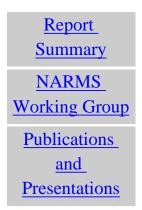



# **1997 Annual Report**




Centers for Disease Control and Prevention National Center for Infectious Diseases Division of Bacterial and Mycotic Diseases Foodborne and Diarrheal Diseases Branch

# **Table of Contents**

Click on any link to open page in a new window. This Table of Contents page will remain open.

**Report Summary** 



# Tables

| Table<br>1  | Antimicrobial agents used for resistance testing for<br><u>Salmonella, E. coli O157:H7, and Campylobacter</u><br><u>isolates</u> |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| Table 2     | Population size and number of isolates tested, by site                                                                           |
| Table 3     | Antibiotic susceptibility by pathogen: Salmonella                                                                                |
| Table<br>4  | Frequency of Salmonella serotypes                                                                                                |
| Table<br>5  | Percent <u>S. Typhimurium by site with ACSSuT</u><br>resistance pattern                                                          |
| Table<br>6  | Additional antimicrobial resistance for <u>S</u> .<br>Typhimurium isolates with ACSSuT pattern                                   |
| Table<br>7  | Source of Salmonella isolates                                                                                                    |
| Table<br>8  | Antimicrobial susceptibility by pathogen: <i>E. coli</i><br>0157:H7                                                              |
| Table<br>9  | Antimicrobial susceptibility of Campylobacter                                                                                    |
| Table<br>10 | Number (%) of isolates resistant to specific number<br>of antimicrobial agents, by pathogen                                      |

# Figures]

| Figure<br>1  | Number of isolates submitted, by site                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------|
| Figure 2     | Resistance among Salmonella isolates for all sites                                                        |
| Figure<br>3  | Salmonella MICs, by antimicrobial agent                                                                   |
| Figure<br>4  | Percentage of Salmonella isolates submitted<br>identified as Typhimurium by site, 1996-1997               |
| Figure<br>5  | Percentage of <i>Salmonella</i> Typhimuruim isolates<br>submitted with ACSSuT pattern by state, 1996-1997 |
| Figure<br>6  | Comparison of Salmonella ciprofloxacin MICs,<br>1996 to 1997                                              |
| Figure<br>7  | Comparison of Salmonella nalidixic acid MICs,<br>1996 to 1997                                             |
| Figure<br>8  | Resistance among <i>E. coli</i> O157:H7 isolates for all sites                                            |
| Figure<br>9  | E. coli O157:H7 MICs, by antimicrobial agent                                                              |
| Figure<br>10 | Resistance among <i>Campylobacter jejuni</i> isolates for <u>all sites</u>                                |
| Figure<br>11 | Campylobacter jejuni MICs, by antimicrobial agent                                                         |

#### **Home**

CDC Home | Search | Health Topics A-Z

This page last revised October 1, 2003

Centers for Disease Control and Prevention National Center for Infectious Diseases Division of Bacterial and Mycotic Diseases Foodborne and Diarrheal Diseases Branch

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Summary

#### Summary

In 1997, there were 1314 Salmonella isolates, 171 E. coli O157:H7 isolates, and 250 Campylobacter isolates submitted to the National Antimicrobial Resistance Monitoring System (NARMS). Thirty-four percent of Salmonella isolates were resistant to one or more antimicrobial agents. Among Salmonella Typhimurium isolates, 62.7% were resistant to one or more antimicrobial agents. Thirty-five percent of Salmonella Typhimurium isolates had the multi-drug resistant pattern characteristic of DT104. No Salmonella isolates were resistant to ciprofloxacin; however, the percentage of Salmonella isolates with minimum inhibitory concentrations (MICs)  $\geq$ 0.25 increased from 0.4% in 1996 to 0.6% in 1997. Among E. coli O157:H7 isolates, 12.4% were resistant to one or more antimicrobial agents; 13.4% were resistant to ciprofloxacin.

#### **Methods**

NARMS was launched in 1996, within the framework of CDC's Emerging Infections Program's Epidemiology and Laboratory Capacity Program as a collaboration between CDC and 14 state and local health departments (CA, CO, CT, FL, GA, KS, Los Angeles County, MN, MA, NJ, New York City, OR, WA, and WV), to prospectively monitor the antimicrobial resistance of human non-typhoid *Salmonella* and *Escherichia coli* O157:H7 isolates. In July 1997, Maryland was added as the 15<sup>th</sup> NARMS site, bringing the population in NARMS to 83.5 million persons (32.1% of the United States population). In 1997, five states (CA, CT, GA, MN, OR) also began monitoring antimicrobial resistance among human *Campylobacter* isolates.

NARMS participating public health laboratories select every tenth *Salmonella* and every fifth *E. coli* O157:H7 isolate received at their laboratory, and forward the isolates to CDC for susceptibility testing. At CDC, a semi-automated system (Sensititre, Accumed, Westlake, OH) is used to determine the MICs for 17 antimicrobial agents: amikacin, ampicillin, amoxicillin-clavulanic acid, apramycin, ceftiofur, ceftriaxone, cephalothin, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole, tetracycline, trimethoprim-sulfamethoxazole, and ticarcillin (Table 1). Public health laboratories from five states also select and forward *Campylobacter* isolates to CDC for susceptibility testing. For *Campylobacter*, the Etest system (AB BIODISK, Solna, Sweden) is used to determine the MICs for 7 antimicrobial agents: chloramphenicol, ciprofloxacin, ciprofloxacin, clindamycin, erythromycin, nalidixic acid, tetracycline, and trimethoprim-sulfamethoxazole (Table 1). For all three pathogens in this report, MIC results are dichotomized, and isolates with intermediate susceptibility are

categorized as sensitive.

#### **Results**

#### Salmonella

A total of 1314 *Salmonella* isolates were received at CDC in 1997; 1301/1314 (99.0%) were tested for antimicrobial susceptibility (Table 2, Figure 1). Among *Salmonella* isolates, 443/1301 (34.1 %) were resistant to one or more agents, and 345/1301 (26.5%) were resistant to two or more agents. Among *Salmonella*, 328/1301 (25.2%) isolates were resistant to sulfamethoxazole, 284/1301 (21.8%) were resistant to tetracycline, 282/1301 (21.7%) were resistant to streptomycin, and 240/1301 (18.5%) were resistant to ampicillin. Correlation between ampicillin resistance and ticarcillin resistance was very high; 235/241 (97.5%) of isolates resistant to ampicillin. Ten (0.8%) *Salmonella* isolates were resistant to anticicarcillin.

Five (0.4%) *Salmonella* isolates were resistant to ceftriaxone. No *Salmonella* isolates tested were resistant to amikacin, apramycin, or ciprofloxacin (<u>Table 3</u>, <u>Figure 2</u>). MICs of these agents for *Salmonella* are shown in Figures 3 and 6.

Of *Salmonella* isolates received which were serotyped, 301/1221 (24.7%) were serotype Enteritidis and 326/1221 (26.7%) were serotype Typhimurium (includes serotype Typhimurium var. Copenhagen) (Table 4, Figure 4). Among *S*. Enteritidis isolates, 78/301 (26.0%) were resistant to at least one or more antimicrobial agents. Among *S*. Typhimurium isolates, 202/326 (62.7%) were resistant to one more antimicrobial agents.

In recent years, a multidrug-resistant strain of *S*. Typhimurium has been identified, called *S*. Typhimurium DT104. Among 326 *S*. Typhimurium isolates tested, 115 (35.3%) were resistant to the five antimicrobial agents, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), to which *S*. Typhimurium DT104 is commonly resistant (Table 5, Figure 5). Of the 115 *S*. Typhimurium isolates with the ACSSuT resistance pattern, 13 (11.3%) were also resistant to amoxicillin-clavulanic acid, 10 (8.7%) were also resistant to ceftiofur, and 9 (7.8%) were also resistant to kanamycin (Table 6). *S*. Typhimurium with the ACSSuT resistance pattern were more commonly isolated from blood (9/115 or 7.8%) than were other *S*. Typhimurium isolates (6/211 or 2.8%) and other *Salmonella* (47/975 or 4.8%) (Table 7).

The percentage of *Salmonella* isolates with ciprofloxacin MICs  $\geq$ 0.25 increased from 0.4% (5/1326) in 1996 to 0.6% (8/1301) in 1997 (Figure 6). None had MICs  $\geq$ 1.0. The percentage of *Salmonella* isolates resistant to nalidixic acid (MIC  $\geq$ 32) increased from 0.4% (5/1326) in 1996 to 0.8% (11/1301) in 1997 (Figure 7).

#### E. coli O157:H7

A total of 171 *E. coli* O157:H7 isolates were received at CDC in 1997; 161/171 (94.2%) were tested for antimicrobial sensitivity (Table 2, Figure 1). Among *E. coli* O157:H7 isolates, 20/161 (12.4%) were resistant to one or more antimicrobial agents and 11/161 (6.8%) were resistant to two or more agents. The most common resistance among *E. coli* O157:H7 isolates was to sulfamethoxazole (18/161 or 10.6%) or cephalothin (6/161 or 3.7%). None of the *E. coli* O157:H7 isolates tested were resistant to amikacin, amoxicillin/clavulanic acid, ampicillin, apramycin, ceftiofur, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, trimethoprim-sulfamethoxazole, or ticarcillin (Table 8, Figure 8). The MICs for *E. coli* O157:H7 are shown in Figure 9.

#### Campylobacter

A total of 250 *Campylobacter jejuni* isolates were collected in 1997 and forwarded to CDC; 217/250 (86.8%) were tested for antimicrobial susceptibility (Table 2, Figure 1). Among *Campylobacter jejuni* isolates, 186/217 (85.7%) were resistant to one or more antimicrobial agents, and 108/217 (49.8%) were resistant to two or more agents. The most common resistance among *Campylobacter jejuni* isolates was to trimethoprim/sulfamethoxazole 149/217 (68.7%), followed by tetracycline 104/217 (47.9%), nalidixic acid 52/217 (23.9%), and ciprofloxacin 29/217 (13.4%) (Table 9, Figure 10). The MICs for *Campylobacter jejuni* are shown in Figure 11.

Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Working Group

#### **Centers for Disease Control and Prevention**

Nina Marano, Karen Stamey, John Hatmaker, Tim Barrett, Joy Wells, Gerald Zirnstein, Cheryl Bopp, Paul Dabney, Fred Angulo, Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases; National Center for Infectious Diseases

#### **US Food and Drug Administration**

Marissa Miller, Linda Tollefson, Office of Surveillance and Compliance, Division of Voluntary Compliance and Hearings Development, Center for Veterinary Medicine

#### **US Dept of Agriculture**

Paula Fedorka-Cray, Richard Russell Research Center, Agricultural Research Service

#### **Participating Local and State Health Departments**

California Department of Health Services Sharon Abbott, Paul Kimsey, Sue Shallow, Duc Vugia

Colorado Department of Public Health and Environment Mike Rau, Robert Quillan, Richard Hoffman

Connecticut Department of Public Health and Addiction Services Bob Howard, Don Mayo, Terry Fiorentino

Florida Department of Health Judy Taylor, Jody Baldy, Richard Hopkins

Georgia Division of Public Health Marsha Ray, Suzanne Segler, Elizabeth Franco, Paul Blake

Kansas Department of Health and Environment Robert Flaheart, June Sexton, Roger Carlson, Gianfranco Pezzino Los Angeles County Department of Health Services Liga Kilman, Debra Brown, Laurene Mascola

Massachusetts Department of Public Health Joseph Peppie, Alfred DeMaria

Maryland Department of Health and Mental Hygiene Melissa Kent, Peggy Pass, Glenn Morris

Minnesota Department of Health Wanda Bayer, Fe Leano, John Besser, Craig Hedberg

New Jersey Department of Health Keith Pilot, John Brook

New York City Department of Health Alice Agasan, Marci Layton

Oregon Department of Human Resources Steve Mauvais, Beletsachew Shiferaw, Paul Cieslak

Washington Public Health Laboratories Jay Lewis, Donna Green, Jon Counts

West Virginia Department of Health and Human Resources Doug McElfresh, Loretta Haddy

> <u>Centers for Disease Control and Prevention</u> National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Publications and Presentations

#### **Publications**

1. Glynn MK, Bopp C, Dewitt W, Dabney P, Moktar M, Angulo F. <u>Emergence of multidrug resistant</u> <u>Salmonella Enterica serotype Typhimurium DT104 infections in the United States</u>. New England Journal of Medicine 1998; 338 (19): 1333-1338.

2. Tollefson L, Angulo FJ, Fedorka-Cray PJ. <u>National surveillance for antibiotic resistance in zoonotic</u> <u>enteric pathogens</u>. *Veterinary Clinics of North America: Food Animal Practice* 1998: 14(1):141-150.

3. Threlfall EJ, Angulo FJ, Wall PG. Ciprofloxacin-resistant *Salmonella typhimurium* DT104. *Veterinary Record* 1998;142:255-256.

#### **Presentations**

1. Marano N, Stamey K, Hatmaker J, Barrett T, Angulo FJ and the NARMS Working Group. The national antimicrobial resistance monitoring system (NARMS): trends in antimicrobial resistance. Emerging Antibiotic Resistance in Food Borne Enteric Pathogens Conference; 1998 August; Athens, Georgia.

2. Angulo FJ, Tauxe RV, Cohen ML. Public health impact of the emergence of antibiotic resistance in foodborne pathogens. Annual Meeting of the Institute of Food Technologists; 1998 June; Atlanta, Georgia.

3. Angulo FJ. Human health consequences of antimicrobial use in food animals. Annual Meeting of the American Feed Industry Association; 1998 Mar; Kansas City, Missouri.

4. Angulo FJ, Tauxe RV, Cohen ML. Significance and sources of antimicrobial-resistant *Salmonella*. The role of veterinary therapeutics in bacterial resistance development: animal and public health perspectives. American Academy of Veterinary Pharmacology and Therapeutics; 1998 Jan; College Park, Maryland.

#### **Poster Presentations**

1. Ribot EM, Angulo FJ, Barrett TJ. PCR amplification and characterization of intergron-associated

1997 NARMS Publications and Presentations

antimicrobial resistance genes from various strains of *Salmonella*. 98<sup>th</sup> General Meeting of the American Society for Microbiology; 1998 May, Atlanta, Georgia.

2. Zirnstein G, Bopp C, Dabney P, Voetsch D, Swaminathan B, Hatmaker J, Miller M, Tollefsen L, Angulo F, and the NARMS Working Group. <u>The national antimicrobial resistance monitoring system</u>. International Conference on Emerging Infectious Diseases, 1998 March, Atlanta, Georgia.

Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 1: Antimicrobial agents used for resistance testing for *Salmonella*, *E. coli* O157:H7, and *Campylobacter* isolates

| Antimicrobial Agent                 | Antimicrobial<br>Agent          | ]              | Break   | points        |
|-------------------------------------|---------------------------------|----------------|---------|---------------|
|                                     | Concentration<br>Ranges (ug/ml) | ( <b>R</b> )   | (I)     | (S)           |
| Amikacin                            | 4 - 32                          | ≥64            | 32      | ≤16           |
| Amoxicillin-Clav.<br>Acid           | 0.5/0.25 - 32/16                | <u>≥</u> 32    | 16      | _≤8           |
| Ampicillin                          | 2 - 64                          | <u>&gt;32</u>  | 16      | <u>≤</u> 8    |
| Apramycin**                         | 2 - 16                          | <u>&gt;32</u>  | 16      | <u>≤</u> 8    |
| Ceftiofur**                         | 0.5 - 16                        | <u>≥8</u>      | 4       | ≤2            |
| Ceftriaxone***                      | 0.25 - 16                       | <u>&gt;64</u>  | 32      | <u>≤</u> 8    |
| Cephalothin                         | 1 - 32                          | <u>≥</u> 32    | 16      | ≤8            |
| Chloramphenicol<br>Chloramphenicol* | 4 - 32<br>0.125 - 256           | ≥32            | 16      | ≤8            |
| Ciprofloxacin<br>Ciprofloxacin*     | 0.015 - 2<br>0.016 - 32         | ≥4             | 2       | <u>≤</u> 1    |
| Clindamycin*                        | 0.032 - 256                     | <u>&gt;</u> 4  | 1-<br>2 | ≤0.5          |
| Gentamicin                          | 0.25 - 16                       | <u>&gt;</u> 16 | 8       | <u>&lt;</u> 4 |
| Erythromycin*                       | 0.047 - 256                     | <u>≥8</u>      | 1-<br>4 | ≤0.5          |
| Kanamycin                           | 16 - 64                         | ≥64            | 32      | <u>≤</u> 16   |
|                                     |                                 |                |         |               |

#### NARMS Table 1

| Nalidixic Acid<br>Nalidixic Acid* | 4 - 64<br>0.047 - 256         | ≥32           |    | <u>&lt;</u> 16 |
|-----------------------------------|-------------------------------|---------------|----|----------------|
| Streptomycin**                    | 32 - 256                      | <u>&gt;64</u> |    | ≤32            |
| Sulfamethoxazole                  | 128 - 512                     | ≥512          |    | ≤256           |
| Tetracycline<br>Tetracycline*     | 4 - 64<br>0.023 - 32          | ≥16           | 8  | <u>&lt;</u> 4  |
| Ticarcillin                       | 2 - 128                       | ≥128          | 32 | <u>&lt;</u> 16 |
| TrimethSulfa.<br>TrimethSulfa.*   | 0.12/2.4 - 4/76<br>0.016 - 32 | ≥4/76         |    | <2/38          |

\* *Campylobacter* antimicrobial agents and concentration ranges used \*\* No NCCLS interpretive standards for this antimicrobial agent (veterinary use only)

<u>Centers for Disease Control and Prevention</u> <u>National Center for Infectious Diseases</u> | <u>Division of Bacterial & Mycotic Diseases</u> 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 *updated August 13, 1999* 

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 2: Population size and number isolates tested, by site

| Site             | Pop.<br>No. | Size<br>(%) | Sal.<br>No. | monella<br>(%) | N   | <i>E. coli</i><br>No. (%) | Cam<br>No. | pylobacter<br>(%) |
|------------------|-------------|-------------|-------------|----------------|-----|---------------------------|------------|-------------------|
| California (1)   | 2,053,882   | (2.5)       | 62          | (4.8)          | 2   | (1.2)                     | 42         | (19.4)            |
| Colorado         | 3,746,585   | (4.5)       | 62          | (4.8)          | 16  | (9.9)                     |            |                   |
| Connecticut      | 3.274,662   | (3.9)       | 65          | (5.0)          | 8   | (5.0)                     | 49         | (22.6)            |
| Florida          | 14,165,570  | (17.0)      | 68          | (5.2)          | 4   | (2.5)                     |            |                   |
| Georgia          | 7,200,882   | (8.6)       | 11          | (8.7)          | 11  | (6.8)                     | 32         | (14.7)            |
| Kansas           | 2.565,328   | (3.1)       | 43          | (3.3)          | 3   | (1.9)                     |            |                   |
| Los Angeles (2)  | 9,138,789   | (10.9)      | 191         | (14.7)         | 4   | (2.5)                     |            |                   |
| Massachusetts    | 6,073,550   | (7.3)       | 129         | (9.9)          | 25  | (15.5)                    |            |                   |
| Maryland         | 5,042,438   | (6.0)       | 29          | (2.2)          | 1   | ( 0.6)                    |            |                   |
| Minnesota        | 4,609,548   | (5.5)       | 66          | (5.1)          | 33  | (20.5)                    | 53         | (24.4)            |
| New Jersey       | 7,945,298   | (9.5)       | 147         | (11.3)         | 7   | (4.3)                     |            |                   |
| New York City(3) | 7,312,076   | (8.8)       | 201         | (15.4)         | 0   | (0.0)                     |            |                   |
| Oregon           | 3,140,585   | (3.8)       | 38          | (2.9)          | 23  | (14.3)                    | 41         | (18.9)            |
| Washington       | 5,430,940   | (6.5)       | 84          | (6.5)          | 84  | (14.9)                    |            |                   |
| West Virginia    | 1,828,140   | (2.2)       | 3           | (0.2)          | 0   | (0.0)                     |            |                   |
| Totals           | 83,528,273  | (100.0)     | 1301        | (100.0)        | 161 | (100.0)                   | 217        | (100.0)           |

(1) San Francisco and Alameda Counties

(2) Los Angeles County

(3) Five boroughs of New York City (Bronx, Brooklyn, New York, Queens, Richmond)

<u>Centers for Disease Control and Prevention</u> <u>National Center for Infectious Diseases</u> | <u>Division of Bacterial & Mycotic Diseases</u> 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 *updated August 13, 1999* 

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 3: Antimicrobial Susceptibility by Pathogen

| Salmonella,                        |       | RESULT (%) |        |  |  |  |  |
|------------------------------------|-------|------------|--------|--|--|--|--|
| (N=1301)                           | SUSC  | INTER      | RESIST |  |  |  |  |
| ANTIMICROBIAL                      |       |            |        |  |  |  |  |
| Amikacin                           | 100.0 | 0          | 0      |  |  |  |  |
| Amoxicillin /<br>Clavulanic Acid   | 87.2  | 11.3       | 1.5    |  |  |  |  |
| Ampicillin                         | 81.5  | 0          | 18.5   |  |  |  |  |
| Apramycin                          | 99.5  | 0.5        | 0      |  |  |  |  |
| Trimethoprim /<br>Sulfamethoxazole | 98.2  | 0          | 1.8    |  |  |  |  |
| Ceftiofur                          | 94.7  | 1.9        | 3.4    |  |  |  |  |
| Ceftriaxone*                       | 99.6  | 0.1        | 0.3    |  |  |  |  |
| Cephalothin                        | 93.9  | 2.8        | 3.3    |  |  |  |  |
| Chloramphenicol                    | 89.9  | 0.1        | 10.1   |  |  |  |  |
| Ciprofloxacin                      | 100.0 | 0          | 0      |  |  |  |  |
| Gentamicin                         | 96.8  | 0.2        | 2.9    |  |  |  |  |
| Kanamycin                          | 94.5  | 0.5        | 5.1    |  |  |  |  |
| Nalidixic Acid                     | 99.2  | 0          | 0.8    |  |  |  |  |
| Streptomycin                       | 78.3  | 0          | 21.7   |  |  |  |  |
| Sulfamethoxazole                   | 74.8  | 0          | 25.2   |  |  |  |  |
| Tetracycline                       | 77.8  | 0.5        | 21.8   |  |  |  |  |
| Ticarcillin                        | 81.4  | 0.5        | 18.1   |  |  |  |  |

\*In 1997, in each instance where an isolate had an MIC  $\geq$ 16, the isolate was tested by broth dilution. Using broth dilution, the MIC was  $\geq$ 64.

<u>Centers for Disease Control and Prevention</u> <u>National Center for Infectious Diseases</u> | <u>Division of Bacterial & Mycotic Diseases</u>

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 4: Frequency of *Salmonella* serotypes

| Saratuna        | TOTAL  |         |  |  |  |
|-----------------|--------|---------|--|--|--|
| Serotype        | Number | Percent |  |  |  |
| TYPHIMURIUM     | 326    | 25.1    |  |  |  |
| ENTERITIDIS     | 301    | 23.1    |  |  |  |
| HEIDELBERG      | 75     | 5.8     |  |  |  |
| NEWPORT         | 48     | 3.7     |  |  |  |
| THOMPSON        | 32     | 2.5     |  |  |  |
| HADAR           | 30     | 2.3     |  |  |  |
| INFANTIS        | 29     | 2.2     |  |  |  |
| MONTEVIDEO      | 27     | 2.1     |  |  |  |
| ORANIENBURG     | 27     | 2.1     |  |  |  |
| AGONA           | 25     | 1.9     |  |  |  |
| JAVIANA         | 19     | 1.5     |  |  |  |
| ST. PAUL        | 19     | 1.5     |  |  |  |
| OTHER SEROTYPES | 263    | 20.2    |  |  |  |
| NOT SEROTYPED   | 80     | 6.1     |  |  |  |
| TOTAL           | 1301   | 100.0   |  |  |  |

Centers for Disease Control and Prevention

National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 5: Percent S. Typhimurium by Site with ACSSUT Resistance Pattern

| Site  | Total Number of<br>S. Typhimurium<br>Cases | Total Number<br>Resistant to<br>ACSSUT | Percent ACSSUT<br>of Total |
|-------|--------------------------------------------|----------------------------------------|----------------------------|
| CA    | 18                                         | 5                                      | 27.8                       |
| СО    | 26                                         | 10                                     | 38.5                       |
| СТ    | 21                                         | 8                                      | 38.1                       |
| FL    | 2                                          | 1                                      | 50.0                       |
| GA    | 30                                         | 11                                     | 36.7                       |
| KS    | 10                                         | 2                                      | 20.0                       |
| LX    | 37                                         | 12                                     | 32.4                       |
| MA    | 40                                         | 14                                     | 35.0                       |
| MD    | 11                                         | 4                                      | 36.4                       |
| MN    | 24                                         | 1                                      | 4.2                        |
| NJ    | 39                                         | 15                                     | 38.5                       |
| NY    | 24                                         | 14                                     | 58.3                       |
| OR    | 13                                         | 3                                      | 23.1                       |
| WA    | 30                                         | 15                                     | 50.0                       |
| WV    | 1                                          | 0                                      | 0.0                        |
| TOTAL | 326                                        | 115                                    | 35.3                       |

Centers for Disease Control and Prevention

National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 6: Additional antimicrobial resistance for S. Typhimurium isolates with ACSSuT pattern

|                   | G     | <b>T</b> 4 |        |
|-------------------|-------|------------|--------|
| ACSSuT (N=115)    | Susc. | Inter.     | Resis. |
| (I(=115)          | (%)   | (%)        | (%)    |
| Amikacin          | 100.0 | 0          | 0      |
| Amoxicillin-Clav. | 7.0   | 81.7       | 11.3   |
| Apramycin         | 100.0 | 0          | 0      |
| Bactrim           | 99.1  | 0          | 0.9    |
| Ceftiofur         | 87.8  | 3.5        | 8.7    |
| Ceftriaxone*      | 97.4  | 0          | 2.6    |
| Cephalothin       | 89.6  | 6.1        | 4.3    |
| Ciprofloxacin     | 100.0 | 0          | 0      |
| Gentamicin        | 98.3  | 0          | 1.7    |
| Kanamycin         | 92.2  | 0          | 7.8    |
| Nalidixic Acid    | 98.3  | 0          | 1.7    |
| Ticarcillin       | 0     | 0          | 100.0  |

\* Ceftriaxone - In 1997, in each instance where an isolate had an MIC  $\ge$  16, isolates were tested by broth dilution for full range MICs. Using broth dilution, all MICs were  $\ge$  64.

Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999

| Isolate                                | BLOOD |     | STOOL |      | OTHER |     | Total |     |
|----------------------------------------|-------|-----|-------|------|-------|-----|-------|-----|
| Isolate                                | Ν     | %   | Ν     | %    | Ν     | %   | N     | %   |
| <i>S</i> .<br>Typhimurium<br>w/ ACSSUT | 9     | 7.8 | 98    | 85.2 | 8     | 7.0 | 115   | 100 |
| Other<br>Typhimurium                   | 6     | 2.8 | 196   | 92.9 | 9     | 4.3 | 211   | 100 |
| Other<br><i>Salmonella</i>             | 47    | 4.8 | 852   | 87.4 | 76    | 7.8 | 975   | 100 |
| TOTAL                                  | 62    | 4.8 | 1146  | 88.1 | 93    | 7.1 | 1307  | 100 |

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 7: Source of *Salmonella* Isolates

Centers for Disease Control and Prevention

National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 8: Antimicrobial Susceptibility by Pathogen

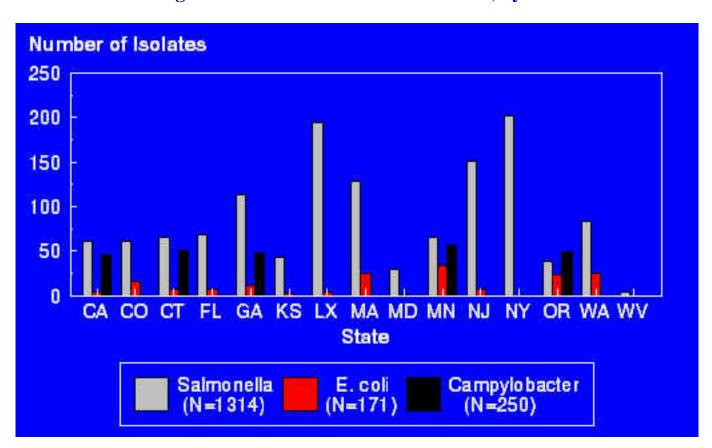
| E. coli (N=161)                    |       | RESULT (%) |        |  |  |  |  |
|------------------------------------|-------|------------|--------|--|--|--|--|
|                                    | SUSC  | INTER      | RESIST |  |  |  |  |
| ANTIMICROBIAL                      |       |            |        |  |  |  |  |
| Amikacin                           | 100.0 | 0          | 0      |  |  |  |  |
| Amoxicillin /<br>Clavulanic Acid   | 100.0 | 0          | 0      |  |  |  |  |
| Ampicillin                         | 100.0 | 0          | 0      |  |  |  |  |
| Apramycin                          | 98.8  | 1.2        | 0      |  |  |  |  |
| Trimethoprim /<br>Sulfamethoxazole | 100.0 | 0          | 0      |  |  |  |  |
| Ceftiofur                          | 98.8  | 1.2        | 0      |  |  |  |  |
| Ceftriaxone                        | 100.0 | 0          | 0      |  |  |  |  |
| Cephalothin                        | 90.1  | 6.2        | 3.7    |  |  |  |  |
| Chloramphenicol                    | 100.0 | 0          | 0      |  |  |  |  |
| Ciprofloxacin                      | 100.0 | 0          | 0      |  |  |  |  |
| Gentamicin                         | 100.0 | 0          | 0      |  |  |  |  |
| Kanamycin                          | 100.0 | 0          | 0      |  |  |  |  |
| Nalidixic Acid                     | 100.0 | 0          | 0      |  |  |  |  |
| Streptomycin                       | 97.5  | 0          | 2.5    |  |  |  |  |
| Sulfamethoxazole                   | 89.4  | 0          | 10.6   |  |  |  |  |
| Tetracycline                       | 96.9  | 0          | 3.1    |  |  |  |  |
| Ticarcillin                        | 100.0 | 0          | 0      |  |  |  |  |

<u>Centers for Disease Control and Prevention</u> National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

| National Antimicrobial Resistance Monitoring System    |
|--------------------------------------------------------|
| 1997 Annual Report                                     |
| Table 9: Antimicrobial susceptibility of Campylobacter |

| Antimicrobial Agent | Susc. (%) | Inter. (%) | Resist. (%) |
|---------------------|-----------|------------|-------------|
| Chloramphenicol     | 91.5      | 2.5        | 6.0         |
| Ciprofloxacin       | 85.7      | 0.9        | 13.4        |
| Clindamycin         | 81.3      | 12.2       | 6.5         |
| Erythromycin        | 30.4      | 61.8       | 7.8         |
| Nalidixic Acid      | 76.1      | 0          | 23.9        |
| Tetracycline        | 51.6      | 0.5        | 47.9        |
| Trimethoprim-Sulfa  | 31.3      | 0          | 68.7        |

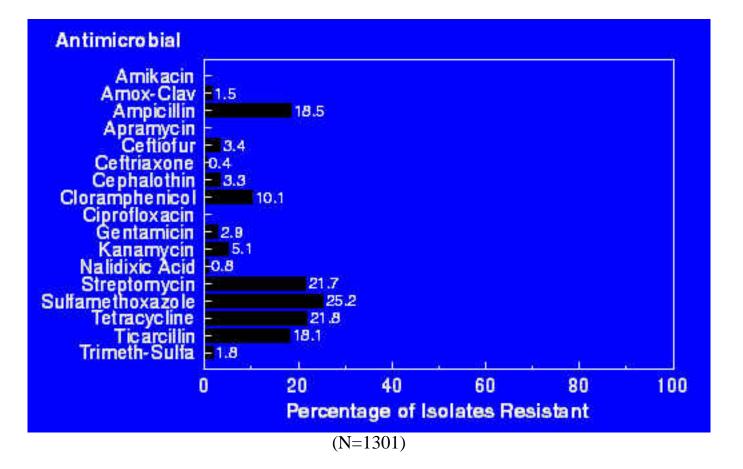
Centers for Disease Control and Prevention


National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

## National Antimicrobial Resistance Monitoring System 1997 Annual Report Table 10: Number (%) of isolates resistant to specific number of antimicrobial agents, by pathogen

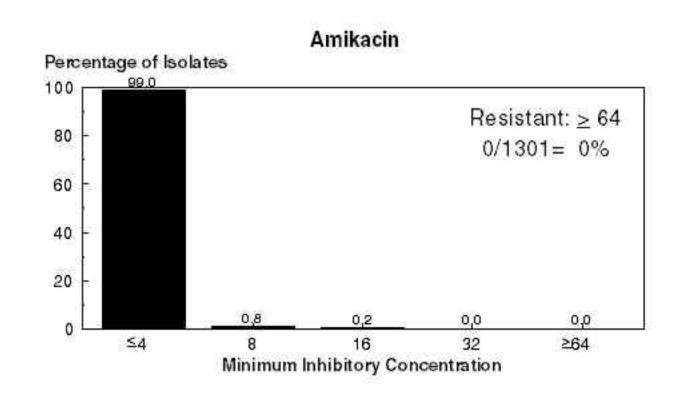
| Number of<br>antimicrobial<br>agents resistant<br>to | (N=1301)<br>Salmonella<br>N (%) | (N=161) E.<br>coli<br>N (%) | (N=217)<br>Campylobacter<br>N (%) |
|------------------------------------------------------|---------------------------------|-----------------------------|-----------------------------------|
| 0                                                    | 858 (65.9)                      | 141 (87.6)                  | 31 (14.3)                         |
| 1                                                    | 98 (7.5)                        | 9 (5.6)                     | 78 (35.8)                         |
| 2                                                    | 66 (5.1)                        | 10 (6.2)                    | 54 (24.8)                         |
| 3                                                    | 61 (4.7)                        | 1 (0.6)                     | 34 (15.6)                         |
| 4                                                    | 21 (1.6)                        | 0 (0)                       | 16 (7.3)                          |
| 5                                                    | 20 (1.5)                        | 0 (0)                       | 4 (1.8)                           |
| 6                                                    | 130 (10.0)                      | 0 (0)                       | 0 (0)                             |
| 7                                                    | 27 (2.1)                        | 0 (0)                       | 0 (0)                             |
| 8                                                    | 10 (0.8)                        | 0 (0)                       |                                   |
| 9                                                    | 4 (0.3)                         | 0 (0)                       |                                   |
| 10                                                   | 2 (0.2)                         | 0 (0)                       |                                   |

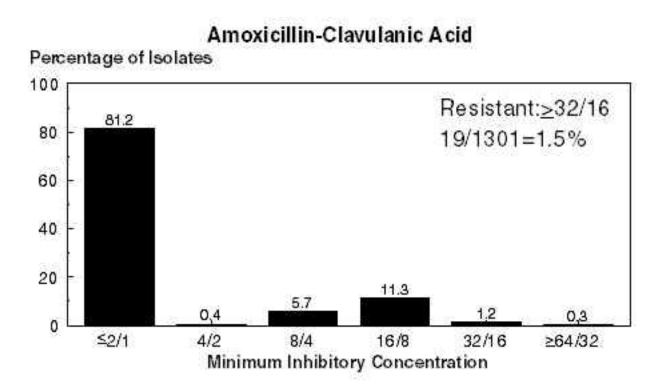
Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38


Atlanta GA 30333 updated August 13, 1999

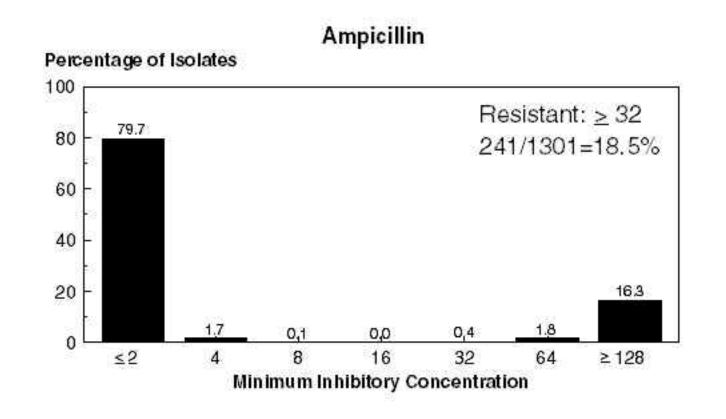


#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 1: Number of isolates submitted, by site

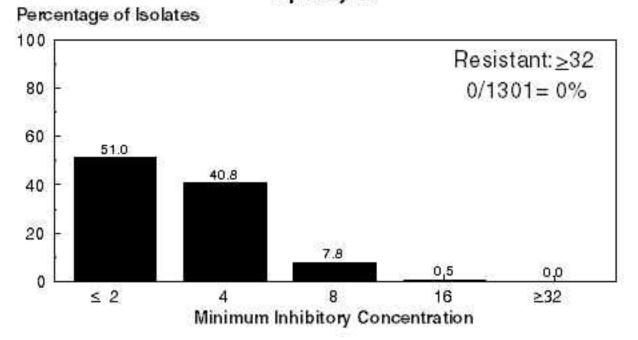

<u>Centers for Disease Control and Prevention</u> National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

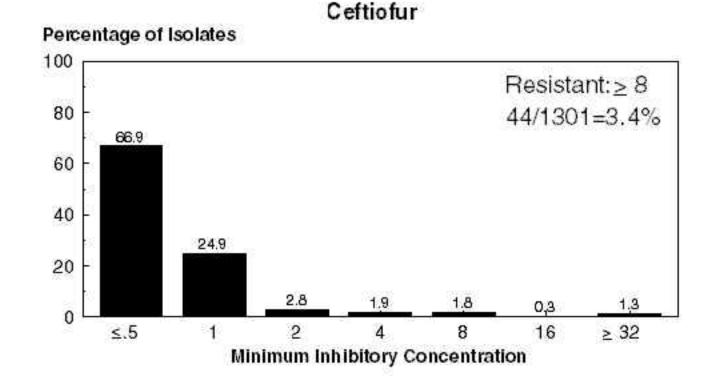

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 2: Resistance among *Salmonella* isolates for all sites

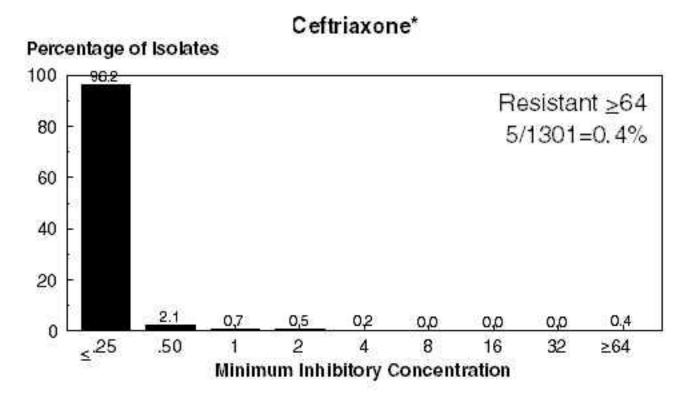



Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999

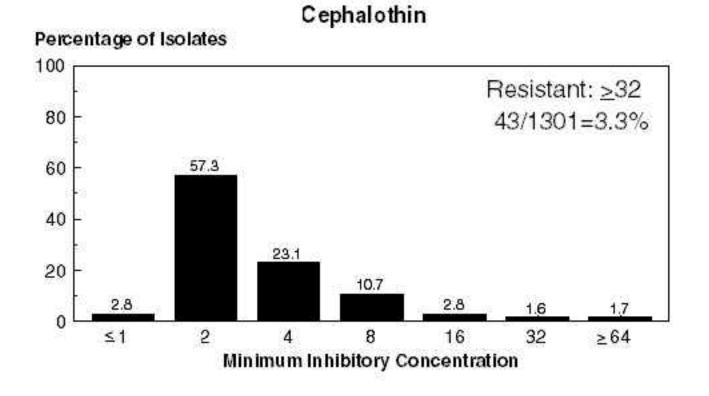
#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 3: Salmonella MICs, by antimicrobial agent

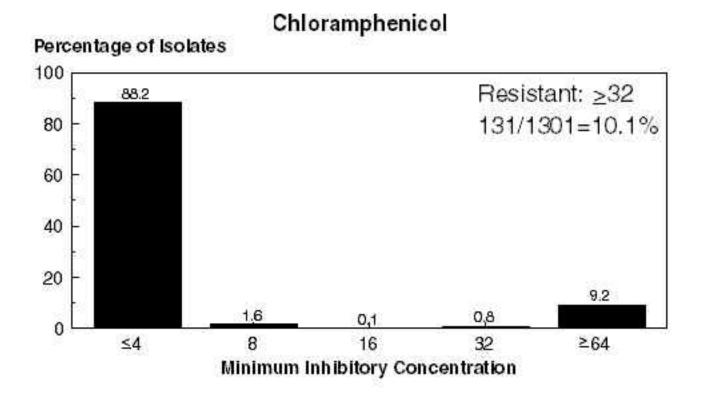


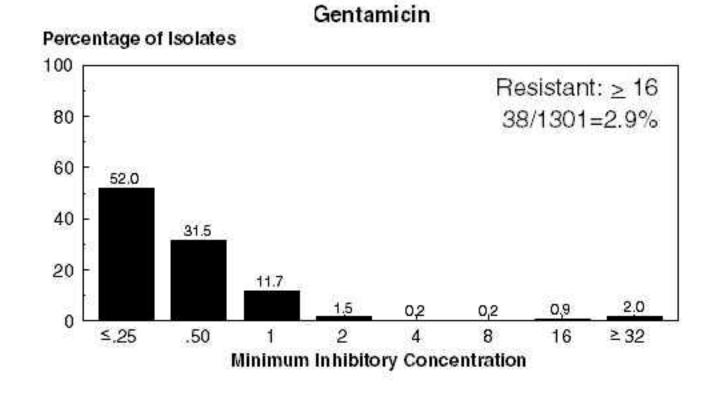



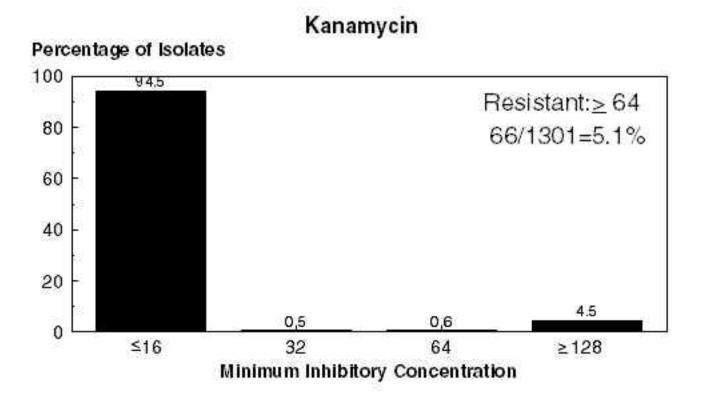


http://www.cdc.gov/narms/annual/1997\_an/figure3.htm (1 of 8)4/14/2005 1:33:30 PM



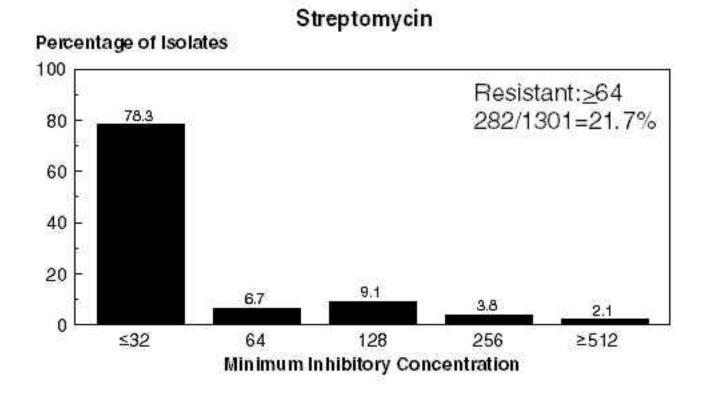

Apramycin

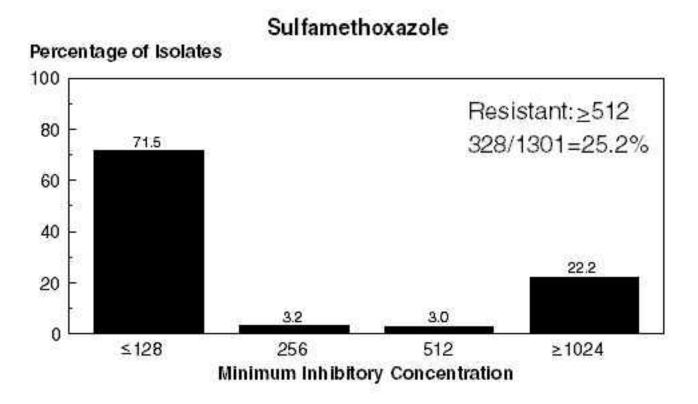


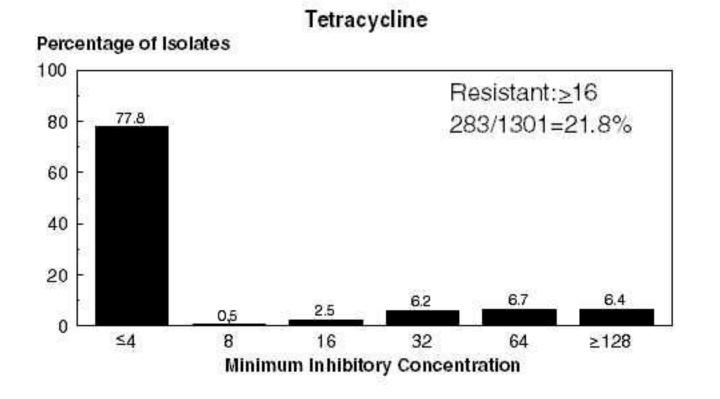



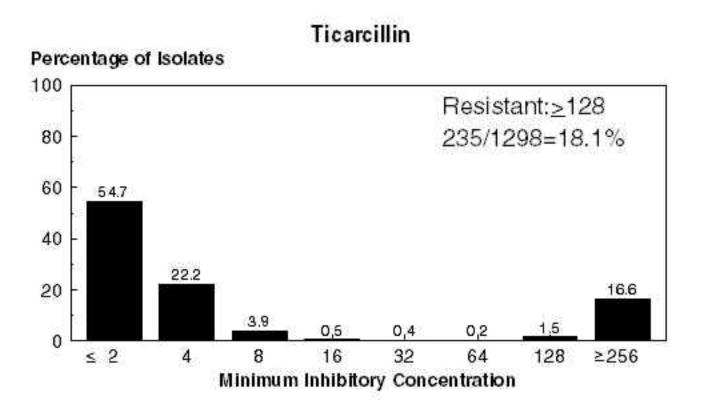

\* In each instance where an isolate had an MIC  $\geq$ 16, the isolate was tested by broth dilution and the MIC was  $\geq$ 64

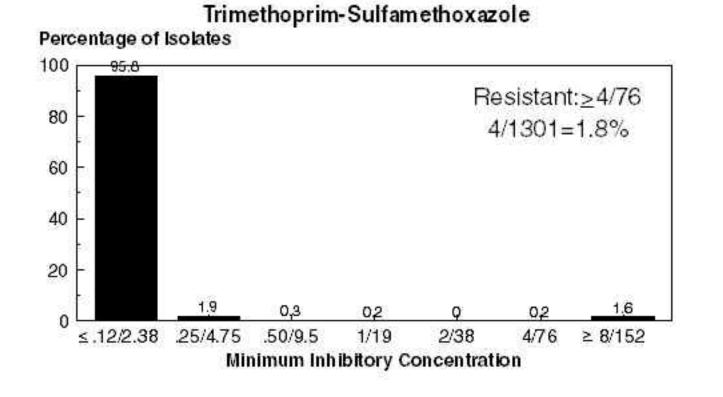






http://www.cdc.gov/narms/annual/1997\_an/figure3.htm (5 of 8)4/14/2005 1:33:30 PM






http://www.cdc.gov/narms/annual/1997\_an/figure3.htm (6 of 8)4/14/2005 1:33:30 PM

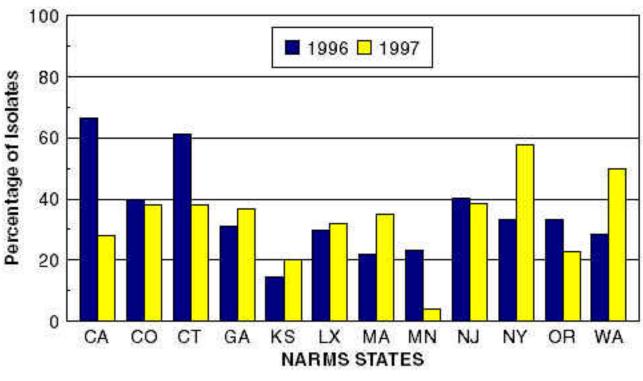






Note: Ciprofloxacin and nalidixic acid are presented in Figure 6.

Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999


## National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 4: Percentage of *Salmonella* isolates submitted, identified as Typhimurium by site, 1996-1997

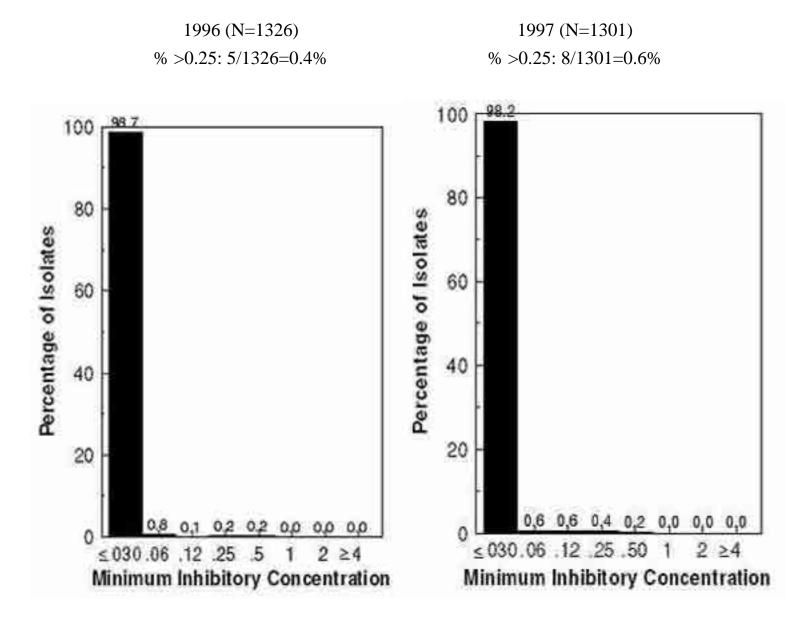


Total serotyped at state 1996=1239 Total Typhimurium received=306/1239=24.7% Total serotyped at state 1997=1221 Total Typhimurium received=326/1221=26.7%

<u>Centers for Disease Control and Prevention</u> National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

# National Antimicrobial Resistance Monitoring System1997 Annual ReportFigure 5: Percentage of Salmonella Typhimurium isolates submitted with ACSSuT pattern<br/>by state, 1996-1997



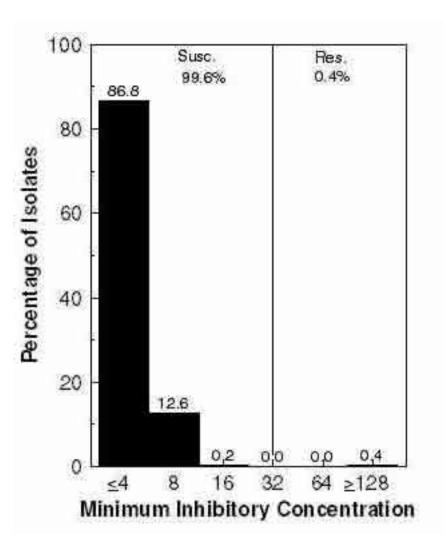

Percent of all 1996 Typhimurium with ACSSuT pattern: 103/306 =33.6% Percent of all 1997 Typhimurium with ACSSuT pattern: 115/326 =35.3%

Centers for Disease Control and Prevention

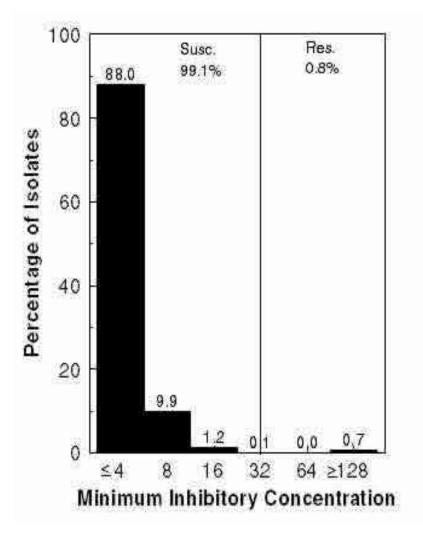
National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases

1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 6: Comparison of *Salmonella* Ciprofloxacin MICs, 1996 to 1997

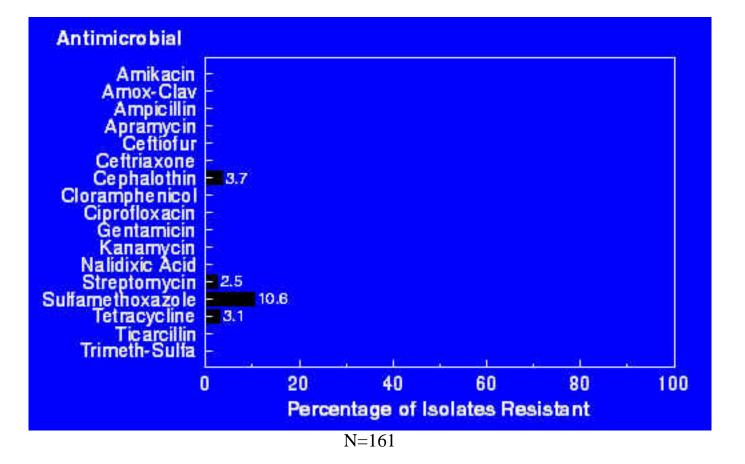



<u>Centers for Disease Control and Prevention</u> <u>National Center for Infectious Diseases</u> | <u>Division of Bacterial & Mycotic Diseases</u> 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 *updated August 13, 1999* 


#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 7: Comparison of *Salmonella* Nalidixic Acid MICs, 1996 to 1997

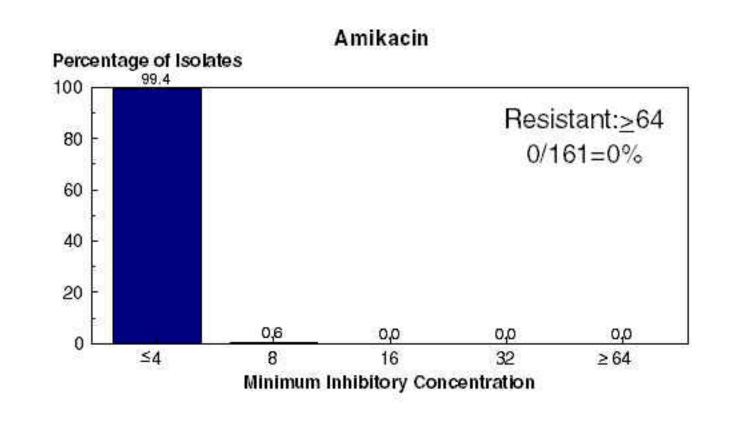
1996 (N=1326)

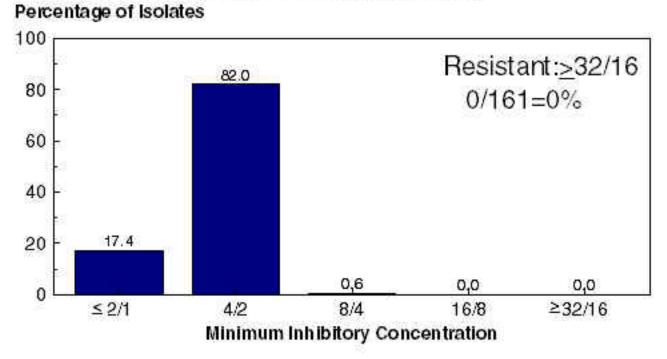
1997 (N=1301)




NARMS Figure 7

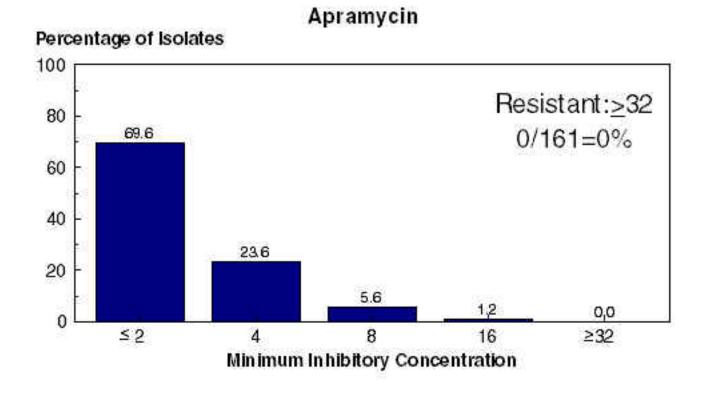


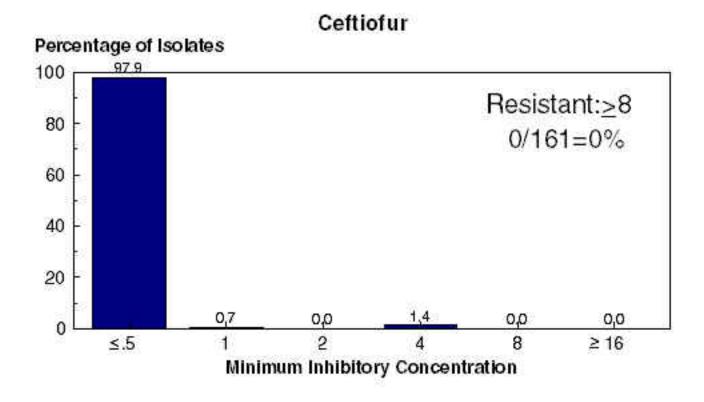

Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999

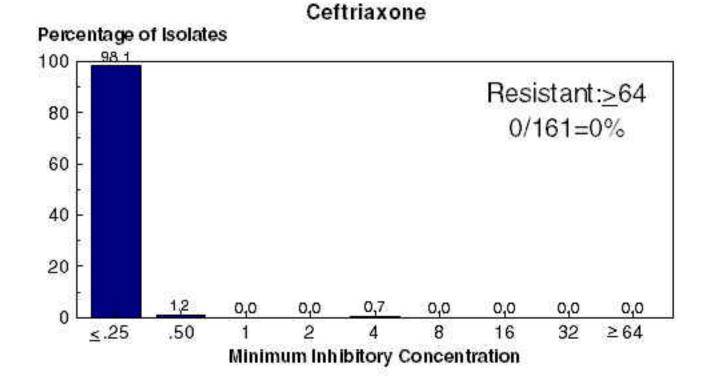

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 8: Resistance among *E. coli* O157:H7 isolates for all sites

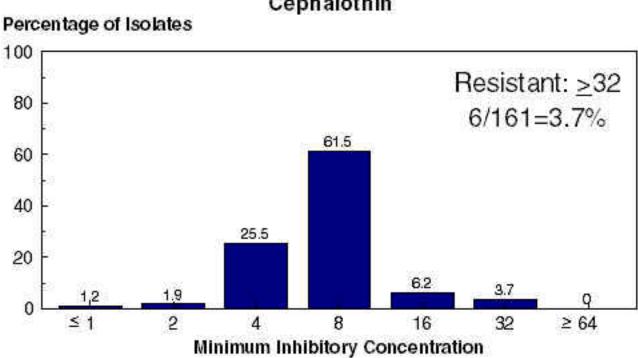


<u>Centers for Disease Control and Prevention</u> <u>National Center for Infectious Diseases</u> | <u>Division of Bacterial & Mycotic Diseases</u> 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 *updated August 13, 1999* 

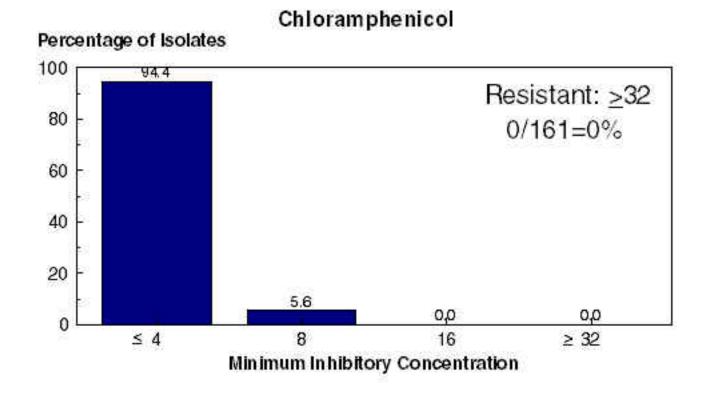

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 9: *E. coli* O157:H7 MICs, by antimicrobial agent

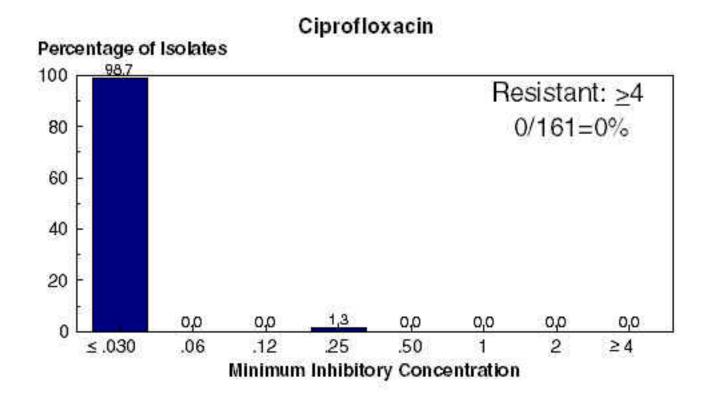


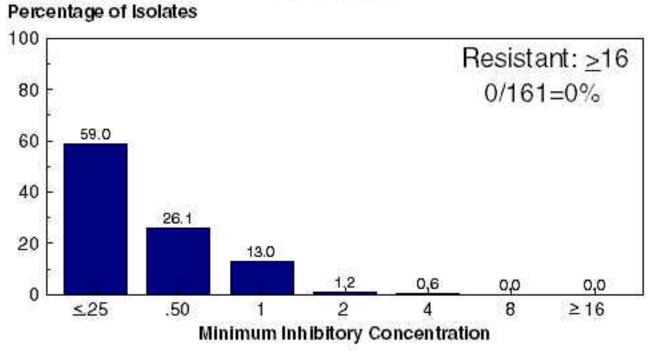



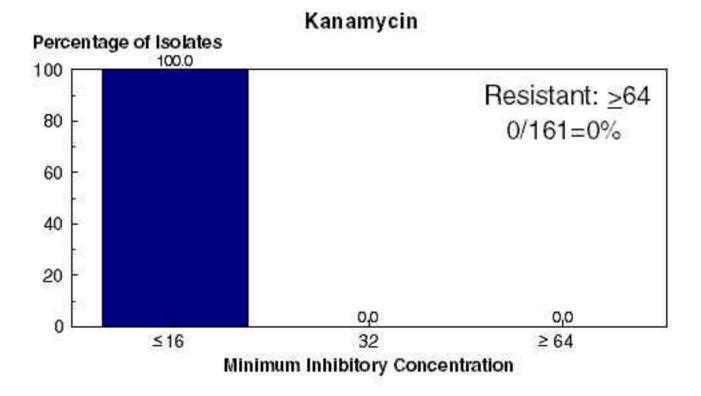


#### Ampicillin Percentage of Isolates 100 Resistant: ≥32 80.7 80 0/161=0% 60 40 19.3 20 0,0 0,0 0,0 0 4 ≤2 ≥32 8 16 Minimum Inhibitory Concentration

## Amoxicillin-Clavulanic Acid

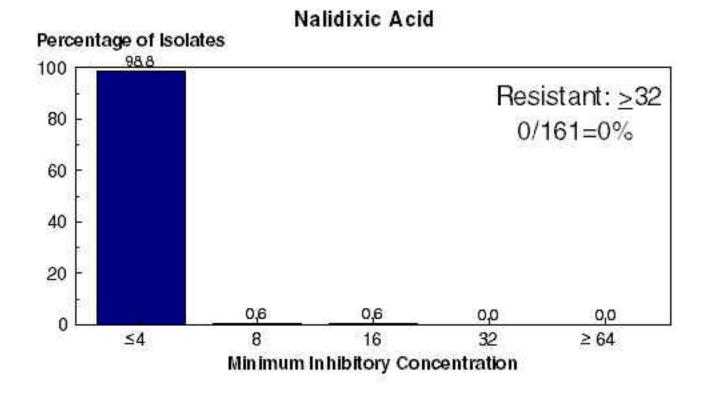


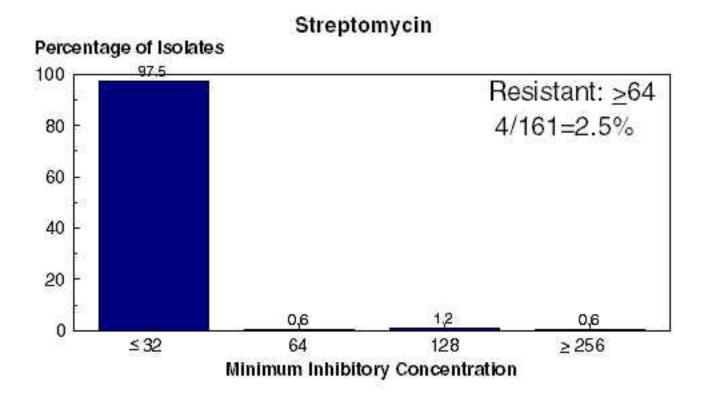



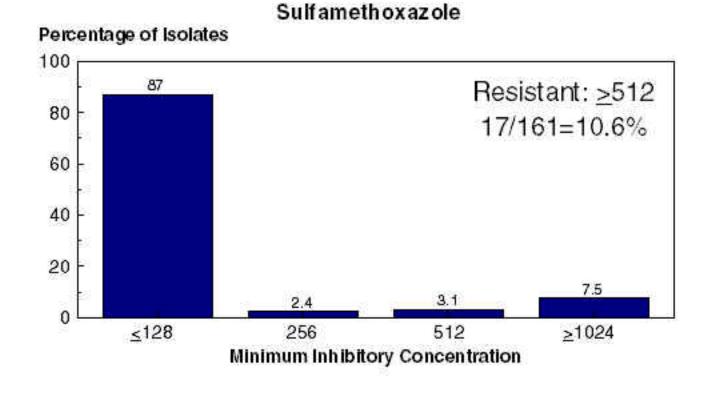



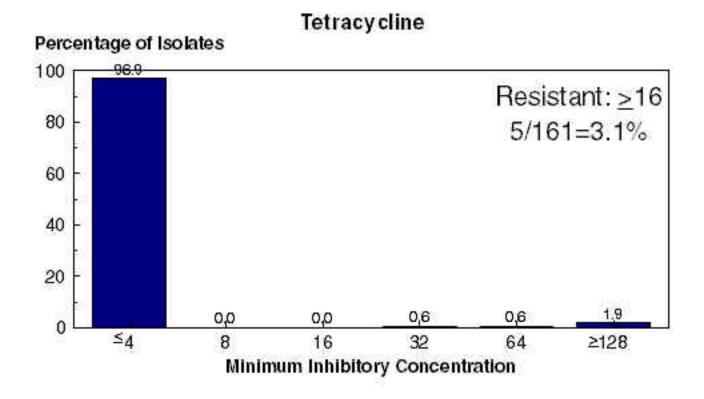




Cephalothin

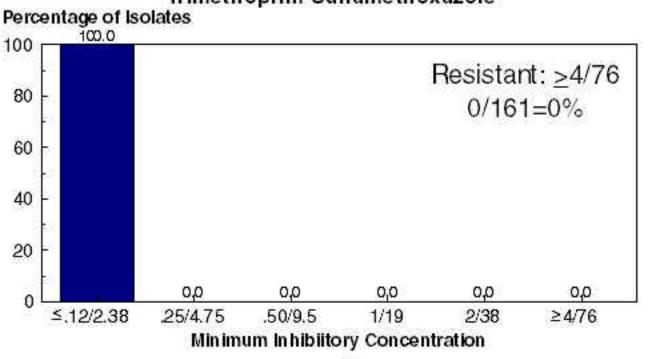


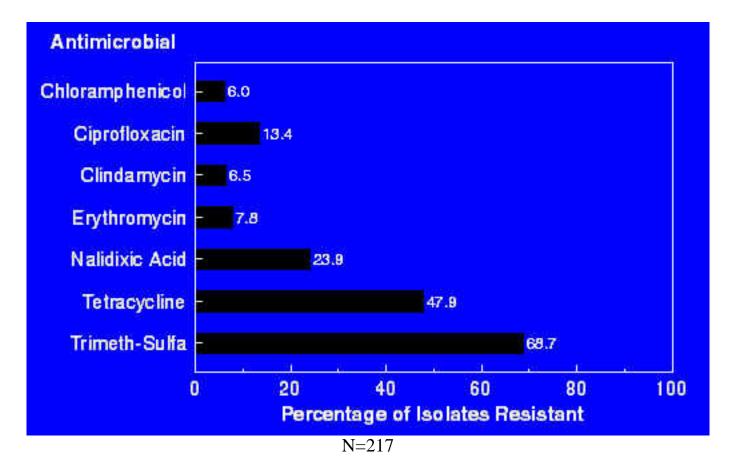

#### Gentamicin





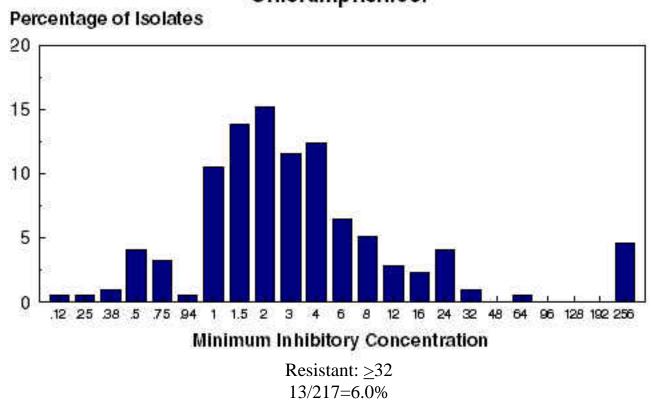




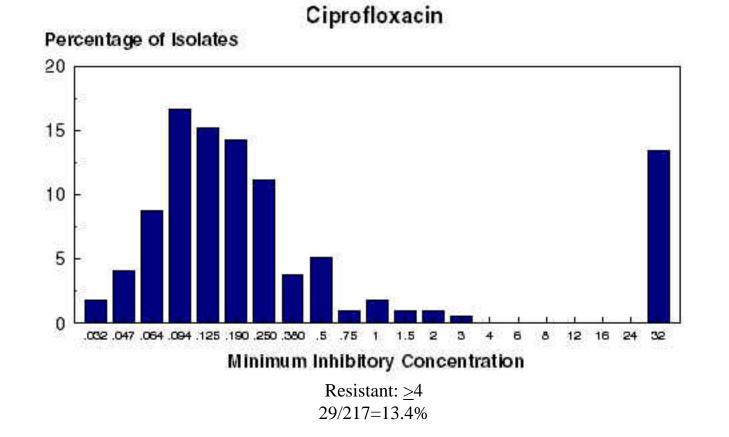


#### http://www.cdc.gov/narms/annual/1997\_an/figure9.htm (8 of 9)4/14/2005 1:33:38 PM

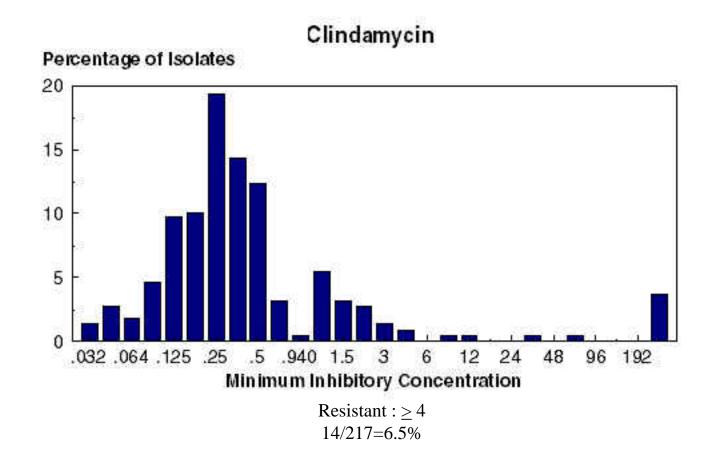


Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999

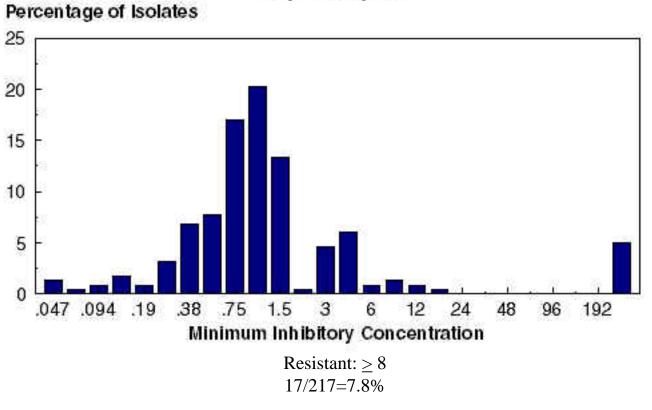

### Trimethoprim-Sulfamethoxazole

#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 10: Resistance among *Campylobacter jejuni* isolates for all sites





<u>Centers for Disease Control and Prevention</u> <u>National Center for Infectious Diseases</u> | <u>Division of Bacterial & Mycotic Diseases</u> 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 *updated August 13, 1999* 

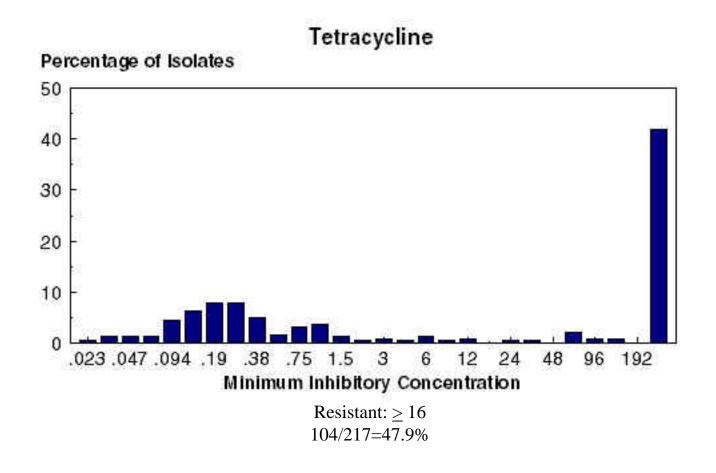
#### National Antimicrobial Resistance Monitoring System 1997 Annual Report Figure 11: *Campylobacter jejuni* MICs, by antimicrobial agent



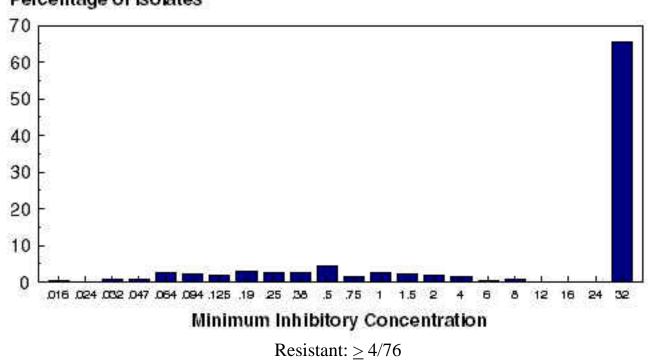

Chloramphenicol







http://www.cdc.gov/narms/annual/1997\_an/figure11.htm (2 of 5)4/14/2005 1:33:40 PM




Erythromycin

Nalidixic Acid





## Trimethoprim-Sulfamethoxazole



Percentage of Isolates

Centers for Disease Control and Prevention National Center for Infectious Diseases | Division of Bacterial & Mycotic Diseases 1600 Clifton Rd NE MS A-38 Atlanta GA 30333 updated August 13, 1999