Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home
Share
Compartir

Biology

The natural ecology of malaria involves malaria parasites infecting successively two types of hosts: humans and female Anopheles mosquitoes. In humans, the parasites grow and multiply first in the liver cells and then in the red cells of the blood. In the blood, successive broods of parasites grow inside the red cells and destroy them, releasing daughter parasites ("merozoites") that continue the cycle by invading other red cells.

The blood stage parasites are those that cause the symptoms of malaria. When certain forms of blood stage parasites ("gametocytes") are picked up by a female Anopheles mosquito during a blood meal, they start another, different cycle of growth and multiplication in the mosquito.

After 10-18 days, the parasites are found (as "sporozoites") in the mosquito's salivary glands. When the Anopheles mosquito takes a blood meal on another human, the sporozoites are injected with the mosquito's saliva and start another human infection when they parasitize the liver cells.

Thus the mosquito carries the disease from one human to another (acting as a "vector"). Differently from the human host, the mosquito vector does not suffer from the presence of the parasites.

An image depicting the Life Cycle of the Malaria Parasite

The malaria parasite life cycle involves two hosts. During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host 1. Sporozoites infect liver cells 2and mature into schizonts 3, which rupture and release merozoites 4. (Of note, in P. vivax and P. ovale a dormant stage [hypnozoites] can persist in the liver and cause relapses by invading the bloodstream weeks, or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony A), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony B). Merozoites infect red blood cells 5. The ring stage trophozoites mature into schizonts, which rupture releasing merozoites 6. Some parasites differentiate into sexual erythrocytic stages (gametocytes) 7. Blood stage parasites are responsible for the clinical manifestations of the disease.

The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal 8. The parasites’ multiplication in the mosquito is known as the sporogonic cycle C. While in the mosquito's stomach, the microgametes penetrate the macrogametes generating zygotes 9. The zygotes in turn become motile and elongated (ookinetes) 10which invade the midgut wall of the mosquito where they develop into oocysts 11. The oocysts grow, rupture, and release sporozoites 12, which make their way to the mosquito's salivary glands. Inoculation of the sporozoites 1into a new human host perpetuates the malaria life cycle.

More on: Anopheles mosquitoes

More on: Malaria Parasites

Human Factors And Malaria

Biologic characteristics and behavioral traits can influence an individual's risk of developing malaria and, on a larger scale, the intensity of transmission in a population.

More on: Human Factors and Malaria

 
Contact Us:
  • Centers for Disease Control and Prevention
    1600 Clifton Rd
    MS A-06
    Atlanta, GA 30333
  • Health care providers needing assistance with diagnosis or management of suspected cases of malaria should call the CDC Malaria Hotline:
    770-488-7788 or 855-856-4713 toll-free
    (M-F, 9am-5pm, eastern time).
  • Emergency consultation after hours, call:
    770-488-7100
    and request to speak with a CDC Malaria Branch clinician.
  • malaria@cdc.gov
  • Page last reviewed: November 9, 2012
  • Page last updated: February 8, 2010
USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC-INFO