resistant Enterococci from Human

Stools in the Community. Conference on Antibiotic Resistance. June 2003

- Gay K, Orosco N, Wheeler D, DebRoy C, Barrett T, and Anderson A. Quinolone Resistance of *E. coli* from Chicken Specimens, 1981-2000. American Society for Microbiology. Washington, DC. May 2003.
- Kretsinger K, Drake A, Gay K, Joyce K, Lewis K, Angulo F, EIP Enterococci Working Group. Highlevel Gentamicin Resistance Among *Enterococci* Isolated from Meat Purchased from Grocery Stores and from Outpatient Human Stools - United States, 1998-2001. The 52nd Annual Epidemic Intelligence Service. Atlanta, GA. March 2003.
- Lyszkowics E, Tucker N, Holland B, Whichard J, Barrett T. Surveillance of U.S. *Salmonella* Enteritidis Outbreaks in 2001 Using Phage Typing. American Society for Microbiology. Washington, DC. May 2003.
- Nelson, J, Baker N, Theriot C, Vugia D, Beebe J, Rabatsky-Ehr T, Segler S, Hawkins M, Smith K, Rourke A, Shiferaw B, Jones T, Angulo F, and FoodNet and NARMS Working Groups. Increasing Incidence of Ciprofloxacin-Resistant *Campylobacter*: FoodNet and NARMS 1997-2001. Conference on Antibiotic Resistance. June 2003.
- Qiu X, Razia Y, Boster D, Stapp JR, Smith D, Barden C, Angulo F, Tarr PI. Ciprofloxacinresistant *Escherichia coli* and other Gram-negative enteric flora in healthy children in Seattle. American Society for Microbiology. Washington, DC. May 2003.
- Stevenson J, Nelson J, Joyce K, Omondi M, Angulo F, and the NARMS Working Group. Quinolone Resistance among Non-Typhi *Salmonella* and *E. coli* O157:H7 - NARMS, 1996-2001. Conference on Antibiotic Resistance. June 2003.
- Whichard J, Carattoli A, Morabito B, Connor R, Bird M, Wheeler D, Ribot E, Baker N, Griffin P, Barrett T. Emergence of Plasmid-mediated *bla*CMY genes and multidrug resistance among *Escherichia coli* O157:H7: Results of NARMS Monitoring 2000-2001. American Society for Microbiology. Washington, DC. May 2003.

Appendix A:

Summary of Enterococci Resistance Surveillance (ERS) 2001 - 2003

Enterococci Working Group

Centers for Disease Control and Prevention

Foodborne and Diarrheal Diseases Branch Division of Bacterial and Mycotic Diseases National Center for Infectious Diseases **Frederick Angulo** Tim Barrett Tom Chiller Alison Drake Kathryn Gay Patricia Griffin Nikki Holmes Kevin Joyce Katie Lewis Amie ThurdeKoos Terrell Miller Felicita Medalla Robert Tauxe

Participating State and Local Health Departments

Georgia Division of Public Health Jim Benson Edie Carden Tameka Hayes Susan Lance Mahin Park Lynette Poventud Stepy Thomas Melissa Tobin-D'Angelo

Maryland Department of Health and Mental Hygiene and University of Maryland Karen Cuenco Jonigene Ruark David Torpey Mary Warren Michigan Department of Community Health and William Beaumont Hospital Sue Donabedian Mary Beth Perry Mary Thill Mark Zervos

Minnesota Department of Health John Besser Anita Glennen Billie Juni Brian Lee Kirk Smith Maureen Sullivan

Oregon Department of Human Resources Emilio DeBess Julie Hatch Larry Stauffer Robert Vega Veronica Williams

Introduction

Enterococci are Gram positive cocci whose major habitat is the gastrointestinal tract of humans and other animals. Intestinal carriage of resistant enterococci in humans is known to be associated with hospitalization and antimicrobial use. However, carriage of enterococci resistant to certain antimicrobial agents has been documented among persons who have not been hospitalized or recently taken antimicrobial agents, suggesting a community source of some resistant enterococci. Antimicrobial agents are commonly used for growth promotion, disease prevention and therapy in food animals such as chickens and pigs. Such use results in the selection of resistant enterococci in the intestinal tracts of animals. Taken together, this suggests that use of antimicrobial agents in food animals creates selective pressure on enterococci among food animals and ultimately may contribute to the pool of resistant enterococci among human populations. It is therefore important to monitor resistance in commensals to determine the role of these bacteria as reservoirs of resistance determinants for human pathogens. The Enterococci Resistance Surveillance (ERS) project was designed to determine the prevalence of clinically important antimicrobialresistant enterococci in stool samples among persons in the community.

Summary of 2001-2003 Surveillance Data

Background

Enterococci resistance study began in 2001 to prospectively monitor the prevalence of antimicrobial resistance of human enterococci isolates from stool samples. The study includes five sites: Georgia, Maryland, Michigan, Minnesota, and Oregon.

Multi-drug resistance

- 96.4% of enterococci isolates tested were resistant to ≥ 2 antimicrobial agents [Table A.6].
- 27.2% of enterococci isolates tested were resistant to ≥ 5 antimicrobial agents [Table A.6].

Clinically Important Resistance

There are a limited number of antimicrobial agents available for the treatment of serious enterococcal infections in humans. This is due, in part, to the intrinsic resistance of enterococci to many antimicrobials, and also to the ease at which the bacteria acquire resistance. There is a concern that currently available antimicrobial agents are also progressively losing effectiveness because of resistance, complicating treatment or presenting with serious enterococci infection. In particular, resistance to gentamicin, penicillin, quinupristin-dalfopristin (Synercid[®]), and vancomycin has developed.

- In 2001, 1.7% of Enterococcus faecium and 5.7% of Enterococcus faecalis were resistant to gentamicin. In 2002, 0.6% of *E. faecium* and 6.4% of *E. faecalis* were resistant to gentamicin. In 2003, there were no resistant *E. faecium* and 2.0% of *E. faecalis* were resistant to gentamicin [Table A.4]
- In 2001, 4.3% of *E. faecium* were resistant to penicillin and there was no resistance among *E. faecalis*. In 2002, 7.6% of *E. faecium* and 2.3% of *E. faecalis* were resistant to penicillin. In 2003, 10.3% of *E. faecium* and 0.4% of *E. faecalis* were resistant to penicillin [Table A.4].
- In 2001, 20.9% of *E. faecium* were resistant to quinupristin-dalfopristin. In 2002, 1.2% of *E. faecium* were resistant to quinupristin-dalfopristin. In 2003, 3.6% of *E. faecium* were resistant to quinupristin-dalfopristin [Table A.4].
- In 2001, 1.7% of *E. faecium* were resistant to vancomycin. In 2002, 2.3% of *E. faecium* were resistant to vancomycin. In 2003, there was no vancomycin resistance among *E. faecium* [Table A.4].

Surveillance and Laboratory Testing Methods

Stool samples from outpatients with diarrhea and healthy volunteers were collected by laboratories in Georgia, Maryland, Michigan, Minnesota, and Oregon between 2001 and 2003. All presumptive enterococci were submitted to the NARMS lab for species identification and antimicrobial susceptibility testing. In 2001, 20 stool samples (i.e., patients) per month were requested from each site. In all other years, 10 stool samples per month were requested.

Predominant enterococci

Predominant enterococci were selected by mixing 0.5 grams of each stool in 5 mL of bile-esculin azide broth and incubating at 35-37°C for 48 hours. After incubation, 10 μ l from a black culture was streaked onto Columbia CNA¹ with 5% sheep blood and incubated at 35-37°C for 24 hours. A predominant colony with typical enterococci morphology were Gram stained and PYR spot tested.

Enrichment for vancomycin-resistant enterococci (VRE)

Vancomycin-resistant enterococci were selected as above with the addition of 10 μ g/ml vancomycin and 10 μ g/ml aztreonam to the bile-esculin azide broth. After incubation, 10 μ l from a black culture was streaked onto Modified Ford agar² supplemented with 10 μ g/ml raffinose and incubated at 35-37 C for 24 hours. A red colony characteristic of *E. faecium* and *E. faecalis* (raffinose non-fermenters) were Gram stained and PYR spot tested.

<u>Enterococcus</u> species identification and antimicrobial susceptibility testing

Upon arrival at CDC isolates were subcultured on trypticase soy agar at least two times to obtain isolated single colonies. All incubations were performed at 35° ± 1°C. A pure culture was selected for definitive identification, antimicrobial susceptibility testing and freezing at -70°C for archival purposes. Enterococci were identified to the species level according by standard biochemical methods³. Antimicrobial susceptibility was tested by microbroth dilution using a custom Sensititre[®] panel, according to the manufacturer's instructions (Trek Diagnostics, Cleveland, OH). Minimal inhibitory concentrations (MICs) of antimicrobials were read manually using the Sensititre Sensitouch[™] system in 2001. In 2002 and 2003, susceptibility results were read and interpreted using an automated system, ARIS[™] by Trek Diagnostics. Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, and Enterococcus faecalis ATCC 51299 were used as guality controls for Enterococcus susceptibility testing according to Clinical and Laboratory Standards Institute (CLSI) guidelines⁴. The minimum inhibitory concentration (MIC) was determined for 18 antimicrobial agents: bacitracin, chloramphenicol, ciprofloxacin, erythromycin, flavomycin, gentamicin, kanamycin, lincomycin, linezolid, nitrofurantoin, penicillin, salinomycin, streptomycin, guinupristin/dalfopristin, tetracycline, tylosin, vancomycin, and virginiamycin [Table A.1].

Table A.1 Antimicrobial Agents used for Susceptibility Testing of <i>Enterococci</i> spp. CDC NARMS, 2001-2003											
CLSI Subclass	Antimicrobial Agent	Antimicrobial Agent Concentration Range (µg/ml)	Bre	akpoi m	nts*	Source of MIC					
Aminoglycoside	Gentamicin Kanamycin Streptomycin	128 - 1024 128 - 1024 512 - 2048	≥ 500 ≥ 2048 ≥ 1000		<256 <1024 <512	CLSI DanMap CLSI					
Glycopeptide Ionophore coccidiostat	Vancomycin Salinomycin	0.5 - 32	<u>> 32</u> > 16	8-16	<4 <8	CLSI DanMap					
Lincosamides	Lincomycin	1 - 32	<u>></u> 8		<4	CASFM					
Macrolide	Erythromycin Tylosin	0.5 - 8 0.25 - 32	<u>∧</u> 8 ∧8	1-4	<0.5 <4	CLSI DanMap					
Nitrofuran	Nitrofurantoin	2 - 128	<u>></u> 128	64	<32	CLSI					
Oxazolidinones	Linezolid	0.5 - 8	<u>></u> 8	4	<2	CLSI					
Penicillin	Penicillin	0.5 - 16	<u>></u> 16		<8	CLSI					
Phenicol	Chloramphenicol	2 - 32	<u>> 32</u>	16	<8	CLSI					
Phosphoglycolipid	Flavomycin	1 - 32	<u>></u> 16		<8	DanMap					
Polypeptide	Bacitracin	8 - 64	<u>></u> 64		<32	NORM-VET					
Quinolone	Ciprofloxacin	0.12 - 4	<u>></u> 4	2	<1	CLSI					
Streptogramin	Quinupristin/dalfopristir Virginiamycin	1 - 32 1 - 32	≥4 ≥4	2	<1 <2	CLSI DanMap					
Tetracycline	Tetracycline	4 - 32	<u>></u> 16	8	<4	CLSI					

When established, CLSI interpretive criteria were used [Table A.1]. The 95% confidence intervals (CI) for the percentage of resistant isolates calculated using the Clopper-Pearson exact method are included in the MIC distribution tables. Multidrug resistance by antimicrobial agent was defined as resistance to two or more agents. Similarly, multidrug resistance by CLSI antimicrobial subclass was defined as resistance two or more subclasses.

Predominant enterococci

From 2001-2003, a total of 1527 viable enterococci isolates (610 in 2001, 448 in 2002, and 469 in 2003) were received at CDC and tested for antimicrobial susceptibility [Table A.2]. The breakdown of isolates received by site is shown in Table A.2.

Of the enterococci isolates tested for 2001-2003, 51.1% (781/1527) were *E. faecalis,* and 37.3% (570/1527) were *E. faecium* [Table A.3]. Table A.4 provides MIC distribution results for *E. faecium, E. faecalis,* and other enterococci species for each of the 18 antimicrobial agents from 2001-2003.

Table A.2 Enterococci Isolates Received and Tested,													
by Site													
CDC NARMS, 2001-2003													
Site Enterococci isolates													
2001 2002 2003													
No. (%) No. (%) No. (%) Total													
Georgia	128	21.0%	83	18.5%	96	20.5%	307						
Maryland	111	18.2%	94	21.0%	92	19.6%	297						
Michigan	158	25.9%	93	20.8%	91	19.4%	342						
Minnesota	129	21.1%	88	19.6%	90	19.2%	307						
Oregon	84	13.8%	90	20.1%	100	21.3%	274						
Total	610	100%	448	100%	469	100%	1527						

Table A.3 Enterococci Speciation Table								
NARMS, 2001-2003								
Species	2	001	2	002	2003			
	n	%	n	%	n	%		
Enterococcus faecalis	315	51.6%	219	48.9%	247	52.7%		
Enterococcus faecium	234	38.4%	172	38.4%	164	35.0%		
Enterococcus avium	23	3.8%	24	5.4%	18	3.8%		
Enterococcus raffinosus	11	1.8%	10	2.2%	3	0.6%		
Enterococcus hirae	8	1.3%	9	2.0%	1	0.2%		
Enterococcus durans	7	1.1%	6	1.3%	19	4.1%		
Enterococcus casseliflavus	5	0.8%	5	1.1%	7	1.5%		
Enterococcus gallinarum	4	0.7%	3	0.7%	6	1.3%		
Enterococcus malodoratus	1	0.2%	0	0.0%	1	0.2%		
Enterococcus mundtii	1	0.2%	0	0.0%	2	0.4%		
Enterococcus pseudoavium	1	0.2%	0	0.0%	1	0.2%		
Enterococcus dispar	0	0.0%	0	0.0%	0	0.0%		
Enterococcus moraviensis	0	0.0%	0	0.0%	0	0.0%		
Total isolates	610	100.0%	448	100.0%	469	100.0%		

Table A.4 Enterococci MIC Distribution, CDC NARMS, 2001-2003 (N=1527)																						
				% of b	solates						Perc	cent	of all i	solate	es with	MIC (lg/mL) of:					
Antimicrobial	Species	Year	%I	%R	95% CI	0.12 0.25	0.5	0.75	1	2	3	4	8	16	32	64	128	256	512	1024	2048	4096
		2001 N=234	N/A	1.7	[0.5 - 4.3]											9.0	89.3				1.7	
	ENTFM N=571	2002 N=172	N/A	0.6	[0.0 - 3.2]												91.9	7.6		0.6		
		2003 N=165	N/A	0.0	[0.0 - 2.2]												87.9	12.1				
Aminestysesides	ENTER	2001 N=315	N/A	5.7	[3.4 - 8.9]											14.6	79.7			0.3	5.4	
Gentamicin	ENTES N=973	2002 N=219	N/A	6.4	[3.5 - 10.5]												75.8	17.8	2.3	0.5	3.7	
		2003 N=247	N/A	2.0	[0.7 - 4.7]												78.1	19.8	0.4	0.8	0.8	
		2001 N=64	N/A	1.6	[0.0 - 8.8]											9.8	86.9	1.6			1.6	
	N=186	2002 N=57	N/A	0.0	[0.0 - 6.3]												89.5	10.5				
		2003 N=58	N/A	0.0	[0.0 - 6.2]												91.4	8.6	l			
		2001 N=234	N/A	8.5	[5.3 - 12.9]											0.9	29.9	27.4	22.2	11.1	8.5	
	N=571	2002 N=172	N/A	9.3	[5.4 - 14.7]												68.6	8.1	9.3	4.7	9.3	
		2003 N=165	N/A	2.4	[0.7 - 6.1]												93.3	4.2			2.4	
		2001 N=315	N/A	15.0	[11.2 - 19.3]											13.3	70.2	0.6	0.6	0.3	15.0	
Kanamycin	N=973	2002 N=219	N/A	14.2	[9.8 - 19.5]												84.9	0.5	0.5		14.2	
		2003 N=247	N/A	8.9	[5.7 - 13.2]												89.9		0.4	0.8	8.9	
	071150	2001 N=64	N/A	4.9	[1.0 - 13.7]											9.8	85.2				4.9	
	N=186	2002 N=57	N/A	8.8	[2.9 - 19.3]												89.5			1.8	8.8	
		2003 N=58	N/A	3.4	[0.4 - 11.9]	-											94.8	1.7			3.4	
		2001 N=234	N/A	4.3	[2.1 - 7.7]												8.5		87.2	0.9	0.9	2.6
	ENTEM N=571	2002 N=172	N/A	7.0	[3.7 - 11.9]														93.0	2.3	2.9	1.7
		2003 N=165	N/A	2.4	[0.7 - 6.1]														97.6	0.6	1.2	0.6
	ENTER	2001 N=315	N/A	14.6	[10.9 - 19.0]												12.4	0.3	72.7	0.6	1.0	13.0
Streptomycin	ENTES N=973	2002 N=219	N/A	10.0	[6.4 - 14.8]														90.0	0.9	3.7	5.5
		2003 N=247	N/A	7.7	[4.7 - 11.8]														92.3	2.0	1.2	4.5
		2001 N=64	N/A	11.5	[4.7 - 22.2]												9.8		78.7	1.6	3.3	6.6
	N=186	2002 N=57	N/A	8.8	[2.9 - 19.3]														91.2		3.5	5.3
		2003 N=58	N/A	3.4	[0.4 - 11.9]														96.6	1.7		1.7
		2001 N=234	0.0	1.7	[0.5 - 4.3]		28.6	j.	54.7	7.3	7	7.7				1.7						
	ENTFM	2002 N=172	0.0	2.3	[0.6 - 5.8]		65.1		27.3	4.7	C	J.6				2.3						
		2003 N=165	0.0	0.0	[0.0 - 2.2]		83.0).	13.9	2.4	C	Э.6										
		2001 N=315	0.0	0.0	[0.0 - 1.2]		1.0		41.0	37.5	2	.0.6										
Vancomycin	ENTFS	2002 N=219	0.0	0.0	[0.0 - 1.7]		2.3		47.5	39.3	1	1.0										
		2003 N=247	0.0	0.0	[0.0 - 1.5]		0.4		48.6	42.5	8	3.5										
		2001 N=64	9.8	0.0	[0.0 - 5.9]		19.7		63.9	4.9			9.8									
	OTHER	2002 N=57	8.8	0.0	[0.0 - 6.3]		61.4	,	24.6	3.5	1	1.8	8.8									
		2003 N=58	12.1	0.0	[0.0 - 6.2]		65.5		12.1		1	0.3	12.1									
Notes:	* Vertical	bars sho	ow the	availabl	le CLSI Susce	ptible/Resista	ant brea	akpoints f	for each	ו drug												
	* Unshade	ad cells	indicate	e the dil	lution range of	the Sensititre	e plate															
	* Figures	outside	the Se	nsititre p	plate range we	re reported a	ıs ">" th	ne plate's	highes	t dulitio	n for tha	it dru	ıg									
	* 95% cor	nfidence	interva	als for %	6Resistant cale	culated using	the Clo	opper-Pe	arson e	xact me	əthod											
	* N/A indi	cates no) interm	nediate r	resistance ava	ilable																
	*Single-ba * <i>Enteroco</i>	ars indic occus fae	ate inte ecium	ərmedia = ENTF	te breakpoint; M	double-bars	indicate	> breakpo	oint													
	*Enteroco	occus fae	ecalis :	= ENTF	S																	
	*All other	Enteroc	occus	spp. = (OTHER																	

					Table A	.4 Enteroc	occi M	IIC Di	stributi	ion, CDC	C NARMS	6, 2001-	2003 (N	=1527)							
				% of Is	olates						Pe	rcent of a	all isolate	s with MI	C (µ g/mL)	of:					
Antimicrobial	Species	Year	%I	%R	95% CI	0.12 0.25	0.5	0.75	1	2	3 4	8	16	32	64	128	256	512	1024	2048	4096
		2001	N/A	0.0	[0.0 - 1.6]				85.90	13.68	0.43										
	ENTFM	2002	N/A	0.6	[0.0 - 3.2]				95.93	3.49					0.58						
		2003	N/A	0.0	[0.0 - 2.2]				90.30	9.70											
		2001	N/A	0.0	[0.0 - 1.2]				97.78	0.63	1.59										
Ionophore coccidiostat Salinomycin	ENTFS	2002	N/A	0.0	[0.0 - 1.7]				99.54												
		2003	N/A	0.0	[0.0 - 1.5]				94.33	5.67											
		2001	N/A	0.0	[0.0 - 5.9]				93.44	6.56											
	OTHER	2002	N/A	1.8	[0.0 - 9.4]				96.49	1.75					1.75						
		2003	N/A	0.0	[0.0 - 6.2]				86.21	12.07	1.72										
		2001	N/A	75.6	[69.6 - 81.0]				19.7	1.7	3.0	22.6	31.6	14.5	6.8						
	ENTFM	2002	N/A	69.8	[62.3 - 76.5]				22.7	1.2	6.4	32.0	22.7	7.6	7.6						
		2003	N/A	73.9	[66.5 - 80.5]				17.6	1.2	7.3	26.1	35.2	1.2	11.5						
		2001	N/A	95.6	[92.7 - 97.5]				2.9	1.0	0.6	11.7	26.0	34.3	23.5						
Lincosamides Lincomycin	ENTFS	2002	N/A	98.6	[96.0 - 99.7]				1.4			12.8	29.2	37.4	19.2						
		2003	N/A	98.4	[95.9 - 99.6]				0.4	0.4	0.8	7.3	19.8	48.2	23.1						
		2001	N/A	78.7	[66.3 - 88.1]				13.1	1.6	6.6	44.3	21.3	1.6	11.5						
	OTHER	2002	N/A	86.0	[74.2 - 93.7]				10.5		3.5	43.9	31.6	3.5	7.0						
		2003	N/A	74.1	[61.0 - 84.7]				24.1	1.7		39.7	25.9	5.2	3.4						
		2001	64.1	7.3	[4.3 - 11.4]		28.6		16.7	37.2	10.3	1.3	6.0								
	ENTFM	2002	72.1	15.1	[10.1 - 21.4]		12.8		8.1	33.1	30.8	8.7	6.4								
		2003	67.9	10.3	[6.1 - 16.0]		21.8		10.3	23.0	34.5	7.9	2.4								
		2001	31.7	21.4	[19.8 - 29.6]		43.8		28.9	2.5	0.3	0.6	20.8								
Macrolides Erythromycin	ENTFS	2002	55.7	19.2	[14.2 - 25.0]		25.1		29.7	22.4	3.7	0.9	18.3								
		2003	54.3	22.7	[17.6 - 28.4]		23.1		29.6	18.2	6.5	2.0	20.6								
		2001	13.1	21.3	[11.9 - 33.7]		65.6		9.8	1.6	1.6		21.3								
	OTHER	2002	15.8	21.1	[11.4 - 33.9]		63.2		5.3	5.3	5.3		21.1								
		2003	25.9	10.3	[3.9 - 21.2]		63.8		6.9	10.3	8.6	3.4	6.9								
		2001	N/A	23.5	[18.2 - 29.5]	0.4			17.1	30.3	28.6	17.1	0.4	0.4	5.6						
	ENTFM	2002	N/A	20.3	[14.6 - 27.1]		1.2		7.6	37.8	33.1	14.5			5.8						
		2003	N/A	6.7	[3.4 - 11.6]				6.7	32.7	53.9	3.6	0.6		2.4						
		2001	N/A	23.8	[19.2 - 28.9]	0.3	2.2		58.1	14.9	0.6				23.8						
Tylosin	ENTFS	2002	N/A	20.1	[15.0 - 26.0]	0.5	1.4		26.5	51.6					20.1						
		2003	N/A	22.7	[17.6 - 28.4]		0.4		25.9	51.0				0.4	22.3						
		2001	N/A	13.1	[5.8 - 24.2]		1.6		23.0	50.8	11.5			1.6	11.5						
	OTHER	2002	N/A	10.5	[4.0 - 21.5]		1.8		26.3	57.9	3.5				10.5						
		2003	N/A	6.9	[1.9 - 16.7]		3.4		53.4	29.3	6.9	3.4			3.4						
Notes:	* Vertical	bars sho	w the av	ailable	CLSI Susceptil	ole/Resistant b	oreakpoi	ints for	each dru	g											
	* Unshade	ed cells i	ndicate	the dilut	ion range of the	e Sensititre pla	ate														
	* Figures	outside t	he Sens	ititre pla	ate range were	reported as ">	the pla	ate's hiç	ghest dul	ition for th	at drug										
	* 95% cor	fidence	intervals	s for %R	esistant calcul	ated using the	Cloppe	r-Pears	son exact	t method											
	* N/A indi	cates no	interme	diate re:	sistance availa	ble															
	*Single-ba *Enteroco	ars indica Iccus fae	ate interi ecium =	mediate ENTFM	breakpoint; do	uble-bars indi	cate bre	akpoint	t												
	*Enteroco	ccus fae	ecalis =	ENTFS																	
	*All other	Enteroc	occus sp	op. = O1	THER																

			r			1						P	ercon	t of all	isolate	s with !		ml) of:					
Antimierskiel	Creation	Veer	9/1	% of Is	olates	0.42	0.25	0.5	0.75	4			4	o an	46		e 4	400	256	540	4024	20.49	4006
Antimicrobiai	Species	rear	%1	%R	95% CI	0.12	0.25	0.5	0.75	1	2	3	4	8	16	32	64	128	256	512	1024	2048	4096
		2001	46.2	14.1	[9.9 - 19.2]						2.1			6.0	14.1	8.5	46.2	14.1					
	ENTFM	2002	65.7	2.9	[1.0 - 6.7]										7.0	24.4	65.7	2.9					
		2003	77.0	0.0	[0.0 - 2.2]											23.0	77.0						
		2001	1.6	0.3	[0.0 - 1.8]						0.6		0.3	28.3	51.7	2.2	1.6	0.3					
Nitrofurans Nitrofurantoin	ENTFS	2002	0.5	0.5	[0.0 - 2.5]									37.4	54.8	6.8	0.5		0.5				
		2003	0.4	0.0	[0.0 - 1.5]									4.0	67.2	28.3	0.4						
		2001	18.0	13.1	[5.8 - 24.2]						3.3		1.6	13.1	23.0	16.4	18.0	13.1					
	OTHER	2002	43.9	0.0	[0.0 - 6.3]									8.8	15.8	31.6	43.9						
		2003	41.4	0.0	[0.0 - 6.2]									1.7	20.7	36.2	41.4						
		2001	6.0	0.0	[0.0 - 1.6]			0.85		5.98	78.21		5.98										
	ENTFM	2002	0.6	0.0	[0.0 - 2.1]			0.58		27.33	71.51		0.58										
		2003	0.6	0.0	[0.0 - 2.2]					26.67	72.73		0.61										
		2001	0.0	0.0	[0.0 - 1.2]			2.22		20.00	62.86												
Oxazolidinones Linezolid	ENTFS	2002	0.0	0.0	[0.0 - 1.7]			0.91		41.10	57.99												
		2003	0.0	0.0	[0.0 - 1.5]					47.37	52.63												
		2001	3.3	0.0	[0.0 - 5.9]			1.64		9.84	73.77		3.28										
	OTHER	2002	8.8	0.0	[0.0 - 6.3]			7.02		33.33	50.88		8.77										
		2003	5.2	0.0	[0.0 - 6.2]			10.34		58.62	25.86		5.17										
		2001	N/A	4.3	[2.1 - 7.7]			9.0		7.7	29.5		41.0	8.5	0.9	3.4							
	ENTFM	2002	N/A	7.6	[4.1 - 12.6]			15.1		5.2	12.8		39.5	19.8	2.3	5.2							
		2003	N/A	10.3	[6.1 - 16.0]			10.3		4.2	16.4		41.8	17.0		10.3							
		2001	N/A	0.0	[0.0 - 1.2]			3.2		4.4	25.4		65.1	1.9									
Penicillins Penicillin	ENTFS	2002	N/A	2.3	[0.7 - 5.2]			0.5			3.7		68.9	24.7	2.3								
. critonin		2003	N/A	0.4	[0.0 - 2.2]						3.2		75.3	21.1	0.4								
		2001	N/A	4.9	[1.0 - 13.7]			14.8		19.7	50.8		6.6	3.3	3.3	1.6							
	OTHER	2002	N/A	8.8	[2.9 - 19.3]			3.5		12.3	29.8		40.4	5.3		8.8							
		2003	N/A	8.6	[2.9 - 19.0]			10.3		20.7	39.7		19.0	1.7	5.2	3.4							
		2001	0.9	1.7	[0.5 - 4.3]						2.1		26.9	68.4	0.9	0.9	0.9						
	ENTFM	2002	1.2	0.0	[0.0 - 2.1]						1.2		59.3	38.4	1.2								
		2003	0.0	0.0	[0.0 - 2.2]						1.8		66.1	32.1									
		2001	1.0	6.0	[3.7 - 9.3]						2.2		25.1	65.7	1.0	1.3	4.7						
Phenicols Chloramphenicol	ENTFS	2002	0.0	7.3	[4.2 - 11.6]						1.4		49.3	42.0		4.6	2.7						
		2003	0.0	2.0	[0.7 - 4.7]								58.3	39.7		0.8	1.2						
		2001	0.0	1.6	[0.0 - 8.8]						6.6		39.3	52.5			1.6						
	OTHER	2002	0.0	0.0	[0.0 - 6.3]						7.0		47.4	45.6									
		2003	0.0	0.0	[0.0 - 6.2]						19.0		62.1	19.0									
Notes:	* Vertical	bars sho	ow the a	available	CLSI Suscep	tible/R	esistant	breakp	points fo	r each o	drug												
	* Unshade	ed cells i	indicate	the dilu	tion range of t	he Ser	nsititre p	late															
	* Figures outside the Sensititre plate range were reported as ">" the plate's highest dulition for that drug																						
	* 95% cor	nfidence	interva	Is for %	Resistant calc	ulated	using th	e Clop	per-Pea	rson ex	act meth	nod											
	* N/A indi	cates no	interm	ediate re	esistance avai	lable																	
	*Single-ba * <i>Entero</i> co	ars indic occus fae	ate inte ecium =	rmediate = ENTFN	e breakpoint; o /	iouble-	bars inc	licate b	oreakpoi	nt													
	*Enterocc	occus fae	ecalis =	ENTFS	;																		
	*All other	Enteroc	occus s	spp. = O	THER																		

					Table A.4	Ente	rococ	ci MIC	Dist	ributio	on, CD	C N	ARMS,	2001-2	:003 (N	=1527)							
				% of l	alatas								Perce	nt of all	isolates	with MIC	C (µg/mL)	of:					
Antimicrobial	Species	Year	%I	%R	95% CI	0.12	0.25	0.5	0.75	1	2	3	4	8	16	32	64	128	256	512	1024	2048	4096
		2001	N/A	79.9	[74.2 - 84.9]					5.6	10.7		2.1	1.7	0.9		79.1						
	ENTFM	2002	N/A	90.1	[84.6 - 94.1]						0.6		2.3	7.0	7.6	3.5	79.1						
		2003	N/A	90.3	[84.7 - 94.4]						0.6		1.8	7.3	6.7	6.1	77.6						
		2001	N/A	2.5	[1.1 - 4.9]					18.1	68.3		10.5	0.6	0.3		2.2						
Phosphoglycolipid	ENTFS	2002	N/A	0.5	[0.0 - 2.5]					90.9	8.7						0.5						
Tiavoniyein		2003	N/A	0.0	[0.0 - 1.5]					72.1	27.9												
		2001	N/A	42.6	[30.0 - 55.9]					4.9	6.6		27.9	18.0	1.6	1.6	39.3						
	OTHER	2002	N/A	35.1	[22.9 - 48.9]					15.8	8.8		22.8	17.5		1.8	33.3						
		2003	N/A	50.0	[36.6 - 63.4]					5.2	13.8		24.1	6.9	6.9		43.1						
		2001	N/A	92.4	[88.1 - 95.4]									3.8	0.9	3.0	9.4	29.1	53.9				
	ENTFM	2002	N/A	93.6	[88.8 - 96.8]									1.7	2.3	2.3	9.3	41.9	42.4				
		2003	N/A	92.7	[87.6 - 96.2]									2.4	1.2	3.6	7.3	41.8	43.6				
		2001	N/A	84.5	[80.0 - 88.3]									1.3	3.5	10.8	41.0	33.3	10.2				
Polypeptide	ENTFS	2002	N/A	90.4	[85.7 - 94.0]									0.5	0.5	8.7	23.7	53.0	13.7				
Bacitracin		2003	N/A	96.0	[92.7 - 98.0]									0.0	0.4	3.6	19.4	53.4	23.1				
		2001	N/A	83.6	[71 9 - 91 8]									16	9.8	4.9	9.8	31.1	42.6				
	OTHER	2002	N/A	87.7	[76.3 - 94.9]									1.0	3.5	8.8	12.3	42.1	33.3				
	0 million	2002	N/A	89.7	[78.8 - 96.1]									34	0.0	6.9	22.4	29.3	37.9				
		2000	22.2	15.0	[10.6 - 20.2]	2.6	5.1	27.4		27.8	22.2		5.6	9.4		0.0		20.0	01.5				
	ENTEM	2001	20.9	12.0	[7.7 - 18.1]	2.0	11.6	21.4		33.1	22.2		9.7	3.4									
		2002	20.3	12.2	[126 240]	0.0	1.0	21.0		22.1	20.3		0.1 16.4	1.0									
		2003	16.5	10.2	[12.0 - 24.9]	25	1.0	24.2		42.2	16.5		10.4	1.0									
Quinolones	ENTER	2001	10.5	4.4	[2.5 - 7.5]	3.5	4.4	27.9		43.2	10.5			4.4									
Ciprofloxacin	ENTES	2002	3.7	4.6	[2.2 - 8.2]	0.5	6.4	57.5		27.4	3.7			4.6									
		2003	21.9	3.2	[1.4 - 6.3]			13.8		61.1	21.9			3.2									
		2001	14.8	1.6	[0.0 - 8.8]	0.0	11.5	31.1		34.4	14.8			1.6									
	UTHER	2002	14.0	0.0	[0.0 - 6.3]	1.8	14.0	35.1		35.1	14.0												
		2003	31.0	1.7	[0.0 - 9.2]		8.6	25.9		32.8	31.0		1.7	4.0									
	ENTER	2001	53.8	20.9	[15.9 - 26.7]			0.4		24.8	53.8		8.5	4.3	0.9		1.3						
	ENIEM	2002	47.1	1.2	[0.6 - 5.8]				0.6	51.2	45.9	1.2	1.2										
		2003	50.9	3.6	[1.3 - 7.7]					45.5	50.9		3.6										
Streptogramins	ENTER	2001	8.3	87.0	[82.8 - 90.5]					4.8	8.3		40.6	41.6	2.5	0.3	1.9						
Quinupristin- dalfopristin	ENIFS	2002	16.9	76.7	[70.5 - 82.1]					6.4	16.9		68.5	7.3	0.5		0.5						
		2003	6.5	85.8	[80.8 - 89.9]					1.1	6.5		71.7	13.8	0.4								
		2001	55.7	8.2	[2.7 - 18.1]			1.6		34.4	55.7		3.3	3.3			1.6						
	OTHER	2002	26.3	3.5	[0.4 - 12.1]					70.2	26.3		3.5										
		2003	22.4	3.4	[0.4 - 11.9]					74.1	22.4		1.7	1.7									
	ENTEM	2001	N/A	0.9	[0.1 - 3.1]			0.4		5.1	2.6				0.4		0.4						
Virginiamycin	ENTFS	2001	N/A	11.1	[7.9 - 15.1]					1.9	0.6		1.3	9.2	1.9								
	OTHER	2001	N/A	0.0	[0.0 - 5.9]			3.3		1.6	4.9		1.6										
		2001	0.0	21.4	[16.3 - 27.2]					6.8			71.8		2.1	3.4	15.8						
	ENTFM	2002	3.5	18.0	[12.6 - 24.6]								78.5	3.5	2.9	2.3	12.8						
		2003	0.0	15.2	[10.1 - 21.5]								84.8		1.8	0.6	12.7						
Tetracyclines		2001	0.0	56.8	[51.2 - 62.4]					5.4			37.8		2.9	7.3	46.7						
Tetracycline	ENTFS	2002	2.7	57.5	[50.7 - 64.2]								39.7	2.7	7.3	26.5	23.7						
		2003	0.4	55.1	[48.6 - 61.4]								44.5	0.4	4.9	21.1	29.1						
		2001	0.0	42.6	[30.0 - 55.9]					1.6			55.7		1.6	23.0	18.0						
	OTHER	2002	3.5	47.4	[34.0 - 61.0]								49.1	3.5	12.3	24.6	10.5						
		2003	1.7	22.4	[12.5 - 35.3]								75.9	1.7	3.4	12.1	6.9						
Notes:	* Vertical	bars sho	ow the	available	e CLSI Suscep	tible/R	esistan	t break	points f	or each	drug												
	* Unshade	ed cells i	indicate	e the dil	ution range of t	he Ser	nsititre p	olate															

chendeed colo indicato die diadon fango of die conolidio piato

 * Figures outside the Sensititre plate range were reported as ">" the plate's highest dulition for that drug

 * 95% confidence intervals for %Resistant calculated using the Clopper-Pearson exact method

* N/A indicates no intermediate resistance available

*Single-bars indicate intermediate breakpoint; double-bars indicate breakpoint *Enterococcus faecium = ENTFM

*Enterococcus faecalis = ENTFS

*All other Enterococcus spp. = OTHER

Resistance to specific antimicrobial agents during the years 2001-2003 is also summarized in Table A.5.

E. faecium

Among the *E. faecium* isolates, 1.7% were resistant to gentamicin in 2001, 0.6% in 2002, and 0 in 2003. Resistance to penicillin increased from 4.3% in 2001, to 7.6% in 2002, and 10.3% in 2003 [Table A.5]. Resistance to quinupristin/dalfoprisitin was 20.9% in 2001, 1.2% in 2002 and 3.6% in 2003.

Vancomycin resistance among *E. faecium* (VRE) was 1.7% in 2001, and 2.3% in 2002. No *E. faecium* isolates in 2003 were vancomycin resistant.

E. faecalis

Among the *E. faecalis* isolates, 5.7% were resistant to gentamicin in 2001, 6.4% in 2002, and 2.0% in 2003. There were no *E. faecalis* isolates resistant to penicillin in 2001, 2.3% of isolates were resistant to penicillin in 2002, and 0.4% in 2003.

In 2001, 56.8% of *E. faecalis* were resistant to tetracycline, 57.5% in 2002, and 55.1% in 2003.

Table A.5 Ent	erococci Antimicrob	ial Res	sistance	e Distrik	oution by	Species,	CDC NA	RMS, 2	001-200	3
			ENTFM*	ł		ENTFS**			OTHER**	*
		2001	2002	2003	2001	2002	2003	2001	2002	2003
Enteroco	cci Isolates	234	172	165	315	219	247	61	57	58
Aminoglycosides	Gentamicin	1.7%	0.6%	0.0%	5.7%	6.4%	2.0%	1.6%	0.0%	0.0%
	(MIC > 500)	4	1	0	18	14	5	1	0	0
	Kanamycin	8.5%	9.3%	2.4%	15.0%	14.2%	8.9%	4.9%	8.8%	3.4%
	(MIC ≥ 2048)	20	16	4	47	31	22	3	5	2
	Streptomycin	4.3%	7.0%	2.4%	14.6%	10.0%	7.7%	11.5%	8.8%	3.4%
	(MIC > 1000)	10	12	4	46	22	19	7	5	2
Glycopeptides	Vancomycin	1.7%	2.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 32)	4	4	0	0	0	0	0	0	0
lonophore coccidiostat	Salinomycin	0.0%	0.6%	0.0%	0.0%	0.0%	0.0%	0.0%	1.8%	0.0%
	(MIC ≥16)	0	1	0	0	0	0	0	1	0
Lincosamides	Lincomycin	75.7%	69.8%	73.9%	95.6%	98.6%	98.4%	78.7%	86.0%	74.1%
	(MIC ≥ 8)	177	120	122	301	216	243	48	49	43
Macrolides	Erythromycin	7.3%	15.1%	10.3%	21.4%	19.2%	22.7%	21.3%	21.1%	10.3%
	(MIC ≥ 8)	17	26	17	77	42	56	13	12	6
	Tylosin	23.5%	20.3%	6.7%	23.8%	20.1%	22.7%	13.1%	10.5%	6.9%
	(MIC ≥ 8)	55	35	11	75	44	56	8	6	4
Nitrofurans	Nitrofurantoin	14.1%	2.9%	0.0%	0.3%	0.5%	0.0%	13.1%	0.0%	0.0%
	(MIC ≥ 128)	33	5	0	1	1	0	8	0	0
Oxazolidinones	Linezolid	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	(MIC ≥ 8)	0	0	0	0	0	0	0	0	0
Penicillins	Penicillin	4.3%	7.6%	10.3%	0.0%	2.3%	0.4%	4.9%	8.8%	8.6%
	(MIC ≥ 16)	10	13	17	0	5	1	3	5	5
Phenicols	Chloramphenicol	1.7%	0.0%	0.0%	6.0%	7.3%	2.0%	1.6%	0.0%	0.0%
	(MIC ≥ 32)	4	0	0	19	16	5	1	0	0
Phosphoglycolipid	Flavomycin	79.9%	90.1%	90.3%	2.5%	0.5%	0.0%	42.6%	35.1%	50.0%
	(MIC ≥ 16)	187	155	149	8	1	0	26	20	29
Polypeptide	Bacitracin	92.4%	93.6%	92.7%	84.5%	90.4%	96.0%	83.6%	87.7%	89.7%
	(MIC ≥ 64)	216	161	153	266	198	237	51	50	52
Quinolones	Ciprofloxacin	15.0%	12.2%	18.2%	4.4%	4.6%	3.2%	1.6%	0.0%	1.7%
	(MIC ≥ 4)	35	21	30	14	10	8	1	0	1
Streptogramins	Quinuprisitn-dalfopristin	20.9%	1.2%	3.6%	(Not	(Not	(Not	8.2%	3.5%	3.4%
	(MIC ≥ 4)	49	4	6	Reported)	Reported)	Reported)	5	2	2
	Virginiamycin	0.9%	(Not	(Not	11.1%	(Not	(Not	0.0%	(Not	(Not
	(MIC ≥ 8)	2	Tested)	Tested)	35	Tested)	Tested)	0	Tested)	Tested)
Tetracyclines	Tetracycline	21.4%	18.0%	15.2%	56.8%	57.5%	55.1%	42.6%	47.4%	22.4%
	(MIC ≥ 16)	50	31	25	179	126	136	26	27	13

*Enterococcus faecium = ENTFM

***Enterococcus faecalis* = ENTFS

***All other *Enterococcus* spp. = OTHER

Table A.6 Enterococci An	timicro	bial Re	sistance	e Distril	oution l	oy Speci	ies					
CDC NARMS, 2001-2003												
		ENTFM	1*		ENTFS	**	(OTHER*'	**			
	2001	2002	2003	2001	2002	2003	2001	2002	2003			
Total enterococci isolates	234	172	164	315	219	247	61	57	58			
No resistance detected	0.9%	1.7%	0.0%	0.3%	0.5%	0.0%	1.6%	0.0%	1.7%			
	2	3	0	1	1	0	1	0	1			
Resistance ≥ 1 antimicrobial agents	99.1%	98.3%	100.0%	99.7%	99.5%	100.0%	98.4%	100.0%	98.3%			
	232	169	164	314	218	247	60	57	57			
Resistance ≥ 2 antimicrobial agents	97.4%	96.5%	97.0%	95.6%	96.8%	97.6%	96.7%	98.2%	89.7%			
	228	166	160	301	212	241	59	56	52			
Resistance ≥ 3 antimicrobial agents	86.3%	80.8%	73.9%	85.1%	84.5%	90.3%	70.5%	61.4%	56.9%			
	202	139	122	268	185	223	43	35	33			
Resistance ≥ 4 antimicrobial agents	47.4%	41.3%	30.9%	59.7%	50.2%	55.9%	34.4%	28.1%	13.8%			
	111	71	51	188	110	138	21	16	8			
Resistance ≥ 5 antimicrobial agents	19.7%	12.2%	9.1%	34.6%	21.9%	24.3%	18.0%	12.3%	6.9%			
	46	21	15	109	48	60	11	7	4			
Resistance ≥ 1 CLSI subclasses	99.1%	98.3%	100.0%	99.7%	99.5%	100.0%	98.4%	100.0%	98.3%			
	232	169	165	314	218	247	60	57	57			
Resistance ≥ 2 CLSI subclasses	97.4%	96.5%	97.0%	95.6%	96.8%	97.6%	96.7%	98.2%	89.7%			
	228	166	160	301	212	241	59	56	52			
Resistance ≥ 3 CLSI subclasses	86.3%	80.8%	73.9%	84.8%	84.5%	90.3%	70.5%	61.4%	56.9%			
	202	139	122	267	185	223	43	35	33			
Resistance ≥ 4 CLSI subclasses	47.4%	41.3%	30.9%	56.8%	50.2%	54.7%	32.8%	28.1%	13.8%			
	111	71	51	179	110	135	20	16	8			
Resistance ≥ 5 CLSI subclasses	19.7%	12.2%	9.1%	30.5%	21.5%	23.1%	14.8%	12.3%	6.9%			
	46	21	15	96	47	57	9	7	4			

*Enterococcus faecium= ENTFM

**Enterococcus faecalis= ENTFS

***All other *Enterococcus* spp. = OTHER

Table A.6 shows the percent of isolates with no detected resistance, and the percent of isolates resistant to one or more antimicrobials, and resistant to one or more CLSI subclass from 2001 to 2003. From 2001-2003, *E. faecium* isolates resistant to \geq 2 antimicrobial agents was 97.0% and resistance to \geq 5 antimicrobial agents was 14.2%. From 2001-2003, *E. faecalis* isolates resistant to \geq 2 antimicrobial agents was 96.5% and resistance to \geq 5 antimicrobial agents was 25.6% [Table A.6].

Enrichment for vancomycin-resistant enterococci (VRE)

From 2001-2003, specimens from 19 patients yielded resistant enterococci (seven in 2001, eight in 2002, and four in 2003) on VRE media. Those isolated were received at CDC and tested for antimicrobial susceptibility. Sixteen were confirmed enterococci, three *E. faecalis* and 13 *E. faecium*. One of the three *E. faecalis* isolated was confirmed to be resistant to vancomycin. This isolate was resistant to quinupristindalfopristin. Eleven of the 13 *E. faecium* isolates were confirmed to be resistant to vancomycin.

References

- McDonald LC, Rossiter S, Mackinson C, Wang YY, Johnson S, Sullivan M, Sokolow R, DeBess E, Gilbert L, Benson JA, Hill B, and Angulo FJ. Quinupristin-dalfopristin-resistant *Enterococcus faecium* on chicken and in human stool specimens. N Engl J Med 2001; 345(16): 1155-60.
- Ford M, Perry JD, Gould FK. Use of cephalexinaztreonam-arabinose agar for selective isolation of *Enterococcus faecium*. J Clin Microbial 1994; 32(12): 2999-3001.
- Facklam RR, Sahm DF, Teixeira LM. *Enterococcus*. In: Murray PR, ed. Manual of clinical microbiology. Washington, D.C.: ASM Press; 1999: 297-305.
- 4. CLSI. Performance Standards for Antimicrobial Susceptibility testing; Twelfth Informational Supplement. NCCLS document. M100-S12, Wayne, Pennsylvania.

Appendix B: List of Abbreviations

NARMS	National Antimicrobial Resistance Monitoring System for Enteric Bacteria
CDC	Centers for Disease Control and Prevention
FDA	Food and Drug Administration
USDA	U. S. Department of Agriculture
EIP	Emerging Infections Program
ELC	Epidemiology and Laboratory Capacity
FoodNet	Foodborne Diseases Active Surveillance Network
CLSI	Clinical and Laboratory Standards Institute
MIC	Minimum inhibitory concentration
ACSSuT	Resistant to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline
MDR-AmpC	Resistant to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline, amoxicillin-clavulanic acid, and ceftiofur, and decreased susceptibility to ceftriaxone (MIC $\ge 2 \mu g/mL$)
PHLIS	Public Health Laboratory Information System
OR	Odds ratio
95% CI	95% confidence interval