
Tasha Stehling-Ariza, PhD1,2; Emily Fisher, MD1,3; Sara Vagi, PhD2; Ethan Fechter-Leggett, DVM1,4; Natasha Prudent, MPH2; Mary Dott, MD2; Randolph Daley, DVM2; Rachel Nonkin Avchen, PhD2 (Author affiliations at end of text)

On October 27, 2014, CDC released guidance for monitoring and movement of persons with potential Ebola virus disease (Ebola) exposure in the United States (1). For persons with possible exposure to Ebola, this guidance recommended risk categorization, daily monitoring during the 21-day incubation period, and, for persons in selected risk categories, movement restrictions. The purpose of the guidance was to delineate methods for early identification of symptoms among persons at potential risk for Ebola so that they could be isolated, tested, and, if necessary, treated to improve their chance of survival and reduce transmission. Within 7 days, all 50 states and two local jurisdictions (New York City [NYC] and the District of Columbia [DC]) had implemented the guidelines. During November 3, 2014–March 8, 2015, a total of 10,344 persons were monitored for up to 21 days with >99% complete monitoring. This public health response demonstrated the ability of state, territorial, and local health agencies to rapidly implement systems to effectively monitor thousands of persons over a sustained period.

Enhanced entry screening was conducted at five U.S. international airports at which travelers from Ebola-affected West African countries were identified and assigned a risk categorization for Ebola exposure. The Ebola-affected West African countries and the U.S. risk categories have changed over time, as described in the CDC interim U.S. guidance (1). Enhanced entry screening identified symptomatic travelers needing further evaluation. Federal authorities screened, educated, and collected information on travelers. Traveler information was provided to state, territorial, and local public health authorities to conduct health monitoring (2). Health care workers (HCWs) who cared for Ebola patients domestically, including laboratory staff, were identified through their health care facilities. Guidance for monitoring and movement of persons with potential Ebola exposure recommended risk stratification and public health actions for each category (1). Four risk categories were created: high, some, low but not zero (in this report referred to as low), and no identifiable risk.*

After potential exposure to Ebola, one of two daily public health actions, either active monitoring (AM) or direct active monitoring (DAM), was required for 21 days. AM was recommended for low-risk travelers and consisted of twice-daily temperature checks and self-evaluation for symptoms consistent with Ebola (1,3). Persons under AM reported their health status to the public health authority overseeing monitoring at least once daily (1,4). DAM was recommended for persons at high risk or some risk, as well as for HCWs at low risk who

had cared for Ebola patients in the United States. In addition to AM requirements, DAM included twice-daily reports to the monitoring jurisdiction with at least once-daily direct visualization of the individual by the health authority (1,4).

Complete monitoring (either AM or DAM) was defined as making contact with the monitored person with no gaps in reporting (e.g., no loss to follow-up) of >48 hours. Weekly estimates of the number of persons under monitoring and reporting symptoms, and calculations of incomplete monitoring were collected from the jurisdictions’ weekly reports. The overall estimate of persons under monitoring was calculated as the sum of persons reported as 1) completing monitoring, 2) leaving the United States during their monitoring period, and 3) remaining under monitoring on March 8, 2015.

Monitoring was conducted by 60 jurisdictions: the 50 states, NYC and DC, five U.S. territories (American Samoa, Commonwealth of the Northern Mariana Islands, Guam, Puerto Rico, and U.S. Virgin Islands), and three freely-associated states (Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau) (4). Until March 9, jurisdictions submitted individual-level, daily reports to CDC for all persons under monitoring who were at high risk or some risk. These reports included data on monitoring (e.g., compliance and reported symptoms), transportation plans indicating the individual by the health authority (1,4).

Visualization of the individual by the health authority (1,4). Until March 9, jurisdictions submitted individual-level, daily reports to CDC for all persons under monitoring who were at high risk or some risk. These reports included data on monitoring (e.g., compliance and reported symptoms), transportation plans indicating the individual by the health authority (1,4).

The MMWR series of publications is published by the Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30329-4027.

Suggested citation: [Author names; first three, then et al., if more than six.] [Report title]. MMWR Morb Mortal Wkly Rep 2015;64: [inclusive page numbers].

Centers for Disease Control and Prevention
Thomas R. Frieden, MD, MPH, Director
Harold W. Jaffe, MD, MA, Associate Director for Science
Joanne Crono, MD, ScM, Director, Office of Science Quality
Chesley L. Richards, MD, MPH, Deputy Director for Public Health Scientific Services
Michael F. Iademarco, MD, MPH, Director, Center for Surveillance, Epidemiology, and Laboratory Services

MMWR Editorial and Production Staff (Weekly)
Sonja A. Rasmussen, MD, MS, Editor-in-Chief
Charlotte K. Kent, PhD, MPH, Executive Editor
Jacqueline Gindler, MD, Acting Editor
Teresa F. Rutledge, Managing Editor
Douglas W. Weatherwax, Lead Technical Writer-Editor
Teresa M. Hood, MS, Jude C. Rutledge, Writer-Editors

Martha F. Boyd, Lead Visual Information Specialist
Maureen A. Leahy, Julia C. Martinroe, Stephen R. Spriggs, Brian E. Wood, Visual Information Specialists
Quang M. Doan, MBA, Phyllis H. King, Terraye M. Start, Information Technology Specialists

MMWR Editorial Board
Timothy F. Jones, MD, Nashville, TN, Chairman
Matthew L. Boulton, MD, MPH, Ann Arbor, MI
Virginia A. Caine, MD, Indianapolis, IN
Jonathan E. Fielding, MD, MPH, MBA, Los Angeles, CA
David W. Fleming, MD, Seattle, WA
William E. Halperin, MD, DrPH, MPH, Newark, NJ

King K. Holmes, MD, PhD, Seattle, WA
Rima F. Khabbaz, MD, Atlanta, GA
Patricia Quinnlink, MD, MPH, Des Moines, IA
Patrick L. Remington, MD, MPH, Madison, WI
William L. Roper, MD, MPH, Chapel Hill, NC
William Schaffner, MD, Nashville, TN

One was monitored) and reported the same monitoring data as in the daily reports. Information on returning Department of Defense personnel restricted to a military station for their 21-day monitoring period was not reported to CDC and is reported elsewhere (5).

During November 3, 2014–March 8, 2015, in the 60 jurisdictions, 10,344 persons were monitored (Table). Overall, 91.9% of the persons monitored were travelers at low risk, 5.1% were HCWs at low risk who had provided patient care in the United States, and 3.0% were persons at high or some risk (Figure 1).

During the study period, a median of 1,710 persons (range = 1,331–2,119) were monitored in a given reporting week (Figure 2). Among HCWs at low risk caring for patients in the United States, 96% were monitored during November and early December, after giving care to the first patients treated for Ebola in the United States. In mid-December and early February, the number of persons at high risk or some risk increased 240% and 307%, respectively, corresponding with the return of two teams of U.S. Public Health Service officers who had staffed an Ebola treatment unit in Monrovia, Liberia.

In a given week, a median of 1.5 persons for whom monitoring was indicated could not be contacted upon arrival in the jurisdiction (0.4%; range = 0–48 persons per week). The number of persons who could not be contacted in a given week decreased from a median of 23 persons per week (1.4%) in November to less than one person per week in February (0.03%). Of the persons ever contacted for monitoring, a median of 7.5 persons
had gaps in being monitored that were >48 hours in a given week (0.6%; range = 1–26 persons per week). The median number of persons with >48-hour gaps in monitoring decreased from 20 persons per week (1.0%) in November to three per week (0.2%) in February.

During a given reporting week, a median of 20 persons under monitoring (1.2%, range = 9–43 persons) reported Ebola-compatible symptoms. The number of symptomatic persons peaked in December 2014. Of the symptomatic persons in the low-risk and some-risk categories, 39 were tested for Ebola during their monitoring period; none tested positive for Ebola. No persons at high risk reported Ebola-compatible symptoms.

All 50 states, DC, NYC, Puerto Rico, and the U.S. Virgin Islands monitored persons at low risk (Figure 3). Forty-four states, DC, NYC, and Puerto Rico monitored one or more persons at high risk or some risk. Three territories and three freely-associated states had no persons under monitoring. More than half (54%) of the persons were monitored in five jurisdictions. The most persons were monitored in NYC, followed by Maryland, Pennsylvania, Georgia, and Virginia (Figure 3). NYC monitored nearly twice as many persons as Maryland.

Discussion

Within 7 days of issuance of CDC guidance on movement and monitoring in October 2014, all 50 states and two local jurisdictions were effectively monitoring travelers arriving from countries with widespread Ebola transmission and HCWs caring for patients with Ebola in the United States. By December 22, all U.S. territories were reporting to CDC. Less than 1% of monitoring was incomplete. Anecdotally reported reasons for incomplete monitoring included missing or incorrect contact information, logistical issues (e.g., transfer from one jurisdiction to another), and noncompliance by persons being monitored.
These efforts demonstrate the capacity and infrastructure developed by U.S. jurisdictions to urgently respond to a large-scale monitoring need. Since 2002, considerable resources have been distributed to public health departments to effectively respond to infectious disease outbreaks and other public health threats (6). Additional resources also have been awarded to jurisdictions for Ebola-related activities.

The findings in this report are subject to at least two limitations. First, because weekly data were reported in aggregate, the estimated numbers of persons monitored might be inexact. For example, overestimates would result if a jurisdiction reported the same person in both low-risk and some-risk categories for a given reporting period. This likely would occur when a person’s risk classification changed during the 21-day monitoring period (e.g., an HCW who completed work in an Ebola treatment unit days before departing the country could change from some risk to low risk). Duplicates were corrected whenever identified. Second, the calculation of the overall number of persons under monitoring might be an underestimate if all persons were not reported as having completed their monitoring, leaving the United States, or still being under monitoring on March 8, 2015.

These results provide evidence of successful U.S. monitoring for Ebola. Jurisdictions demonstrated public health capacity to rapidly conduct and effectively monitor thousands of persons with potential exposure to Ebola over a sustained period. After monitoring of 10,344 persons, no transmission of Ebola was reported during the study period, and few persons under monitoring reported symptoms suggesting potential Ebola infection (7). Given the complexity and amount of coordination of effort required, the Ebola monitoring program in the United States provided systemic evidence of the capability of state, territorial, and local health departments to ensure and protect the health of the U.S. public.

1Epidemic Intelligence Service, CDC; 2Division of State and Local Readiness, Office of Public Health Preparedness and Response, CDC; 3Oregon Public Health Division; 4Division of Environmental Health Hazards and Health Effects, National Center for Environmental Health, CDC. Corresponding authors: Tasha Stehling-Ariza, ydi9@cdc.gov, 404-956-8053; Emily Fisher, eafisher@cdc.gov, 971-673-0497.

Acknowledgments

The 60 jurisdictions that conducted monitoring; Steve Boedigheimer, Christine Kosmos, and staff members of CDC’s State Coordination Task Force and Global Migration Task Force.
References

In response to the unprecedented Ebola virus disease (Ebola) outbreak in West Africa, the U.S. government deployed approximately 2,500 military personnel to support the government of Liberia. Their primary missions were to construct Ebola treatment units (ETUs), train health care workers to staff ETUs, and provide laboratory testing capacity for Ebola. Service members were explicitly prohibited from engaging in activities that could result in close contact with an Ebola-infected patient or coming in contact with the remains of persons who had died from unknown causes. Military units performed twice-daily monitoring of temperature and review of exposures and symptoms (“unit monitoring”) on all persons throughout deployment, exit screening at the time of departure from Liberia, and post-deployment monitoring for 21 days at segregated, controlled monitoring areas on U.S. military installations. A total of 32 persons developed a fever during deployment from October 25, 2014, through February 27, 2015; none had a known Ebola exposure or developed Ebola infection. Monitoring of all deployed service members revealed no Ebola exposures or infections. Given their activity restrictions and comprehensive monitoring while deployed to Liberia, U.S. military personnel constitute a unique population with a lower risk for Ebola exposure compared with those working in the country without such measures.

Background

The Ebola epidemic in West Africa has caused approximately 11,000 deaths in Sierra Leone, Liberia, and Guinea (January 5, 2014–May 27, 2015) (1). The U.S. military deployed approximately 2,500 service members to construct ETUs, conduct World Health Organization–based training of Liberian and international health care workers to staff the units, establish laboratories for Ebola testing, and deliver sustainable logistical ETU support.

CDC, the U.S. Department of Defense (DoD), and other agencies established exposure risk categories and clinical criteria to guide public health actions for potentially exposed or infected persons traveling from Ebola-affected countries (2–6). Risk categories for deployed DoD personnel differed from CDC categories for civilian populations (Table 1). From October 25, 2014, through February 27, 2015, the 101st Airborne Division (Air Assault) commanded military forces under Operation United Assistance. Monitoring and surveillance data from DoD personnel deployed to Liberia during this period were analyzed to evaluate the effectiveness of activity restrictions and unit monitoring in identifying potential Ebola exposures, and to describe the types of illnesses that occurred among deployed DoD personnel who developed fever.

DoD Disease Monitoring and Screening Procedures

U.S. military units in Liberia conducted unit monitoring twice daily on all deployed service members (2). Any person with a temperature ≥100.4°F (≥38.0°C), or any exposure or symptom concerns, was taken to the nearest DoD medical facility for evaluation by medical personnel. These personnel completed an Ebola risk assessment using a standard screening form (available at http://www.dtic.mil/whs/directives/forms/eforms/dd2990.pdf) (2). Service members’ adherence with prescribed malaria chemoprophylaxis also was assessed as part of the daily unit monitoring program. At locations where U.S. military units were based, Liberian government employees screened temperatures of all entering persons at controlled access points. Non-U.S. personnel with fever were denied entry, and febrile U.S. personnel were referred for on-site medical evaluation. Service members were prohibited through military orders from providing medical care to local nationals, being in close proximity to or having physical contact with any person known to have Ebola, eating local food including “bush-meat,” and having contact with the remains of persons who might have died from Ebola or whose cause of death was unknown.

Military public health authorities also monitored disease surveillance trends and febrile illness in deployed service members (Table 2). Final diagnoses were based on clinical assessment, because laboratory capabilities were limited to rapid diagnostic tests for malaria (BinaxNOW, Alere Inc.) and limited blood chemistry and hematology laboratory tests. Testing for Ebola virus by reverse transcription–polymerase chain reaction (RT-PCR) was available for patients with consistent signs and symptoms and an epidemiologic risk factor. Decisions about Ebola testing were made in consultation with U.S. military infectious disease and public health authorities deployed to Liberia.
Approximately 12 hours before departing Liberia, and after verification of compliance with unit monitoring during the preceding 21 days, medical providers screened departing service members for Ebola exposures, fever, and symptoms of possible Ebola, using a separate exit screening form (available at http://www.dtic.mil/whs/directives/forms/eforms/dd2991.pdf) (2). Upon returning to the United States, service members underwent controlled monitoring for 21 days at segregated locations on predesignated U.S. military installations.

DoD Disease Monitoring and Screening Findings

The prevalence of illness among the deployed force averaged 1.8%, with gastrointestinal (33%), respiratory (22%), and dermatologic (20%) conditions accounting for the highest

TABLE 1. Summary of CDC and U.S. Department of Defense Ebola virus disease (Ebola) exposure risk categories

<table>
<thead>
<tr>
<th>Exposure category</th>
<th>U.S. Department of Defense (October 10 and 31, 2014)</th>
<th>CDC (December 24, 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>Percutaneous (e.g., needle stick) or mucous membrane exposure to blood or body fluids of an Ebola patient</td>
<td>Percutaneous (e.g., needle stick) or mucous membrane exposure to blood or body fluids (including but not limited to feces, saliva, sweat, urine, vomit, and semen) from a person with Ebola while the person was symptomatic</td>
</tr>
<tr>
<td></td>
<td>Direct skin contact to blood/body fluids</td>
<td>Direct contact without appropriate PPE with a person with Ebola while the person was symptomatic or the person's body fluids</td>
</tr>
<tr>
<td></td>
<td>Processing blood/body fluids of an Ebola patient without standard biosafety precautions</td>
<td>Laboratory processing of blood or body fluids from a person with Ebola while the person was symptomatic without appropriate PPE or standard biosafety precautions</td>
</tr>
<tr>
<td></td>
<td>Direct contact with a dead body</td>
<td>Direct contact with a dead body without appropriate PPE in a country with widespread transmission or a country with cases in urban settings with uncertain control measures In countries with widespread transmission, having provided direct care in a household setting to a person with Ebola while the person was symptomatic</td>
</tr>
<tr>
<td>Some risk</td>
<td>Brief direct contact (e.g., shaking hands) with an Ebola patient</td>
<td>Direct contact while using appropriate PPE with a person with Ebola while the person was symptomatic or the person's body fluids or being in the patient-care area of an Ebola treatment unit Any direct patient care in non-Ebola health care settings</td>
</tr>
<tr>
<td></td>
<td>Household contact with an Ebola patient</td>
<td>Close contact in households, health care facilities, or community settings with a person with Ebola while the person was symptomatic</td>
</tr>
<tr>
<td></td>
<td>Close contact (within 3 feet [1 meter] of an Ebola patient)</td>
<td>Close contact is defined as being within approximately 3 feet (1 meter) of a person with Ebola while the person was symptomatic for a prolonged period while not using appropriate PPE</td>
</tr>
<tr>
<td></td>
<td>Prolonged period in an Ebola patient-care area</td>
<td></td>
</tr>
<tr>
<td>No known exposure</td>
<td>Not in the some-risk or high-risk exposure category</td>
<td>NA</td>
</tr>
<tr>
<td>Low (but not zero risk)</td>
<td>NA</td>
<td>Having been in a country with widespread transmission, a country with cases in urban settings with uncertain control measures, or a country with former widespread transmission and now established control measures and having had no known exposures Brief direct contact (e.g., shaking hands), while not using appropriate PPE, with a person with Ebola while the person was in the early stage of disease Brief proximity with a person with Ebola while the person was symptomatic, such as being in the same room (not the patient-care area of an Ebola treatment unit) for a brief period In countries other than those with widespread transmission, direct contact while using appropriate PPE with a person with Ebola while the person was symptomatic or the person's body fluids or being in the patient-care area of an Ebola treatment unit Laboratory processing of blood or body fluids from a person with Ebola while the person was symptomatic while using appropriate PPE and standard biosafety precautions Having traveled on an airplane with a person with Ebola while the person was symptomatic and having had no identified some-risk or high-risk exposures</td>
</tr>
</tbody>
</table>

See table footnotes on page 692
proportions of diagnoses. Thirty-two service members with febrile illness were identified (Table 2), representing 1% of all clinic visits and an estimated febrile illness rate of one case per 9,100 person-days in Liberia (estimated exposure time in Liberia for 2,540 service members was approximately 290,000 person-days, with mean duration of deployment of 110 days). The median time from date of country arrival to fever onset was 30 days (interquartile range = 14–50 days). Twenty (63%) persons reported being within 3 feet of a non-U.S. military person; none reported being within 3 feet of a known ill person or having direct contact with an ill person’s skin, blood, or body fluids. Fourteen (44%) febrile patients had never left their access-controlled facility since arriving in Liberia, and five (16%) persons with fever were detected through unit monitoring and unaware that they had fever. None of the 17 (53%) patients with fever and three or more Ebola-compatible symptoms had a close contact with an ill person. After receiving medical care and resolution of fever and symptoms, all patients resumed twice-daily unit monitoring. No febrile patient had an epidemiologic risk factor for Ebola that warranted Ebola RT-PCR testing, although two patients were tested for other reasons (a specimen collection exercise and a medical evacuation requirement) (Table 2). All 32 patients with fever completed a minimum of 21 days of post-fever monitoring by medical personnel.

No deployed service member had contact with a known or suspected Ebola patient, and exit screening on 2,540 persons identified no Ebola exposures, fever, or Ebola symptoms at the time of departure. After completion of an additional 21 days of twice-daily monitoring at controlled monitoring areas in the United States, no Ebola infections were identified.

Discussion

Having been in a country with widespread transmission, deployed service members would be categorized, by CDC criteria, as low (but not zero) risk upon return to the United States. However, based on their non-Ebola care mission and stringent activity restrictions while deployed, they might be at lower risk for exposure than returning U.S. travelers who spent time in Liberia without such restrictions. A comparable assessment of an employer-directed program that actively monitored persons while they worked in an Ebola-affected country has not been published.

A report of U.S. airport entry screenings of 1,993 travelers from Ebola-affected countries found that 86 (4%) were referred to CDC public health officers for medical evaluation, seven developed Ebola-compatible symptoms, and none had Ebola (7). This report supports observations that without close contact with an Ebola-infected patient, travel to an Ebola-affected country alone does not place a person at higher risk for Ebola infection.

An advantage of twice-daily monitoring in this deployed setting was that exposure assessments were less likely to be subject to recall bias. In addition, enforced military orders compelling adherence to activity restrictions ensured compliance with the monitoring program. Civilian employers might not have the same capacity to validate temperature, activity, exposure, and symptom history over an extended period of service in an Ebola-affected country. A further benefit of twice-daily symptom and temperature monitoring is that in the event of an Ebola exposure, an infection would be detected early, permitting expedited isolation and more timely treatment and medical evacuation.

Although the precautions put into place to prevent Ebola exposures appear effective, a full assessment of the effectiveness
The accuracy of the screening questionnaire might have been impacted by a respondent’s knowledge of a close contact’s clinical status. In addition, the potential for secondary gain from not telling the truth, such as avoiding isolation or quarantine, may underestimate exposure risk.
Health ministries in Ebola-affected countries, working directly with CDC and the World Health Organization, have established country exit screening and control measures, which include denying aircraft boarding to ill travelers and persons who report a high Ebola exposure risk (7). Knowledge of the activity restrictions and comprehensive monitoring of deployed U.S. military personnel might better inform clinical decision-making for returning military personnel and increase general awareness for communities receiving them.

1U.S. Joint Forces Command, Operation United Assistance, Monrovia, Liberia; 2Brooke Army Medical Center, Joint Base San Antonio, Fort Sam Houston, Texas. Corresponding author: Todd J. Vento, todd.j.vento.mil@mail.mil, 210-916-5554.

References

Summary
What is already known on this topic?
Health ministries in countries affected by Ebola virus disease (Ebola), working with CDC and the World Health Organization, have established country exit screening measures to limit the spread of Ebola, and CDC established guidance for monitoring and movement of persons entering the U.S. from Ebola-affected countries. A recent study of 1,993 airport entry screenings of U.S. travelers returning from Ebola-affected countries found that none developed Ebola, suggesting that travel alone does not increase risk for infection.

What is added by this report?
U.S. military personnel deployed to Liberia were subjected to strict activity restrictions and twice-daily monitoring for fever, exposure to Ebola, or Ebola symptoms. Among approximately 2,500 deployed personnel, 32 had a febrile illness, including five who were unaware of their fever. The most frequent diagnoses were gastrointestinal, respiratory, and dermatologic conditions. No febrile person had had contact with an Ebola patient; no documented Ebola exposures or infections occurred among U.S. service members while they were in Liberia or after returning to the United States.

What are the implications for public health practice?
U.S. military personnel constitute a unique population because of their activity restrictions and aggressive monitoring. Knowledge of these measures might better inform clinical decision-making for these returning U.S. travelers and increase public awareness about their low exposure risk.
Excess sodium intake is a major risk factor for hypertension, and subsequently, heart disease and stroke, the first and fifth leading causes of U.S. deaths, respectively (1). During 2011–2012, the average daily sodium intake among U.S. adults was estimated to be 3,592 mg (2), above the Healthy People 2020 target of 2,300 mg (3). To support strategies to reduce dietary sodium intake, 2013 Behavioral Risk Factor Surveillance System (BRFSS) data from states and territories that implemented the new sodium-related behavior module were assessed. Across 26 states, the District of Columbia (DC), and Puerto Rico, 39%–73% of adults reported taking action (i.e., watching or reducing sodium intake) (median = 51%), and 14%–41% reported receiving advice from a health professional to reduce sodium intake (median = 22%). Compared with adults without hypertension, a higher percentage of adults with self-reported hypertension reported taking action and receiving advice to reduce sodium intake. For states that implemented the module, these results can serve as a baseline to monitor the effects of programs designed to reduce sodium intake.

BRFSS is an annual, random-digit–dialed telephone survey representative of noninstitutionalized, civilian adults aged ≥18 years in each U.S. state and territory. Detailed information on the survey is available at http://www.cdc.gov/brfss. In 2013, 26 states, DC, and Puerto Rico implemented the new, optional sodium-related behavior module. The median American Association of Public Opinion Research location-specific response rate was 48.1% (range = 31.1%–60.3%) (4).

Taking action to reduce sodium intake was defined by a “yes” response to the question, “Are you currently watching or reducing your sodium or salt intake?” Receiving health professional advice to reduce sodium intake was defined by a “yes” response to the question, “Has a doctor or other health professional ever advised you to reduce sodium or salt intake?” Self-reported hypertension was defined by a “yes” response to the question, “Have you ever been told by a doctor, nurse, or other health professional that you have high blood pressure?” The percentage of respondents taking action or receiving advice to reduce sodium intake was estimated for each state overall and by self-reported hypertension status. All estimates were age-standardized using the 2000 U.S. standard projected population. States were categorized in quartiles based on age-standardized proportions of respondents reporting taking action to reduce sodium intake and on proportions reporting having received advice to reduce sodium intake.

A total of 185,463 participants answered questions from the optional sodium module. After excluding 5,396 participants with missing information on key variables, 180,067 participants were included. State sample sizes ranged from 3,332 (Massachusetts) to 12,363 (Minnesota). The proportion of respondents who reported taking action to reduce sodium intake ranged from 38.7% (Utah) to 73.4% (Puerto Rico), with a median of 50.6% (Table 1). Across all participating locations, a higher proportion of participants with hypertension reported taking action to reduce sodium intake compared with those without hypertension (p<0.001 for all comparisons) (Table 1).

The proportion of participants who reported receiving advice from a health professional to reduce sodium intake ranged from 13.5% (Minnesota) to 41.4% (Puerto Rico), with a median of 21.1%. Across all locations, a higher proportion of participants with hypertension reported receiving health professional advice to reduce sodium intake compared with those without hypertension (p<0.001 for all comparisons) (Table 2).

Although only 10 of the 28 survey areas were in the Southern U.S. Census Region,* most of the survey areas with the highest proportions of respondents reporting taking action to reduce sodium intake and most of those with the highest proportion of respondents reporting having received advice from a health professional to reduce sodium intake were in the South. Eight of 10 states in the South were in the top two quartiles for taking action; the two that were not in the top two quartiles were West Virginia and Kentucky (Figure 1). All 10 states in the South were in the top two quartiles for receiving advice. The other four survey areas in the top half were Connecticut, New Jersey, Hawaii, and Puerto Rico (Figure 2).

Discussion

In 2013, across 26 states, DC, and Puerto Rico, the proportion of respondents who reported both taking action and receiving advice to reduce sodium intake varied, with generally higher proportions in states in the Southern U.S. Census Region, Missouri, some states in the Northeastern U.S. Census Region, and Puerto Rico. Overall, approximately half of U.S. adults in participating states and territories reported taking action to reduce sodium intake, and about one in five reported receiving advice from a health professional to reduce sodium.

* South Census region includes Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.
intake. Respondents with self-reported hypertension were more likely to take action and receive advice to reduce sodium intake than those without. However, among adults with self-reported hypertension, 20% (Puerto Rico) to 50% (Utah) did not report taking action to reduce sodium intake. In all but four locations (DC, Kentucky, New Jersey, and Puerto Rico), less than half of respondents reported receiving advice to reduce sodium intake. Among adults without hypertension, most did not report taking action to reduce sodium intake, and an even smaller proportion reported receiving professional advice to reduced sodium. These findings suggest an opportunity for promoting strategies to reduce sodium consumption among all adults, with and without hypertension.

This is the first report with state-level estimates of sodium intake behavior among the general population. The geographic pattern of the prevalence of taking action or receiving advice to reduce sodium intake appears to roughly correspond with the pattern of the prevalence of self-reported hypertension (5). BRFSS 2009 data indicate the prevalence of self-reported hypertension is generally higher in the Southern U.S. Census Region, plus Indiana, Michigan, Missouri, Ohio, Pennsylvania, and Rhode Island. A possible explanation for the higher prevalence of taking action and receiving health professional advice to reduce sodium intake in Connecticut and New Jersey could be proximity to New York City’s (NYC) media campaign promoting sodium reduction and other NYC and state programs aimed at reducing sodium intake. For example, in April 2013, NYC launched a communication campaign for consumers to purchase lower-sodium foods.†

The findings that Puerto Rico had the highest percentage of respondents both taking action and receiving advice for sodium reduction is new. The high percentages might be related to high hypertension prevalence. Based on 2013 BRFSS data, the prevalence of self-reported hypertension in Puerto Rico was 42.3%, whereas the national prevalence was 31.4% (6).

The findings in this report are subject to at least four limitations. First, BRFSS data are self-reported and subject to recall and social desirability bias, which might overestimate or underestimate prevalence. Second, the methods used by participants to watch or reduce sodium intake were not assessed. Third, these results are not generalizable to the entire United States. Although CDC encouraged states to use the module to assess the sodium-related behavior, the reasons individual states chose

TABLE 1. Age-adjusted percentage of adults aged ≥18 years who reported taking action to reduce their dietary sodium intake, by hypertension status — 26 states, the District of Columbia, and Puerto Rico, Behavioral Risk Factor Surveillance System, 2013

<table>
<thead>
<tr>
<th>State/Area</th>
<th>Overall</th>
<th>Self-reported hypertension</th>
<th>No self-reported hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>% (95% CI)</td>
<td>No. % (95% CI)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>4,469</td>
<td>52.6 (50.3–54.9)</td>
<td>2,231 62.9 (57.6–67.8)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>6,547</td>
<td>50.7 (48.8–52.6)</td>
<td>2,589 67.7 (62.6–72.4)</td>
</tr>
<tr>
<td>DC</td>
<td>3,990</td>
<td>54.8 (52.5–57.4)</td>
<td>1,623 70.8 (63.7–77.0)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>6,992</td>
<td>55.8 (54.0–57.5)</td>
<td>2,204 63.2 (57.9–68.2)</td>
</tr>
<tr>
<td>Indiana</td>
<td>4,362</td>
<td>45.2 (43.3–47.3)</td>
<td>1,904 57.0 (51.9–62.0)</td>
</tr>
<tr>
<td>Iowa</td>
<td>7,210</td>
<td>45.5 (43.9–47.1)</td>
<td>2,889 57.7 (53.1–62.2)</td>
</tr>
<tr>
<td>Kansas</td>
<td>10,947</td>
<td>43.3 (42.1–44.4)</td>
<td>4,455 55.9 (52.5–59.1)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>9,704</td>
<td>50.5 (48.9–52.1)</td>
<td>4,717 72.4 (69.0–75.6)</td>
</tr>
<tr>
<td>Maine</td>
<td>4,496</td>
<td>52.3 (50.3–54.4)</td>
<td>1,807 67.7 (61.5–73.3)</td>
</tr>
<tr>
<td>Maryland</td>
<td>11,473</td>
<td>52.2 (50.7–53.7)</td>
<td>4,907 63.7 (60.1–67.2)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>3,332</td>
<td>49.8 (46.5–53.2)</td>
<td>1,343 61.7 (50.9–71.5)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>12,363</td>
<td>40.7 (39.2–42.3)</td>
<td>4,256 52.9 (48.9–56.8)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>6,628</td>
<td>56.3 (54.8–58.1)</td>
<td>3,514 66.1 (61.8–70.1)</td>
</tr>
<tr>
<td>Missouri</td>
<td>5,478</td>
<td>51.2 (48.9–53.5)</td>
<td>2,527 58.6 (53.3–63.6)</td>
</tr>
<tr>
<td>Montana</td>
<td>4,517</td>
<td>44.9 (42.9–46.9)</td>
<td>1,706 55.3 (50.0–60.6)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>7,667</td>
<td>44.8 (43.0–46.6)</td>
<td>3,095 56.2 (51.4–61.0)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>3,700</td>
<td>59.3 (56.8–61.8)</td>
<td>1,365 71.9 (63.6–79.0)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>3,824</td>
<td>58.2 (56.1–60.4)</td>
<td>1,749 70.8 (65.2–75.8)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>6,932</td>
<td>45.7 (44.0–47.3)</td>
<td>2,583 60.7 (55.2–65.9)</td>
</tr>
<tr>
<td>Ohio</td>
<td>7,138</td>
<td>46.0 (44.3–47.7)</td>
<td>3,078 56.8 (52.5–61.0)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>3,846</td>
<td>51.8 (49.6–53.9)</td>
<td>1,808 59.8 (54.4–65.0)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>4,771</td>
<td>53.8 (51.7–55.9)</td>
<td>2,343 63.3 (56.9–69.3)</td>
</tr>
<tr>
<td>Utah</td>
<td>5,997</td>
<td>38.8 (37.3–40.2)</td>
<td>1,854 49.6 (45.3–54.0)</td>
</tr>
<tr>
<td>Virginia</td>
<td>7,045</td>
<td>55.2 (53.6–56.8)</td>
<td>2,859 67.9 (64.0–71.6)</td>
</tr>
<tr>
<td>Washington</td>
<td>9,918</td>
<td>49.0 (47.6–50.4)</td>
<td>3,888 60.2 (56.4–63.9)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>5,578</td>
<td>43.4 (41.8–45.1)</td>
<td>2,619 56.5 (52.8–60.2)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>5,360</td>
<td>44.3 (42.1–46.5)</td>
<td>2,174 60.1 (54.0–65.9)</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>5,783</td>
<td>72.4 (71.8–74.0)</td>
<td>2,896 80.0 (76.6–83.0)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; DC = District of Columbia.

TABLE 2. Age-adjusted percentage of adults aged ≥18 years who reported being advised by a health professional to reduce dietary sodium intake, by hypertension status — 26 states, the District of Columbia, and Puerto Rico, Behavioral Risk Factor Surveillance System, 2013

<table>
<thead>
<tr>
<th>State/Area</th>
<th>Overall</th>
<th>Self-reported hypertension</th>
<th>No self-reported hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>% (95% CI)</td>
<td>No. % (95% CI)</td>
</tr>
<tr>
<td>Arkansas</td>
<td>4,475</td>
<td>22.6 (20.8–24.4)</td>
<td>2,225 44.5 (39.6–49.5)</td>
</tr>
<tr>
<td>Connecticut</td>
<td>6,551</td>
<td>21.7 (20.2–23.2)</td>
<td>2,586 49.9 (44.9–55.0)</td>
</tr>
<tr>
<td>DC</td>
<td>3,996</td>
<td>27.4 (25.3–29.6)</td>
<td>1,622 60.7 (53.8–67.2)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>6,977</td>
<td>24.3 (22.8–25.8)</td>
<td>2,195 49.1 (44.6–53.7)</td>
</tr>
<tr>
<td>Indiana</td>
<td>4,360</td>
<td>20.5 (19.1–22.0)</td>
<td>1,898 40.5 (36.3–44.9)</td>
</tr>
<tr>
<td>Iowa</td>
<td>7,186</td>
<td>17.8 (16.7–19.0)</td>
<td>2,874 40.4 (36.2–44.7)</td>
</tr>
<tr>
<td>Kansas</td>
<td>10,932</td>
<td>17.0 (16.2–17.8)</td>
<td>4,428 37.1 (34.0–40.3)</td>
</tr>
<tr>
<td>Kentucky</td>
<td>9,677</td>
<td>28.2 (26.9–29.5)</td>
<td>4,689 60.3 (56.5–63.9)</td>
</tr>
<tr>
<td>Maine</td>
<td>4,490</td>
<td>19.3 (17.8–20.8)</td>
<td>1,794 45.8 (39.7–52.0)</td>
</tr>
<tr>
<td>Maryland</td>
<td>11,489</td>
<td>23.8 (22.6–25.0)</td>
<td>4,898 48.5 (44.7–52.4)</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>3,323</td>
<td>18.1 (16.1–20.3)</td>
<td>1,336 37.8 (31.4–44.7)</td>
</tr>
<tr>
<td>Minnesota</td>
<td>12,398</td>
<td>13.5 (12.4–14.6)</td>
<td>4,249 31.7 (28.0–35.7)</td>
</tr>
<tr>
<td>Mississippi</td>
<td>6,610</td>
<td>27.0 (25.5–28.5)</td>
<td>3,503 49.3 (45.0–53.5)</td>
</tr>
<tr>
<td>Missouri</td>
<td>5,458</td>
<td>13.8 (12.5–15.1)</td>
<td>1,693 33.3 (28.1–38.8)</td>
</tr>
<tr>
<td>Montana</td>
<td>7,660</td>
<td>17.1 (15.9–18.3)</td>
<td>3,086 35.1 (31.0–39.5)</td>
</tr>
<tr>
<td>Nebraska</td>
<td>3,715</td>
<td>23.5 (21.6–25.3)</td>
<td>1,359 50.5 (42.8–58.2)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>3,808</td>
<td>24.1 (22.4–25.8)</td>
<td>1,735 47.1 (41.9–52.4)</td>
</tr>
<tr>
<td>North Carolina</td>
<td>6,941</td>
<td>15.1 (14.1–16.2)</td>
<td>2,569 36.6 (31.9–41.5)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>7,160</td>
<td>20.2 (18.9–21.5)</td>
<td>3,076 40.9 (37.0–44.9)</td>
</tr>
<tr>
<td>Ohio</td>
<td>3,835</td>
<td>22.6 (21.0–24.2)</td>
<td>1,798 40.3 (35.4–45.4)</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>4,756</td>
<td>23.2 (21.5–25.0)</td>
<td>2,329 41.9 (37.9–46.0)</td>
</tr>
<tr>
<td>Tennessee</td>
<td>4,756</td>
<td>23.2 (21.5–25.0)</td>
<td>2,329 41.9 (37.9–46.0)</td>
</tr>
<tr>
<td>Utah</td>
<td>5,988</td>
<td>14.5 (13.5–15.6)</td>
<td>1,842 35.5 (31.3–39.8)</td>
</tr>
<tr>
<td>Virginia</td>
<td>7,065</td>
<td>22.6 (21.4–23.9)</td>
<td>2,857 48.8 (45.0–52.6)</td>
</tr>
<tr>
<td>Washington</td>
<td>9,926</td>
<td>17.7 (16.7–18.7)</td>
<td>3,871 40.3 (36.6–44.1)</td>
</tr>
<tr>
<td>West Virginia</td>
<td>5,557</td>
<td>22.4 (21.1–23.6)</td>
<td>2,597 43.1 (39.4–46.9)</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>5,300</td>
<td>18.6 (16.9–20.4)</td>
<td>2,169 41.4 (35.6–47.3)</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>5,781</td>
<td>41.4 (39.7–43.0)</td>
<td>2,896 61.6 (57.9–65.1)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; DC = District of Columbia.
Summary

What is already known on this topic?
National surveillance data show that current sodium intake in the United States is substantially higher than recommended. Excess sodium intake is an important risk factor for hypertension.

What is added by this report?
In 2013, among 26 states, the District of Columbia, and Puerto Rico, the median prevalence of taking action to reduce sodium intake was 51%, ranging from 39% to 73%. The median prevalence of receiving health professional advice to reduce sodium intake was 22%, ranging from 14% to 41%. Although action and advice were higher among hypertensive participants across locations, 20%–50% did not report taking action, and 38%–68% reported not receiving advice to reduce sodium intake.

What are the implications for public health practice?
These data highlight the opportunity to increase the proportion of health professionals who advise their patients to reduce sodium intake and the proportion of U.S. adults who take action to reduce sodium intake.

1Division for Heart Disease and Stroke Prevention, National Center for Chronic Disease Prevention and Health Promotion, CDC.

Corresponding author: Jing Fang, jfang@cdc.gov, 770-488-0259.

References

1 to use the module is unknown. Finally, response bias is possible because BRFSS response rates were <50%. Despite these limitations, this report is the first to provide multistate data on sodium-reduction behavior among all BRFSS respondents. The data in this report highlight the opportunity to increase the proportion of health care professionals who advise their patients to reduce sodium intake and the proportion of U.S. adults who take action to reduce sodium intake. During 2011–2012, approximately 48% of hypertension among U.S. adults was uncontrolled (7). From 2010 to 2030, total direct medical costs of cardiovascular disease are projected to triple, increasing from $273 billion to $818 billion (in 2008 U.S. dollars) (8). Reducing sodium intake by 1,200 mg daily is projected to save $18 billion in health care costs yearly (9). Health care professionals can make a difference by recommending healthy dietary patterns, such as the Dietary Approaches to Stop Hypertension (10). By expanding the use of the sodium-related behavior module, states can enhance the ability to evaluate the effects of sodium-reduction campaigns.

Immunization Systems Management Group of the Global Polio Eradication Initiative

Since the 1988 World Health Assembly resolution to eradicate poliomyelitis (polio), transmission of wild poliovirus (WPV) has been interrupted in all countries except Afghanistan, Nigeria, and Pakistan. No polio cases caused by WPV type 2 (WPV2) have been identified since 1999, and WPV type 3 has not been detected since November 11, 2012. This progress has been achieved through widespread use of oral poliovirus vaccine (OPV), most commonly trivalent OPV (tOPV), which contains types 1, 2, and 3 live, attenuated polioviruses. OPV polioviruses can undergo genetic changes during intestinal replication, and rarely, in communities with low vaccination coverage, such changes can result in vaccine-derived polioviruses (VDPVs) capable of causing paralytic polio (3). Eliminating the risk for polio caused by VDPVs will require stopping all OPV use. Among 686 cases of paralytic polio caused by circulating VDPVs (cVDPVs) that have been detected since 2006, type 2 cVDPVs (cVDPV2s) accounted for >97% (3). To eliminate the risks posed by cVDPV2s, OPV serotype 2 will be withdrawn from all immunization activities and programs through a global, synchronized replacement of all tOPV with bivalent OPV (bOPV) containing only types 1 and 3 polioviruses (4,5). This switch from tOPV to bOPV is scheduled for April 2016 (4). To reduce the risk for cVDPV2 outbreaks and to facilitate responses to outbreaks that do occur, injectable trivalent inactivated poliovirus vaccine (IPV) is being introduced into routine immunization schedules in all countries. As of June 24, 2015, 90 (46%) of 194 World Health Organization (WHO) member states were using IPV, 102 (53%) had established dates for the introduction of IPV, and two (1%) intended to introduce IPV in the second quarter of 2015, 32 in the third quarter of 2015, 41 in the fourth quarter of 2015, 22 in the first quarter of 2016, and one in the third quarter of 2016 (Figure 1). Two additional countries planned to introduce IPV in 2015 but had not yet set dates for doing so.

Global Switch from Trivalent to Bivalent Oral Poliovirus Vaccines

The synchronized global switch from tOPV to bOPV will affect both the routine immunization delivery systems and the supplemental immunization activities* of all 156 countries now using or stockpiling tOPV† (Figure 2). Countries using tOPV should continue to administer it until the date of the switch, with bOPV reserved only for supplemental immunization campaigns before the switch.§ Following the switch, bOPV should be exclusively used, and remaining tOPV should no longer be used and instead, should be promptly destroyed. SAGE is reviewing all preparations for the switch; in April 2015, SAGE recommended that April 2016 should be firmly planned for as the date of the switch and indicated that it would consider recommending a delay for the switch only if the risk for continued cVDPV2 transmission was deemed to be high in October 2015 (6).

During 2014, cVDPV2 circulation was detected only in Nigeria, Pakistan, and South Sudan (3). In addition, a case of cVDPV1 with onset of symptoms in September 2014 was detected in Madagascar, and in June 2015, several additional

* Supplemental immunization activities are mass vaccination campaigns conducted in a short period (days to weeks) during which a dose of OPV is administered to all children aged <5 years, regardless of previous vaccination history. Campaigns can be conducted nationally or in portions of a country.
† Israel is administering bOPV in its immunization activities but is maintaining a stockpile of tOPV.
§ bOPV is sometimes used in supplemental immunization activities focused on dealing with outbreaks of types 1 or 3 polioviruses. In general, countries should continue to administer tOPV until the switch from tOPV to bOPV to maximize population immunity to type 2 polioviruses.
cases were linked to this outbreak through genetic testing. Persistent cVDPV2s (those circulating for >6 months) were found in both Nigeria and Pakistan, indicating ongoing weaknesses in routine immunization efforts in the affected areas. Such persistent cVDPV2s need to be eliminated before the withdrawal of tOPV. Although no cases of acute flaccid paralysis caused by cVDPV2s have been identified since December 2014, cVDPV2s have been identified from environmental samples collected in Nigeria on March 4, 2015, and in Pakistan on March 28 (3). These findings indicate that cVDPV2s were infecting persons in Nigeria and Pakistan even if they were not causing acute flaccid paralysis. Multiple supplemental immunization campaigns with tOPV are planned in all countries with an ongoing cVDPV2 outbreak or at high risk for such an outbreak (6).

WPV2 and cVDPV2 strains held in research or manufacturing facilities could also cause polio outbreaks if released into a population, and are expected to be destroyed or contained by the end of 2015, as specified in the current draft of the WHO Global Action Plan to Minimize Poliovirus Facility-associated Risk after Type-specific Eradication of Wild Polioviruses and Sequential Cessation of Routine OPV Use (known as GAP-III) (7). Similarly, within 3 months of the switch all type 2 Sabin poliovirus strains in manufacturing facilities using them for making the attenuated type 2 polioviruses in tOPV should be contained, and all type 2 Sabin strains in research facilities should be contained or destroyed.

To facilitate the response to any type 2 poliovirus outbreaks that occur despite these efforts, a protocol has been developed and a global stockpile of monovalent OPV type 2 is being assembled (7). Surveillance for acute flaccid paralysis cases is currently supplemented by environmental surveillance for polioviruses in sewage in at least 23 countries (8), which will help ensure that any circulation or outbreaks of type 2 poliovirus are identified and responded to quickly.

The global switch from tOPV to bOPV depends on all OPV-using countries having access to sufficient bOPV for use in routine immunization programs and in supplemental immunization activities. Although bOPV is already licensed for routine use in many countries, in others it lacks regulatory approval. Because of the April 2016 target date for the global switch to bOPV and the importance of that switch occurring in a synchronized manner, the World Health Assembly has urged countries to expedite the licensure of bOPV for use in routine immunization programs and, if the switch occurs before completion of that licensing, to temporarily allow the use of bOPV based on WHO prequalification (4).

Discussion

The global withdrawal of tOPV, specifically its type 2 component, will represent a substantial milestone in the effort to eradicate polio, because it will mark the eradication of WPV2 and, in the long-term, should lead to the elimination of type 2 VDPVs. However, cVDPV2 outbreaks, caused either by strains that are already circulating or those that newly emerge, could occur after the switch because the number of persons susceptible to infections with type 2 polioviruses will increase over
time from new birth cohorts not receiving tOPV and because multiple low income countries already have low polio vaccination coverage (9). As a result, following the switch from tOPV to bOPV, reducing the likelihood and potential extent of cVDPV2 outbreaks is essential, as is the ability to detect and respond to any such outbreaks that do occur.

Careful synchronization of the switch from tOPV to bOPV within and across OPV-using countries will be critical to minimize the risk for new cVDPV2 outbreaks. If, for example, a country continues to use tOPV after its neighbors have switched to bOPV, that country could export type 2 VDPVs to populations that are becoming increasingly susceptible to infection (9). The more tightly the switch to bOPV is synchronized, the lower the risk for new cVDPV2 outbreaks following it. Preceding the switch with high-quality tOPV supplemental immunization activities to increase population immunity in countries at risk for cVDPV2 outbreaks also will reduce the likelihood of cVDPV2 outbreaks following the switch (6,9).

The global introduction of IPV should aid in preventing paralytic polio from wild or vaccine-derived type 2 polioviruses in many persons who have received only bOPV by providing them immunity to type 2 viruses. Strengthening the routine immunization systems that distribute and administer IPV and, in case of limitations in the global IPV supply, prioritizing IPV for countries at high risk for cVDPV2 outbreaks will help maximize the impact of IPV use. Unfortunately, use of IPV alone might not always be sufficient to prevent the spread of poliovirus infections, as evidenced by the recent repeated isolation of type 1 wild polioviruses through environmental surveillance in Israel, where the population had high IPV coverage, but, because OPV had not been used since 2004, silent circulation of introduced wild polioviruses occurred (10). As OPV is withdrawn, high quality surveillance for circulating polioviruses, both through acute flaccid paralysis surveillance and environmental surveillance, will be crucial, as will prompt, aggressive responses to any identified type 2 poliovirus outbreaks.

The global effort to introduce IPV in all countries has been facilitated by support, including technical assistance and funding for IPV purchases and operational expenses, from the Global Polio Eradication Initiative. As of June 24, 71 were receiving support provided through Gavi, the Vaccine Alliance, and 18 were receiving or had been approved for support provided through WHO and the United Nations Children’s Fund (UNICEF) (7).

Through UNICEF, manufacturers are coordinating the appropriate level of production of both tOPV and bOPV, to ensure that the switch occurs as planned. The global withdrawal of the type 2 component of OPV offers a valuable opportunity to develop and test measures for conducting such a withdrawal efficiently and safely, including measures related to vaccine procurement and stock management, which also will be needed during the eventual global withdrawal of all OPV after eradication of all wild polioviruses.

Corresponding author: Lee M. Hampton, lhampton@cdc.gov, 404-639-4722.

† Formerly known as the Global Alliance for Vaccines and Immunization.
References

Summary

What is already known on this topic?
No cases of poliomyelitis caused by wild poliovirus type 2 have been detected since 1999, but hundreds of cases of paralytic polio have been caused by circulating vaccine derived poliovirus type 2 since 2006. As a result, the type 2 component of oral poliovirus vaccine is slated for global withdrawal through a switch from trivalent oral poliovirus vaccine (tOPV) to bivalent oral poliovirus vaccine (bOPV).

What is added by this report?
tOPV is currently being used or stockpiled in 156 countries, all of which will need to switch from tOPV to bOPV. Inactivated poliovirus vaccine (IPV) is currently being used in the routine immunization programs of 90 countries, and because of the switch, 102 additional countries have set dates for introducing IPV. The World Health Assembly has asked that all countries currently using oral poliovirus vaccine prepare for the global switch from tOPV to bOPV in April 2016.

What are the implications for public health practice?
Because of the progress made in eradicating polio, all 156 countries using or stockpiling tOPV need to fully prepare to execute the synchronized switch from tOPV to bOPV in April 2016, one of the largest coordinated public health efforts in history, to best protect the world’s children against outbreaks of poliomyelitis caused by circulating vaccine-derived poliovirus type 2.
Announcement

National Cleft and Craniofacial Awareness and Prevention Month — July 2015

July is National Cleft and Craniofacial Awareness and Prevention Month, a time to raise awareness and improve understanding of orofacial clefts (clefts of the lip and palate) and other conditions of the head and face. Each year in the United States, approximately 2,600 babies are born with a cleft palate and 4,400 babies are born with a cleft lip, with or without a cleft palate (1). Other craniofacial birth defects include craniosynostosis (skull sutures fusing prematurely), anotia/microtia (ear is missing or underdeveloped), and anophthalmia/microphthalmia (missing or abnormally small eye).

Children with orofacial clefts and other craniofacial conditions often have impaired ability to feed and impaired language development, and might be at increased risk for a greater number of ear infections, hearing issues, and problems with their teeth. Because of the high prevalence of orofacial clefts and health care use and costs associated with treatment, improving the health of these children is an important public health goal (2). CDC and its partners are working to better understand the preventable causes of clefts and craniofacial defects, and how these conditions affect children and their families, by focusing on risk factors, health care–service use, access to care, quality of life, health outcomes, and management and treatment of these conditions.

To help reduce a woman’s risk for having a baby with an orofacial cleft or other craniofacial condition, health care providers should encourage patients who are thinking about becoming pregnant to commit to a healthy lifestyle (e.g., control diabetes, quit smoking) before becoming pregnant. Health care providers should also work with them to make informed decisions about medication treatment during pregnancy. Additional information regarding National Cleft and Craniofacial Awareness and Prevention Month is available at http://www.nccapm.org/about.html.

References

Errata

Vol. 64, No. 19

In the report, “Fatal and Nonfatal Drowning Outcomes Related to Dangerous Underwater Breath-Holding Behaviors — New York State, 1988–2011,” errors occurred. The author list and author affiliations should read as follows:

Christopher Boyd1; Amanda Levy, MSPH1; Trevor McProud, MS1; Li Huang, PE1; Eli Raneses, MPH1; Carolyn Olson, MPH1; **Eric Wiegert, MPH2** (Author affiliations at end of text)

1Division of Environmental Health, New York City Department of Health and Mental Hygiene; 2Bureau of Community Environmental Health and Food Protection, New York State Department of Health.

In addition, on page 520, in the second paragraph, the fourth and fifth sentences should read:

“Fifteen of the 16 incidents in this case study occurred at New York state bathing facilities that require an operating permit from their local health department, or under the oversight of the New York State Office of Parks, Recreation and Historic Preservation. All incidents had witnesses who reported predrowning behaviors. However, research suggests that more than half of drowning incidents are not witnessed (9,10).”

Finally, the following acknowledgments should be included:

Vol. 64, No. 23

In the report, “Opioid Overdose Prevention Programs Providing Naloxone to Laypersons — United States, 2014,” an error occurred. On page 633, in the second full paragraph, the fifth sentence should read: “A total of 111,607 vials (79.7%) of injectable naloxone (21.4% 10 mL and 58.1% 1 mL) and 28,446 (20.3%) vials of intranasal naloxone were provided to laypersons.”
Percentage of Currently Employed Adults Who Had Paid Sick Leave,* by Industry† — National Health Interview Survey, United States, 2009–2013§

During 2009–2013, approximately 60% of employed men and women had paid sick leave at their main job. For both men (90%) and women (88%), paid sick leave was most common in the public administration sector and least common in the agriculture, forestry, and fishing sector (24% for men and 22% for women). Women were more likely than men to have paid sick leave in the following industries: construction; finance, insurance, and real estate; mining; and transportation, communications, electric, gas, and sanitary services. Men employed in the manufacturing and wholesale and retail trade industries were more likely to have paid sick leave than women in those industries.

Reported by: Roger R. Rosa, PhD, RRosa@cdc.gov; 202-245-0655; Abay Asfaw, PhD; Rene Pana-Cryan, PhD.