
Each year in the United States, nontyphoidal Sal-
monella, Escherichia coli O157, Listeria monocyto-

genes, and Campylobacter cause >2 million estimated 
foodborne illnesses, 31,000 hospitalizations, and 700 
deaths (1), representing an estimated $9–$11 billion in 

impacts to human health (2,3). Estimating the percent-
age of these illnesses attributable to the consumption 
of specific foods (i.e., foodborne illness source attri-
bution) is foundational to a risk-based national food 
safety system (4). Such estimates can inform strategic 
planning, priority setting, risk assessments, economic 
analyses, and evaluations of the impacts of regula-
tions and interventions (5).

Numerous studies in the United States and world-
wide have estimated source attribution on the basis of 
aggregated foodborne outbreak data (6–12). For the 
United States, the Centers for Disease Control and 
Prevention (CDC) previously estimated the number 
of domestically acquired foodborne illnesses, hospi-
talizations, and deaths attributable to food categories 
based on analysis of outbreaks during 1998–2008 (13).

Through the Interagency Food Safety Analytics 
Collaboration (IFSAC), CDC, the US Food and Drug 
Administration, and the US Department of Agri-
culture Food Safety and Inspection Service work in 
partnership to develop improved source attribution 
estimates through multiple interconnected projects 
(14,15). This study reflects a tri-agency effort to up-
date and harmonize estimates for the United States 
for nontyphoidal Salmonella, E. coli O157, L. monocy-
togenes, and Campylobacter using data from outbreaks 
that occurred during 1998–2012.
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Foodborne illness source attribution is foundational to a 
risk-based food safety system. We describe a method 
for attributing US foodborne illnesses caused by nonty-
phoidal Salmonella enterica, Escherichia coli O157, Lis-
teria monocytogenes, and Campylobacter to 17 food cat-
egories using statistical modeling of outbreak data. This 
method adjusts for epidemiologic factors associated with 
outbreak size, down-weights older outbreaks, and esti-
mates credibility intervals. On the basis of 952 reported 
outbreaks and 32,802 illnesses during 1998–2012, we at-
tribute 77% of foodborne Salmonella illnesses to 7 food 
categories (seeded vegetables, eggs, chicken, other pro-
duce, pork, beef, and fruits), 82% of E. coli O157 illnesses 
to beef and vegetable row crops, 81% of L. monocyto-
genes illnesses to fruits and dairy, and 74% of Campylo-
bacter illnesses to dairy and chicken. However, because 
Campylobacter outbreaks probably overrepresent dairy 
as a source of nonoutbreak campylobacteriosis, we cau-
tion against using these Campylobacter attribution esti-
mates without further adjustment.



 Recency-Weighted Statistical Modeling

IFSAC’s approach addresses some of the limita-
tions of prior studies. We describe this method here. 
We use statistical modeling to mitigate the influence 
of large outbreaks that might bias estimates, and we 
incorporate epidemiologic factors relevant to out-
break size. We weight recent outbreaks more heavily 
than older ones and quantify uncertainty by estimat-
ing credibility intervals around estimates. We also 
use an updated food categorization scheme that bet-
ter meets the needs of the regulatory agencies.

Methods

Data Sources
CDC’s Foodborne Disease Outbreak Surveillance Sys-
tem (FDOSS) collects standardized reports submitted 
by state, local, and territorial health departments on 
foodborne disease outbreaks. In FDOSS, outbreaks 
are defined as the occurrence of >2 cases of a simi-
lar illness resulting from the ingestion of a common 
food (16). We extracted data from FDOSS on reported 
foodborne outbreaks caused by nontyphoidal Salmo-
nella enterica, E. coli O157 (E. coli O157:H7 and E. coli 
O157:NM), L. monocytogenes, and Campylobacter spp., 
in which the first illness occurred in a US state or the 
District of Columbia during 1998–2012. We extracted 
data on December 18, 2013. Analysis was conducted 
by using SAS 9.3, JMP Pro (SAS Institute, https://
www.sas.com), and R (R Foundation for Statistical 
Computing, https://www.r-project.org).

We included only outbreaks with a single causal 
pathogen and for which implicated foods could be as-
signed to a single food category because those out-
breaks have the clearest information. We excluded 
outbreaks caused by multiple pathogens or for which 
no food or ingredient was implicated, including out-
breaks with a complex food vehicle (i.e., consisting of 
ingredients belonging to >1 food category) for which 
the implicated ingredient was not determined. A pre-
viously published method (13) for assigning the food 
category for complex food outbreaks could not be ap-
plied to more recent data without substantial revision.

We excluded outbreaks for which implicated 
foods came from >1 food category (i.e., multiple 
foods). For example, an outbreak for which apples 
and cantaloupe were both implicated would be in-
cluded because both fall into the fruits category, but 
an outbreak for which apples and cheese were both 
implicated would be excluded.

By using a hierarchical scheme of 22 food cat-
egories, we assigned outbreaks to a single category 
on the basis of implicated foods or ingredients (17). 
Because of sparse data, outbreaks in 8 food catego-

ries were aggregated into 3 combined categories: 
other meat and poultry (other meat, other poultry); 
other seafood (shellfish, other aquatic animals); and 
other produce (fungi, herbs, root-underground, nuts-
seeds), resulting in 17 food categories for our analysis 
(Appendix Figure 1, https://wwwnc.cdc.gov/EID/
article/27/1/20-3832-App1.pdf).

In FDOSS, an outbreak must have >2 ill persons 
(16). For Salmonella, E. coli O157, and Campylobacter, 
outbreaks with confirmed etiology are defined as 
those in which the outbreak strain was isolated from 
>2 patients or from epidemiologically implicated food; 
confirmed outbreaks of L. monocytogenes infections 
must have 1 person with the outbreak strain isolated 
from a normally sterile site (18). (Cases of listeriosis 
can also be diagnosed based on symptoms and cul-
ture of pregnancy-associated products of conception, 
which are not sterile.) The etiology of an outbreak not 
meeting these conditions is considered to be suspect-
ed. We found no statistically significant differences in 
outbreak size or foods implicated between outbreaks 
with confirmed and those with suspected status, and 
therefore included outbreaks with suspected etiology 
in the analysis (Appendix). The final dataset used for 
exploratory analysis and estimates of sources included 
952 outbreaks assigned to 17 food categories (Table 1).

Exploratory Analysis
We focused exploratory analysis on factors influenc-
ing outbreak size. We used the total number of report-
ed illnesses as the measure of outbreak size. Whereas 
most outbreaks are small, some are very large. For ex-
ample, of the 4,732 reported Campylobacter outbreak 
illnesses during the entire 15-year period, more than 
one third (1,644) were from a single outbreak. Large 
outbreaks might not be representative of the sources 
of sporadic illnesses and might overly influence esti-
mates of food sources (13).

Untransformed outbreak size is skewed and var-
ies across pathogens (Figure 1). Log transformation 
of outbreak size results in distributions that are more 
symmetric and normally distributed, although con-
siderable variation remains within and across patho-
gens (Figure 1). We therefore used log-transformed 
outbreak size in statistical modeling.

FDOSS data include epidemiologic factors that 
might relate to the size and scope of an outbreak, 
including pathogen, number of states in which out-
break exposures occurred, implicated foods and in-
gredients, and the type of location in which food was 
prepared (e.g., restaurant or private home). We ex-
plored the relationships between outbreak size and 
these variables.
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Distinct differences in distributions of outbreak 
size can be observed by pathogen and 3 categorical 
variables: food category, type of food preparation lo-
cation, and whether exposures occurred in multiple 
states or a single state (Figure 2). For example, the 
mean size of multistate outbreaks is larger than sin-
gle-state outbreaks for Salmonella, E. coli O157, and L. 
monocytogenes. Differences in grouped means can be 
observed for all 3 categorical variables for L. monocy-
togenes despite the small number of outbreaks.

Statistical Modeling
Whereas prior studies calculated attribution propor-
tions on the basis of observed counts of reported out-
break events or outbreak illnesses (6,13), in this study 

we developed a model-based approach to estimate 
the number of outbreak illnesses for attribution. This 
approach mitigates the impact of large outbreaks and 
enables the incorporation of epidemiologic factors be-
yond pathogen and food category.

After considering several approaches, we chose 
analysis of variance (ANOVA) of log-transformed 
outbreak sizes as the modeling framework, partly 
based on simplicity and interpretability (Appendix). 
For each pathogen, we developed a model to estimate 
the log-transformed number of illnesses based on the 
3 factors shown to be associated with outbreak size: 
food category, type of food preparation location, and 
whether exposures occurred in multiple states or a 
single state. Each of these factors was found through 

216	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 27, No. 1, January 2021

 
Table 1. Number of outbreaks and outbreak illnesses caused by a single pathogen and due to a single food category for Salmonella, 
Escherichia coli O157, Listeria monocytogenes, and Campylobacter, Foodborne Disease Outbreak Surveillance System, United 
States, 1998–2012* 

Food category 
Nontyphoidal 

Salmonella spp. 
E. coli O157 

 
Listeria 

monocytegenes 
Campylobacter 

spp. Total 
Beef 47 (1,473) 97 (1,813) 1 (4) 2 (5) 147 (3,295) 
Pork 51 (1,098) 0 2 (11) 1 (27) 54 (1,136) 
Chicken 114 (2,648) 1 (36) 1 (3) 24 (230) 140 (2,917) 
Turkey 49 (1,308) 1 (2) 4 (124) 5 (44) 59 (1,478) 
Other meat or poultry 6 (84) 2 (9) 0 2 (6) 10 (99) 
Game 2 (8) 4 (18) 0 1 (2) 7 (28) 
Dairy 24 (793) 18 (399) 12 (124) 106 (3,395) 160 (4,711) 
Eggs 140 (5,245) 0 0 0 140 (5,245) 
Fish 12 (286) 0 0 1 (3) 13 (289) 
Other seafood 4 (36) 0 0 5 (344) 9 (380) 
Grains, beans 7 (268) 0 0 0 7 (268) 
Oils, sugars 0 0 0 1 (3) 1 (3) 
Fruits 46 (2,510) 11 (893) 1 (147) 2 (29) 60 (3,579) 
Seeded vegetables 34 (4,001) 0 0 3 (136) 37 (4,137) 
Sprouts 33 (1,266) 6 (55) 2 (26) 0 41 (1,347) 
Vegetable row crops 10 (412) 29 (1,029) 1 (10) 7 (372) 47 (1,823) 
Other produce 18 (1,923) 1 (8) 0 1 (136) 20 (2,067) 
Total 597 (23,359) 170 (4,262) 24 (449) 161 (4,732) 952 (32,802) 
*Number of outbreak-associated illnesses in parentheses. Nontyphoidal Salmonella is divided into S. enterica serovar Enteritidis and other serovars 
(Appendix Table 2, https://wwwnc.cdc.gov/EID/article/27/1/20-3832-App1.pdf). 

 

Figure 1. Number of reported 
illnesses for foodborne disease 
outbreaks caused by a single 
pathogen and attributable to 
a single food category, using 
linear and log scales, for 
Salmonella, Escherichia coli 
O157, Listeria monocytogenes, 
and Campylobacter, Foodborne 
Disease Outbreak Surveillance 
System, United States, 1998–
2012.
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1-way ANOVA to be a statistically significant (p<0.05) 
predictor of outbreak size for >1 pathogens. Although 
not all 3 factors were significant for all pathogens, we 
included them to maintain uniformity across the anal-
ysis. We explored serotype-specific ANOVA models 
for Salmonella, but for most serotypes these mod-
els did not find different distributions of outbreaks 
across food categories or meaningful differences in 
outbreak size across the other factors. The exception 

was serotype Enteritidis, outbreaks of which did dis-
play differences from other serotypes. Therefore, we 
developed 2 distinct Salmonella ANOVA models: 1 for 
Enteritidis and 1 for all other serotypes.

Each of the 5 pathogen-specific models estimates the 
log-transformed number of illnesses for each reported 
outbreak on the basis of that outbreak’s characteristics 
as defined by the categorical variables. We then back-
transformed the model-estimated numbers of illnesses 

	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 27, No. 1, January 2021	 217

Figure 2. Number of reported illnesses (log scale) for foodborne disease outbreaks caused by a single pathogen and attributable to a single 
food category, for 3 outbreak characteristics, for Salmonella, Escherichia coli O157, Listeria monocytogenes, and Campylobacter, Foodborne 
Disease Outbreak Surveillance System, United States, 1998–2012. Each panel displays outbreak size for a given pathogen, grouped by 1 of 3 
categorical variables. Each includes a scatterplot of individual outbreaks (indicated by solid circles), the mean (indicated by solid squares), and 
a boxplot showing median, interquartile range, and minimum and maximum values inside the inner and outer fences (1.5 interquartile range).
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(e raised to the transformed values) and summed the 2 
sets of Salmonella estimates. Additional information on 
model selection and fit is presented in the Appendix.

As expected, ANOVA models reduce varia-
tion in outbreak size and the influence of very large 
outbreaks. This effect is shown in Appendix Figure 
3, which compares the number of reported illnesses 
with the number of model-estimated illnesses. The 
figure also shows the wide variation in the number of 
outbreaks for different pathogen–food category pairs.

Recency Weighting
Because of changes over time in food consumption 
patterns, food production and processing practices, 
food safety activities, regulatory interventions, and 
other factors, recent outbreaks are probably more rep-
resentative of current foodborne illness attribution 
than older outbreaks. We explored estimating attribu-
tion on the basis of only 3, 5, or 7 years of the most 
recent outbreaks, but data sparseness and high year-
to-year variability, particularly in food categories for 
which outbreaks were not reported every year, led to 
instability and more statistical uncertainty in attribu-
tion estimates when older outbreaks were excluded 
(Appendix). Therefore, we included older outbreaks 
but down-weighted them on the basis of recency. Out-
breaks older than 5 years were multiplied by an expo-
nential decay function, an approach long used in many 
fields to down-weight older data in forecasting and 
time-series models, including public health surveil-
lance (19,20). This approach is flexible to inclusion of 
additional years of data; as the number of years of data 
increases, the earliest years have less and less weight.

The multiplicative recency-weighting factor w for 
an outbreak in year y is defined as a function of decay 
parameter a and the most recent year of data Y:

We used a decay parameter a of 5/7 (0.7142). This 
factor resulted in outbreaks occurring during 2008–
2012 providing 67% of the overall information, with 
28% from outbreaks occurring during 2003–2007, and 
5% outbreaks occurring during 1998–2002 (Appendix 
Table 4).

Calculating Attribution Percentages
For pathogen p and food category c, the attribution 
percentage APpc is calculated by dividing the sum of 
recency-weighted model-estimated illnesses of that 
pathogen–food category pair across all years by the 
sum of recency-weighted model-estimated illnesses 
for all food categories associated with that pathogen 

for all years. The estimated attribution percentage 
APpc is defined as:

where MEI (opcyi) is the number of model-estimated ill-
nesses for a specific outbreak oi and i is the instance in 
the set of outbreaks associated with a pathogen–food 
pair occurring in a given year. To estimate 90% credi-
bility intervals for each APpc, Bayesian bootstrap resa-
mpling (10,000 per pathogen–food category pair) was 
performed on the weighted model estimates (21,22). 
The 5th and 95th percentiles of the bootstrap distribu-
tions were used as the lower and upper bounds for 
the credibility intervals.

We conducted sensitivity analyses to examine the 
impacts of data selection and modeling choices on es-
timates. These analyses included comparing our attri-
bution estimates to those based on reported outbreak 
illnesses and log-transformed illnesses, evaluating 
the impact of alternate ANOVA model specifications, 
examining the impact of recency-weighting choices 
and approaches, and evaluating the impact of par-
ticularly large and influential outbreaks.

Results
We extracted data on 2,732 US outbreaks caused by 
nontyphoidal Salmonella, E. coli O157, L. monocytogenes, 
and Campylobacter that occurred during 1998–2012. We 
excluded 77 outbreaks because they were caused by 
multiple pathogens, excluded an additional 1,014 be-
cause they did not have an identified food vehicle, and 
excluded an additional 689 that could not be assigned 
to a single food category (Appendix Figure 2). These 
exclusions resulted in a dataset with 952 outbreaks 
(35% of 2,732), each caused by a single pathogen and 
assignable to 1 of 17 food categories (Table 1).

The final estimates (Table 2; Figure 3) attributed 
Salmonella illnesses more broadly than other patho-
gens, with nonzero estimates for 16 categories; of 
those, 4 food categories had estimated percentages 
>10%: seeded vegetables (e.g., tomatoes), eggs, fruits, 
and chicken. Cumulatively, the top 7 food categories 
accounted for 77% of illnesses. Credibility intervals for 
Salmonella were largely overlapping but comparative-
ly narrow, attributable in part to the high number of 
Salmonella outbreaks in the analysis. In contrast, 82% 
of illnesses caused by E. coli O157 were attributed to 
only 2 food categories, beef and vegetable row crops 
(e.g., leafy greens). Only 2 other food categories, dairy 
and fruits, had estimated attribution percentages >1%. 
Similarly, 81% of illnesses caused by L. monocytogenes 
were attributed to 2 food categories, dairy and fruits. 
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Only 4 other food categories (sprouts, turkey, veg-
etable row crops, and pork) had estimated attribution 
percentages >1%. The wide and overlapping credibil-
ity intervals reflect the very small number of L. monocy-
togenes outbreaks in the analysis (n = 24).

An estimated 66% of Campylobacter outbreak ill-
nesses were attributed to the dairy category. This per-
centage was substantially higher than for any other 
food category. About 8% of illnesses are attributed to 
chicken; 6% were attributed respectively to vegetable 
row crops, seeded vegetables, and other seafood.

We found estimates to be robust across a wide 
variety of scenarios. We assessed the sensitivity of 
estimates to particularly influential outbreaks and 
to modeling decisions, such as choices in statistical 
modeling, down-weighting of older outbreaks, and 
consideration of etiology status (Appendix).

Discussion
Although only a small proportion of foodborne ill-
nesses are part of recognized outbreaks, outbreak 
investigations can provide insights into the causes 
and contributing factors leading to infection. Because 
linking an illness to a particular food is rarely possi-
ble except during an outbreak, aggregated data from 
foodborne outbreaks have been used to estimate the 
food sources of all illnesses caused by specific patho-
gens in numerous countries (6–12).

Whereas our approach addresses numerous chal-
lenges with estimating attribution percentages on 

the basis of outbreak data, some issues must be con-
sidered when using these estimates to inform food 
safety decision-making. Our analysis does not indi-
cate the point of contamination, because outbreak in-
vestigations implicate only the food vehicle that was 
consumed. Moreover, the outbreaks included in this 
analysis include only 35% of the reported foodborne 
disease outbreaks caused by these pathogens dur-
ing the study period, and they might not be repre-
sentative of all foodborne outbreaks caused by these 
pathogens. The exclusion of outbreaks attributable to 
complex foods for which the contaminated ingredient 
was not determined could result in underrepresenta-
tion of food categories containing foods often eaten 
as part of complex dishes (e.g., leafy greens and eggs) 
(23). However, because the published method for as-
signing food categories to these complex food out-
breaks is somewhat subjective and relies on internet 
searches for recipes (24), excluding these outbreaks 
provides results based on the most accurate available 
data. A method to incorporate data from these out-
breaks is being developed.

Foods are implicated in outbreaks through epide-
miologic analyses, by isolation of the causal pathogen 
from implicated food, through examination of supply 
chain records or environmental assessments, or by 
other information. The strength of evidence implicat-
ing foods varies widely across outbreaks.

For some pathogens and pathogen–food pairs, 
the number of outbreaks available for analyses was 

	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 27, No. 1, January 2021	 219

 
Table 2. Estimated percentages of foodborne illnesses attributed to 17 food categories and 90% credibility intervals for Salmonella, 
Escherichia coli O157, Listeria monocytogenes, and Campylobacter, based on analysis of single pathogen, single food category 
outbreaks, Foodborne Disease Outbreak Surveillance System, 1998–2012* 

Food category 
% (90% credibility interval) 

Salmonella E. coli O157 L. monocytogenes Campylobacter 
Land animals 
 Beef 9 (6–13) 46 (36–55) 0 (0–1) 1 (<1–1) 
 Pork 8 (6–10) – 2 (<1–8) 3 (<1–8) 
 Chicken 10 (7–13) 0 (0–1) 0 (0–2) 8 (5–12) 
 Turkey 7 (5–10) 0 (0–<1) 6 (2–16) 2 (1–4) 
 Other meat or poultry 0 (<1–1) 0 (0–1) – 1 (<1–1) 
 Game 0 (0–<1) 1 (<1–3) – 0 (0–<1) 
 Dairy 3 (1–5) 9 (5–14) 31 (12–64) 66 (57–74) 
 Eggs 12 (9–17) – – – 
Aquatic animals 
 Fish 2 (1–3) – – 0 (0–<1) 
 Other seafood 0 (0–<1) – – 6 (2–11) 
Plants 
 Grains, beans 1 (<1–2) – – – 
 Oils, sugars – – – 0 (0–1) 
 Fruits 12 (8–16) 7 (3–12) 50 (5–77) 1 (<1–2) 
 Seeded vegetables 18 (13–25) – – 6 (1–13) 
 Sprouts 8 (5–12) 1 (<1–1) 8 (1–22) – 
 Vegetable row crops 3 (1–6) 36 (26–46) 3 (<1–13) 6 (2–11) 
 Other produce 7 (3–11) 1 (0–2) – 2 (<1–6) 
*Estimates calculated by using analysis of variance model–estimated outbreak illnesses for single pathogen, single food category outbreaks occurring 
during 1998–2012, with down-weighting of outbreaks that occurred during 1998–2007. Because of rounding, 0 indicates nonzero estimates <0.5. Dashes 
indicate pathogen–food category pairs for which we did not estimate attribution percentages because of a lack of outbreaks. 
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quite low. For example, our data include only 24 out-
breaks caused by L. monocytogenes, so 1 fruits-linked 
outbreak (a very large outbreak that occurred in 2011 
and was associated with contaminated cantaloupe) 
had a profound influence on attribution estimates for 
this pathogen. However, our approach reflects the 
uncertainties associated with sparse data in wider 
credibility intervals.

Although we weighted recent outbreaks more 
heavily than older ones because recent outbreaks are 
probably more representative of current attribution, 
we did not formally account for possible changes in 
underlying factors over time in the main effects mod-
el. Examples of such factors could include changes 
in pathogen-specific disease incidence, outbreak in-
vestigation practices, or outbreak reporting by states. 
Generalizing outbreak-based attribution to overall 
foodborne disease assumes, implicitly, that the foods 
implicated in outbreaks reflect the food sources of 
illness in the general population. However, these 
assumptions might not always hold. For example, 
≈10% of outbreaks occurred among institutionalized 
populations, such as those in correctional facilities, 
hospitals, and nursing homes. In these populations, 

case-ascertainment rates, food options, and sources 
of food contamination might not be representative 
of the general population. However, such outbreaks 
might elucidate setting- or subpopulation-specific 
contamination problems that are difficult to identify 
among the general population.

Campylobacter attribution presents a specific chal-
lenge. Our outbreak-based model attributes 66% 
(90% credibility interval 57%–74%) of foodborne cam-
pylobacteriosis to dairy, which is in line with other 
outbreak-based estimates for the United States (6,13). 
However, most foodborne Campylobacter outbreaks in 
this study were associated with unpasteurized fluid 
milk, which is not widely consumed by the general 
population. For example, in a Foodborne Active Sur-
veillance Network population survey of food expo-
sures, only 3% reported consuming unpasteurized 
milk in the preceding week (25). Moreover, outbreak-
based estimates are not consistent with other lines of 
evidence. An analysis of 38 case–control studies of 
sporadic campylobacteriosis found a much smaller 
percentage of illnesses attributable to consumption of 
raw milk than chicken (12). For example, 1 of these 
studies, a Foodborne Active Surveillance Network 
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Figure 3. Estimated percentages of foodborne illnesses attributed to food categories and 90% credibility intervals (error bars) for Salmonella 
(A), Escherichia coli O157 (B), Listeria monocytogenes (C), and Campylobacter (D), based on analysis of single-pathogen, single-food 
category outbreaks, Foodborne Disease Outbreak Surveillance System, United States, 1998–2012. Percentages are presented in descending 
order. Open squares indicate that no illnesses were attributed to that food category because no outbreaks were reported for that pathogen in 
that food category during the study period. Estimates calculated by using analysis of variance model–estimated outbreak illnesses for single 
pathogen, single food category outbreaks occurring during 1998–2012, with down-weighting of outbreaks that occurred during 1998–2007.
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case–control study, attributed 1.5% of campylobac-
teriosis cases to consumption of unpasteurized milk, 
compared with 24% to consumption of chicken pre-
pared in a restaurant (26). Structured expert judg-
ment studies conducted in the United States and in 
other countries estimate 8%–10% of foodborne cam-
pylobacteriosis to be attributable to dairy products 
(principally, raw milk), compared with 33%–72% to 
chicken (27–30).

Because Campylobacter outbreaks appear to over-
represent dairy as a source of sporadic Campylobacter 
illness, we do not advise using these attribution per-
centages without further adjustment or without con-
sidering additional information. Removing the dairy 
category entirely might be an appropriate adjustment, 
given that the resulting distribution of Campylobacter 
attribution estimates across other food categories is 
more consistent with the published literature (31). 
When the dairy category is excluded from this analy-
sis, 29% of Campylobacter illnesses are attributed to 
poultry (23.5% to chicken and 5.5% to turkey), 18% to 
vegetable row crops, 17% to seeded vegetables, 17% 
to other seafood, 8% to pork, 6% to other produce, 
and 6% to other food categories.

Our estimates reflect data on outbreaks that oc-
curred during 1998–2012 because those were the most 
recent data available at the outset of this effort. We 
do not include more recent outbreaks in this analysis 
because substantial preparation of the data was need-
ed, and because the primary purpose of this report 
is to describe our methods and explain modeling de-
cisions. IFSAC has published reports based on more 
recent outbreaks using the methodology described in 
this article (32).

To address some of the challenges with using 
outbreak data to estimate the food categories respon-
sible for foodborne illnesses, we developed an ap-
proach that reduces the influence of large outbreaks, 
adjusts for important epidemiologic characteristics, 
and weights recent data more heavily than older data. 
We also incorporate an updated food categorization 
scheme better aligned to the needs of regulatory 
agencies and provide statistical uncertainty around 
the estimates. This approach can be used for routine 
updating of estimates by incorporating additional 
years of data.

The resulting estimates of attribution percentages 
for Salmonella, E. coli O157, L. monocytogenes, and Cam-
pylobacter can play an important role in science- and 
risk-based decision-making because they can be used 
alongside other data to inform regulatory decisions, 
to prioritize food safety efforts, and to evaluate the 
effectiveness of prevention measures. Further, federal 

agency consensus on a single set of outbreak-based 
attribution estimates improves the transparency of 
governmental efforts to inform and engage stake-
holders, such as industry and consumers, about food 
safety strategies.
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Appendix  

IFSAC Food Categorization Scheme 

Appendix Figure 1 shows the categorization scheme used to classify foods implicated in 

outbreaks. The scheme and the associated methodology used to assign outbreaks to food 

categories based on implicated foods and ingredients, as well as examples of foods assigned to 

each category, are described in Richardson et al. (1). 

Description of Data Set 

This section provides a general description of the data used in the source attribution 

model described in this article. 

We extracted data on 16,584 foodborne disease outbreaks reported in the 15 years from 

1998 through 2012 from CDC's Foodborne Disease Outbreak Surveillance System (FDOSS) 

(https://www.cdc.gov/foodsafety/fdoss) (2). These data were extracted on December 18, 2013. 

Appendix Figure 2 shows the stages of data preparation. Specifically, it shows the 

number of outbreaks excluded from the analysis at each stage (shaded boxes) and the number 

remaining (unshaded boxes). 

First, we excluded outbreaks that occurred in outlying U.S. territories (e.g., Puerto Rico). 

Next, we excluded the 83% of remaining outbreaks not caused by the 4 priority pathogens: 

nontyphoidal Salmonella, Escherichia coli O157 (namely, E. coli O157:H7 and E. coli 

O157:NM), Listeria monocytogenes, and Campylobacter spp. Of these 2,732 outbreaks, we 

further excluded 77 outbreaks caused by multiple pathogens. 

https://doi.org/10.3201/eid2701.203832
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Of the resulting 2,655 outbreaks caused by one of the 4 priority pathogens as the single 

etiology, we excluded 38% (n = 1,014) because investigators did not identify an implicated food 

and 26% (n = 689) because the implicated food(s) could not be assigned to a single food 

category. Implicated foods could not be assigned to a single food category because the identified 

food was complex (composed of ingredients belonging to more than one food category) (n = 

448); or foods from more than one food category were implicated or suspected (i.e., multiple 

foods) (n = 142); or the food was too vaguely described to be assigned to any category (e.g., 

“buffet,” “appetizer”) (n = 50); or the food was too vaguely described to be assigned to the 

specific food categories used in the analysis (e.g., could only be assigned to “Produce” or “Meat-

Poultry”) (n = 49). 

We focus on single-pathogen single-food category outbreaks because the appropriate 

categorization of both pathogens and foods is known. A method is in development for assigning 

to multiple food categories those outbreaks due to complex foods for which the implicated 

ingredient was unknown. The previously published approach could not be applied to our data 

series without substantial revisions (3). This approach used “recipes” developed using internet 

searches and these recipes would need to be updated to reflect current online recipes and to 

incorporate changes to food categories (4). 

Thus, our final dataset for analysis included outbreaks caused by a single pathogen that 

could be assigned to one of 22 specific food categories; these were 952 (36%) of the 2,655 single 

etiology outbreaks. The pathogen with the most outbreaks in the resulting data was Salmonella 

(n = 597), the predominant serotype of which was Enteritidis (n = 184) (Appendix Table 1). 

There were 170 outbreaks caused by E. coli O157, 24 by L. monocytogenes, and 161 by 

Campylobacter (Appendix Figure 2). 

As part of preliminary analyses, we assessed the quality of information on etiology status. 

In FDOSS, an outbreak must have at least 2 ill persons (2). For Salmonella, E. coli O157, and 

Campylobacter, outbreaks with “confirmed” etiology are defined as those in which the outbreak 

strain was isolated from at least 2 patients or from epidemiologically implicated food; 

“confirmed” outbreaks of L. monocytogenes infections must have 1 person with the outbreak 

strain isolated from a normally sterile site (5). (Cases of listeriosis can also be diagnosed based 

on symptoms and culture of products of conception, which are not sterile.) The etiology of an 
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outbreak not meeting these conditions is considered to be “suspected.” Of the 2,732 outbreaks 

associated with the 4 priority pathogens, 90% (2,462) were coded as having confirmed etiology. 

We found that 12% of outbreaks coded as having confirmed etiology did not have sufficient data 

to fulfill the confirmed etiology definition, but also found that over 95% of outbreaks coded as 

having suspected etiology had at least one laboratory-confirmed illness. Outbreaks occurring 

early in the study period were more likely to have insufficient data to confirm an etiology. 

We decided to include outbreaks with either confirmed or suspected etiology status in the 

analysis so as not to lose information associated with those outbreaks, following the decision 

made in Painter et al. (3). We also conducted a sensitivity analysis on this decision, as described 

elsewhere in this appendix. 

Of the 952 outbreaks in the data used to estimate attribution percentages, 83 (8.7%) did 

not have a confirmed etiology, including 8.9% (n = 53) of Salmonella outbreaks, 4.1% (n = 7) of 

E. coli O157 outbreaks, 12.5% (n = 3) of L. monocytogenes outbreaks, and 12.4% (n = 20) of 

Campylobacter outbreaks. 

NORS includes 3 variables related to outbreak size: the number of lab-confirmed primary 

cases (ConfirmedPrimary), the number of additional illnesses that were not laboratory confirmed 

(ProbablePrimary), and the total of both confirmed and probable illnesses (EstimatedPrimary). In 

our attribution estimates, we use the estimated total illnesses as our measure of outbreak size. 

Statistical Model Development 

This section provides additional details about the models used to estimate the food 

sources of illnesses. Specifically, it describes development of pathogen-specific statistical 

models of outbreak size, and the approach used to weight recent outbreaks more heavily than 

older outbreaks. 

Analysis of variance models 

Log-transforming outbreak size resulted in relatively normally distributed outbreak 

illness numbers that could be modeled using straightforward analysis of variance (Te) modeling 

techniques. We explored several modeling approaches, including analysis of covariance 

(ANCOVA), generalized linear models, and least absolute shrinkage and selection operator 

(LASSO) models, among others. We decided to use ANOVA based on structural simplicity and 
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interpretability, and because our data were not sufficient to credibly describe the complexity of 

interactions between the epidemiologic characteristics of reported outbreaks. 

We developed pathogen-specific models because we did not want to smooth over 

differences in outbreak size by pathogen, as this variation likely results from epidemiologic 

factors, not random variation. We found outbreaks caused by different Salmonella serotypes 

varied in foods implicated and other epidemiologic factors. In particular, serotype Enteritidis 

outbreaks had some distinct patterns. Thus, we decided to model serotype Enteritidis separately 

from all the other serotypes for estimating outbreak size; when we calculate attribution 

percentages in a subsequent stage, we do so after summing the 2 sets of model estimates. 

Based on preliminary modeling analysis and considerations of epidemiologic importance, 

we included 3 variables as the predictors of outbreak size in all 5 pathogen-specific models: food 

category, the type of location at which the food was prepared, and whether outbreak exposures 

occurred in a single state or in multiple states. Each outbreak was assigned to 1 of 17 food 

categories, as described previously. The food preparation location variable used in the model 

included 5 categories, based on 24 individual location types identified in outbreak reports, as 

shown in Appendix Table 2. We reduced the number of categories to 5 to address the relatively 

sparse data across most locations other than restaurant or private home. A dichotomous variable 

was used to indicate whether exposures occurred in multiple states or a single state. 

We desired a model that was portable in that it could be similarly described across the 4 

etiologies included in the study and expandable to additional pathogens. Summary measures for 

model fit are shown in Appendix Table 3, including traditional lack-of-fit, R-squared, overall 

model significance, and significance of each predictor. Appendix Table 3 also shows, in the last 

3 columns, variance explained via random forest decomposition using identical predictors. 

Appendix Figure 3 compares the number of reported illnesses with the number of model-

estimated illnesses and shows that, as expected, our ANOVA models reduce variation in 

outbreak size and the influence of very large outbreaks.  

Recency weighting 

The decision to down-weight older data was made because recent outbreaks are likely to 

be more representative of current foodborne illness attribution than older outbreaks. Changes in 

attributable risk may result from changes over time in food consumption patterns, food 
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production and processing practices, food safety activities, regulatory interventions, and other 

factors. 

This decision is supported by characteristics of the underlying data. Appendix Figure 4 

presents a heat map with the number of outbreaks by pathogen and food category over time. 

White cells indicate no outbreaks due to that pathogen-food category pair in that year, with color 

from pale orange to red indicating between 1 and 25 outbreaks in that year. Appendix Figure 4 

illustrates the variability in data sparseness across many pathogen-food categories. 

We examined the impacts of excluding older data by estimating attribution for 3, 5-year 

time frames: 1998–2002, 2003–2007, and 2008–2012. Appendix Figure 5 displays the estimated 

attribution percentages (y-axis) by food category (lines) and timeframe (x-axis). There are 

notable differences across these timeframes. The variability of underlying data leads to 

instability in estimated percentages based on short time windows. Excluding older data entirely 

results in estimates of zero attribution for some categories with known nonzero risk. 

Based on this and other analyses, we decided that outbreaks older than 5 years should be 

included in estimates of attribution but down-weighted to increase the relative influence of more 

recent outbreaks on attribution estimates. 

As described in the article, we determined that the most appropriate approach would be to 

use an exponential decay function to define the recency-weighting multiplier w for an outbreak 

in year y, as a function of decay parameter a: 

𝑤𝑤𝑦𝑦 =  �𝑎𝑎
2008−𝑦𝑦,𝑦𝑦 < 2008

1,𝑦𝑦 ≥ 2008 

We evaluated various options for the decay parameter a and the resulting weighting 

factor by year, as shown in Appendix Figure 6. Our preference was for more than half of the 

information in our estimates to come from the most recent 5 year period, and a small amount – 

around 5% – from data older than 10 years. Because the distribution of outbreak illnesses is not 

constant over time or by pathogen (as shown in Appendix Figure 4), we selected a decay 

parameter that best met our preferences for all pathogens. As shown in Appendix Table 4, with a 

decay parameter value of 0.7142 (5/7), 67% of the total down-weighted model-estimated 

outbreak illnesses used in the attribution calculation were from outbreaks that occurred during 
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the most recent 5-year period (2008–2012), with ≈28% from the middle 5-year period, and 5% 

from the oldest 5-year period. 

Sensitivity Analyses 

This appendix describes sensitivity analyses conducted to assess the robustness of our 

attribution estimates. We compare our model-based estimates to those derived used in prior 

studies and explore sensitivities to modeling decisions and underlying data. 

Sensitivity to Use of Statistical Modeling and Recency-weighting 

Prior estimates of foodborne illness source attribution based on outbreaks have summed 

the raw number of reported outbreaks or outbreak illnesses associated with a given pathogen-

food category pair and divided this by the total number of outbreaks or outbreak illnesses 

associated with that pathogen (3,6). By contrast, our estimates are based on statistical modeling 

of log-transformed outbreak size, with exponential down-weighting of older outbreaks (we refer 

to these as our “baseline” estimates). 

Appendix Figure 7 compares our model-based attribution percentages (with and without 

down-weighting of older outbreaks) to those based on raw numbers of reported outbreaks and 

outbreak illnesses. Attribution percentages are shown in log scale to better highlight differences. 

Differences reflect dependencies between multinomial estimates; because attribution percentages 

sum to 100%, a downward shift in the percentage for one food category results in higher 

percentages elsewhere. 

Appendix Figure 7 illustrates 3 points. First, it shows the range of estimates using the 

methods in the published literature, namely that there are notable differences between attribution 

estimates based on numbers of reported outbreaks (purple lines) and numbers of outbreak 

illnesses (pink lines). Pathogen-food category pairs with the largest differences are Salmonella in 

Seeded Vegetables and Chicken, E. coli O157 in Fruits and Sprouts, L. monocytogenes in Fruits 

and Turkey, and Campylobacter in Chicken and Other Seafood. These differences reflect the 

outbreak size variation across food categories, as well as the impact of very large outbreaks. 

Second, Appendix Figure 7 also shows that although our attribution estimates are 

generally similar to estimates based on the approaches used in the published literature, there are 

some differences. For Salmonella, the Seeded Vegetables category has the highest attribution 
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percentage in our baseline estimates, whereas the Eggs category has the highest percentage based 

on numbers of reported outbreaks (purple) or outbreak illnesses (pink). Chicken also has higher 

attribution percentages based on counts of reported outbreaks or outbreak illnesses, compared to 

the baseline, whereas the Sprouts category has a lower estimate. For E. coli O157, baseline 

estimates for the Vegetable Row Crops category are higher than those based on reported 

outbreaks or outbreak illnesses. For L. monocytogenes, our baseline estimates are closest to those 

based on counts of reported outbreak illnesses, though the baseline estimate for Turkey is lower 

than those based on counts of reported outbreaks or outbreak illnesses, and the baseline estimate 

for Fruits is respectively higher. There are fewer differences in Campylobacter estimates, though 

the Seeded Vegetables category has a notably higher attribution percentage when based on 

model-estimated illnesses. 

Lastly, Appendix Figure 7 shows that eliminating recency-weighting affects attribution 

percentages, though not drastically. For Salmonella, attribution percentages calculated without 

recency-weighting (green) are higher for Chicken and Eggs, and lower for Seeded Vegetables 

and Vegetable Row Crops, compared to baseline estimates with recency-weighting (red). For E. 

coli O157, estimates for Dairy and Vegetable Row Crops are marginally lower than the baseline 

without recency-weighting; estimates for Sprouts and Fruits are marginally higher. For L. 

monocytogenes, removing recency-weighting results in lower estimates for Fruits and higher 

estimates for Turkey, reflecting the impact of the large cantaloupe outbreak in 2011, its recency, 

and the fact that there were not any L. monocytogenes outbreaks traced to turkey luncheon meat 

between 2005 and 2012 (Appendix Figure 4). For Campylobacter, removing recency-weighting 

results in a higher estimate for Other Produce, reflecting the impact of a large 2002 prison 

outbreak associated with potatoes (the only outbreak in this pathogen-food category (Appendix 

Figure 4). 

Sensitivity to ANOVA Model Specifications 

As noted in the text and other appendices, we conducted exploratory analyses to 

determine which predictors should be included in the pathogen-specific ANOVA models. The 

final 3-predictor model specifications were based both on epidemiologic reasoning and our 

findings that these variables were statistically significant predictors of outbreak size. 
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We conducted sensitivity analyses around the final model specification by estimating 

attribution percentages using 3 alternative ANOVA models: one without the dichotomous multi-

state variable, one without the categorical preparation location variable, and one without either. 

The results (Appendix Figure 8) show that our model is robust to model specification decisions 

in comparison with the baseline model specification. 

Sensitivity to Etiology Status 

As described previously, we included outbreaks with “suspected” etiology in addition to 

those with laboratory-confirmed isolates from patients or food in the analysis. Those without 

confirmed etiology comprise ≈9% of the outbreaks used in the analysis, though of these, most 

had at least one laboratory-confirmed illness. We conducted a sensitivity analysis around this 

decision. Appendix Figure 9 presents our baseline attribution estimates and 90% credibility 

intervals alongside estimates based on data excluding the 83 outbreaks with suspected etiology. 

Appendix Figure 9 shows that for all but a few pathogen-food category pairs, the differences in 

point estimates are minimal, though credibility intervals are wider when outbreaks of suspected 

etiology are excluded. 

Sensitivity to Influential Outbreaks 

We conducted a series of analyses to identify which outbreaks are most influential on our 

attribution estimates and to assess model sensitivity to these outbreaks. This was done in part to 

ascertain the extent to which our estimates were sensitive to very large outbreaks, though 

because our estimates are based on a 3-parameter statistical model of log-transformed outbreak 

size, with recency-weighting, we needed a systematic approach to identify influential outbreaks. 

The first step was to define an influence metric for each outbreak based on the aggregate 

difference in attribution estimates when that outbreak was excluded from the analysis. That is, 

for each of 952 outbreaks, we estimated attribution percentages without that single outbreak. We 

defined an “influence metric” as the sum of mean differences squared across all pathogen-food 

category pairs between the baseline estimate and the estimate without that outbreak; the 

attribution percentages change only for the pathogen for which an outbreak was excluded. We 

then calculated the overall “influence rank” for each outbreak based on the rank order of the 

“influence metric.” 
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Appendix Figure 10 presents, for each pathogen, the calculated influence metric for each 

outbreak, in descending order. These plots show that most outbreaks have influence metrics at or 

very close to zero, but a small number do have measurable influence metrics. Appendix Figure 

10 shows that the 10 outbreaks most influential on attribution estimates were caused by L. 

monocytogenes and Campylobacter. Appendix Table 5 provides details for the 5 outbreaks most 

influential on attribution estimates for each pathogen. Although the plots in Appendix Figure 10 

show that some outbreaks have large influence metric values, the actual impacts of these 

individual outbreaks on attribution estimates is minimal. 

Appendix Figure 11 presents estimates for scenarios in which each of the 5 outbreaks 

most influential on attribution estimates (from Appendix Table 5) for each pathogen was 

excluded one at a time. These scenarios are shown alongside the baseline attribution percentages. 

Appendix Figure 11 shows that for all but the single most influential outbreak (L. monocytogenes 

in cantaloupe), the exclusion of any single outbreak results in negligible differences in attribution 

estimates, and no differences in the rank order of food categories. We therefore concluded that 

our model is robust to all but the most extreme outliers, and that only our estimates for L. 

monocytogenes are sensitive to the impact of individual outbreaks. 
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Appendix Table 1. Number of nontyphoidal Salmonella outbreaks and outbreak illnesses due to a single food category — 
Foodborne Disease Outbreak Surveillance System, United States, 1998–2012* 
Food category Serotype Enteritidis Other serovars All serovars 
Beef 9 (157) 38 (1,316) 47 (1,473) 
Pork 8 (167) 43 (931) 51 (1,098) 
Chicken 26 (580) 88 (2,068) 114 (2,648) 
Turkey 7 (420) 42 (888) 49 (1,308) 
Other meat, poultry 1 (13) 5 (71) 6 (84) 
Game 1 (3) 1 (5) 2 (8) 
Dairy 1 (39) 23 (754) 24 (793) 
Eggs 113 (4,895) 27 (350) 140 (5,245) 
Fish 2 (82) 10 (204) 12 (286) 
Other seafood 2 (26) 2 (10) 4 (36) 
Grains, beans 0 (0) 7 (268) 7 (268) 
Oils, sugars 0 (0) 0 (0) 0 (0) 
Fruits 5 (240) 41 (2,270) 46 (2,510) 
Seeded vegetables 1 (85) 33 (3,916) 34 (4,001) 
Sprouts 5 (174) 28 (1,092) 33 (1,266) 
Vegetable row crops 1 (14) 9 (398) 10 (412) 
Other produce 2 (45) 16 (1,878) 18 (1,923) 
Total 184 (6,940) 413 (16,419) 597 (23,359) 
*Number of outbreak-associated illnesses in parentheses. Nontyphoidal Salmonella is divided into S. enterica ser. Enteritidis and other serovars. 

 
Appendix Table 2. Types of food preparation locations as defined in reported outbreak data and aggregated categories and 
outbreak counts used in statistical models of outbreak size 
Preparation locations identified in outbreak line listings Categories used ANOVA model 
Restaurant – “Fast-food” Restaurant 
Restaurant – other/unknown type 
Restaurant – Sit-down dining 
Restaurant or deli Private Home 
Private Home Other 
Banquet facility 
Caterer 
Caterer (food prepared off-site) 
Fair, festival, other temporary or mobile service 
Picnic 
Camp 
Day care center 
Hospital 
Nursing home, assisted living, home care 
School 
Commercial product, no further preparation 
Grocery store 
Church, temple, or other religious location 
Prison, jail 
Other 
Contaminated food imported into U.S. Unknown 
Unknown or Undetermined 
No Data Multiple 
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Appendix Table 3. Summary measures for pathogen-specific ANOVA models of outbreak size for Salmonella, E. coli O157, L. monocytogenes, and Campylobacter, based on 
analysis of single pathogen, single food category outbreaks – Foodborne Disease Outbreak Surveillance System, 1998–2012 

Pathogen 
Lack-of-fit  R-squared  Significance (P-value)  Explained Variance 

Degrees of Freedom P-value  Max Model  Overall Model Food Category Multi-state Prep. Location  Food Category Multi-state Prep. Location 
Salmonella               
Enteritidis 21 0.88  0.32 0.20  <0.001 0.40 <0.001 <0.001  0.22 0.35 0.42 
Other serotypes 76 0.45  0.47 0.33  <0.001 <0.05 <0.001 <0.001  0.28 0.54 0.18 
E. coli O157 24 0.25  0.45 0.32  <0.001 <0.05 <0.001 0.26  0.27 0.58 0.15 
L. monocytogenes 4 0.14  0.90 0.65  <0.05 0.09 0.15 0.55  0.55 0.33 0.12 
Campylobacter 14 0.23  0.28 0.14  0.05 0.15 0.70 0.09  0.61 0.00 0.39 
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Appendix Table 4. Proportion of outbreak information in attribution estimates under alternative recency-weighting decay 
parameters 

Years of Data 
Decay Parameter 

0.20 0.50 0.71* 0.80 
1998–2002 0% <1% 5% 10% 
2003–2007 5% 16% 28% 31% 
2008–2012 95% 83% 67% 58% 
* Decay parameter selected for baseline model. 

 
Appendix Table 5. The 5 most influential outbreaks on attribution estimates, for Salmonella, E. coli O157, L. monocytogenes, and 
Campylobacter, based on analysis of single pathogen, single food category outbreaks — Foodborne Disease Outbreak Surveillance 
System, 1998–2012* 
Overall 
Influence 
Rank Food Category Year Food Item(s) Implicated 

Preparation 
setting Multistate 

No. 
Illnesses 

Log (No. 
Illnesses) 

Influence 
Metric 

Salmonella 
17 Eggs 2010 shell egg, other (egg) Multiple Yes 1939 7.6 7.4 
22 Seeded veg. 2008 jalapeno/serrano peppers, 

tomato 
Unknown Yes 1500 7.3 5.7 

30 Other Produce 2008 peanut butter, peanut paste Unknown Yes 714 6.6 4.7 
32 Seeded veg. 2009 ground pepper (in salami) Other Yes 272 5.6 4.1 
40 Other Produce 2006 peanut butter Other Yes 715 6.6 2.9 
E. coli O157 
12 Veg. Row Crops 2006 spinach Multiple Yes 238 5.5 9.7 
14 Veg. Row Crops 2008 iceberg lettuce Unknown Yes 74 4.3 9.2 
16 Veg. Row Crops 2011 romaine lettuce Multiple Yes 60 4.1 8.2 
18 Veg. Row Crops 2012 romaine lettuce Unknown Yes 52 4.0 7.2 
20 Fruits 2000 watermelon Restaurant No 736 6.6 6.8 
L. monocytogenes 
1 Fruits 2011 cantaloupe Private Home Yes 147 5.0 3560.4 
2 Dairy 2012 ricotta salata cheese Multiple Yes 23 3.1 51.4 
3 Sprouts 2008 sprouts Multiple Yes 20 3.0 41.0 
5 Dairy 2009 Mexican-Style Cheese Private Home Yes 18 2.9 25.8 
7 Dairy 2011 blue-veined cheese, 

unpasteurized 
Other Yes 15 2.7 21.3 

Campylobacter 
4 Seeded veg. 2008 green peas Other No 104 4.6 32.7 
6 Other Seafood 2008 raw and steamed clams Multiple No 268 5.6 22.3 
10 Pork 2008 pork Other No 27 3.3 11.7 
11 Other Seafood 2010 raw clams Other No 68 4.2 11.4 
15 Other Seafood 1998 oysters Private Home No 2 0.7 8.6 
*Overall influence rank is based on the rank order of outbreaks when sorted by the influence metric, shown in the last column. The influence metric is 
defined as the sum of mean differences squared across all pathogen-food category pairs between the baseline estimate and an attribution estimate 
with that outbreak excluded. 
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Appendix Figure 1. Hierarchical scheme used to categorize foods implicated in foodborne disease 

outbreaks. Outbreaks were assigned to one of 22 food categories (dark gray boxes) in the IFSAC food 

categorization scheme. Due to sparse data, 8 of these food categories were aggregated into 3 combined 

categories as indicated by the dashed-line boxes, resulting in the 17 food categories used in this analysis. 

“Other meat and poultry” includes animal species other than beef, pork, chicken and turkey. 
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Appendix Figure 2. Data tree showing the number of outbreaks included and excluded in analysis – 

Foodborne Disease Outbreak Surveillance System, United States, 1998–2012. 
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Appendix Figure 3. Comparison of reported and model-estimated number of illnesses per outbreak, by 

food category, for Salmonella Enteriritidis, other Salmonella serotypes, E. coli O157, L. monocytogenes, 

and Campylobacter, based on analysis of single pathogen, single food category outbreaks – Foodborne 

Disease Outbreak Surveillance System, 1998–2012. Each line in each panel represents a single 

outbreak, with a line connecting the number of reported illnesses (dot on left) with the number of model-

estimated illnesses (dot on right), both presented on the same log-scale. The resulting sideways 

triangular shape of the combined lines in each panel illustrates the reduced variation achieved by 

modeling. 
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Appendix Figure 4. Number of reported outbreaks caused by a single pathogen and due to a single food 

category, by food category and year, for Salmonella, E. coli O157, L. monocytogenes, and 

Campylobacter – Foodborne Disease Outbreak Surveillance System, United States, 1998–2012. 
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Appendix Figure 5. Estimated percentages of illnesses caused by Salmonella, E. coli O157, L. 

monocytogenes, and Campylobacter attributed to food categories for 5-year windows, based on analysis 

of single pathogen, single food category outbreaks – Foodborne Disease Outbreak Surveillance System, 

1998–2012. Estimates calculated using ANOVA model-estimated outbreak illnesses for single pathogen, 

single food category outbreaks from 1998–2012, with down-weighting of outbreaks from 1998–2007. 
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Appendix Figure 6. Comparison of multiplicative weighting factors evaluated to recency-weight model-

estimated outbreak illnesses, by year and decay parameter. 
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Appendix Figure 7. Comparison of measures used to calculate estimated percentages of illnesses 

attributed to 17 food categories for Salmonella, E. coli O157, L. monocytogenes, and Campylobacter, 

based on analysis of single pathogen, single food category outbreaks – Foodborne Disease Outbreak 

Surveillance System, 1998–2012. Each panel shows baseline estimated attribution percentages based on 

numbers of model-estimated illnesses with down-weighting of older outbreaks (in red). This is compared 

to attribution percentages based on model-estimated illnesses without down-weighting (green), and to 

attribution percentages calculated without any statistical modeling – namely, based on the number of 

reported outbreaks (purple) and number of reported outbreak illnesses (orange). 
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Appendix Figure 8. Estimated percentages of illnesses attributed to food categories under alternative 

ANOVA modeling scenarios for Salmonella, E. coli O157, L. monocytogenes, and Campylobacter, based 

on analysis of single pathogen, single food category outbreaks – Foodborne Disease Outbreak 

Surveillance System, 1998–2012. Each panel shows attribution estimates calculated using model-

estimated illnesses from 4 different models for each pathogen. The baseline model specification includes 

food category, the type of location in which food was prepared, and whether an outbreak occurred in a 

single or multiple states. Credibility intervals are not shown. 
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Appendix Figure 9. Comparison of estimated attribution percentages (and 90% credibility intervals) for 

scenarios including or excluding outbreaks where etiology status is indicated as suspected, for 

Salmonella, E. coli O157, L. monocytogenes, and Campylobacter, based on analysis of single pathogen, 

single food category outbreaks – Foodborne Disease Outbreak Surveillance System, 1998–2012. 

Baseline estimates are based on including in the analysis all outbreaks for which etiology status is 

indicated as being either confirmed or suspected; the alternate scenario is based on including only those 

outbreaks for which etiology status is indicated as confirmed. 

 



 

Page 22 of 23 

 

Appendix Figure 10. Calculated influence metric for each outbreak, for Salmonella, E. coli O157, L. 

monocytogenes, and Campylobacter, in descending order, based on analysis of single pathogen, single 

food category outbreaks – Foodborne Disease Outbreak Surveillance System, 1998–2012. The influence 

metric is defined as the sum of mean differences squared across all pathogen-food category pairs 

between the baseline set of attribution estimates and a set of attribution estimates with that outbreak 

excluded. The overall influence rank of each outbreak is based on the rank order of outbreaks when 

sorted by the influence metric in descending order. Because L. monocytogenes had an extreme value, an 

inset with the same scale as other pathogens is used to show influence metrics for all other outbreaks. 
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Appendix Figure 11. Impacts of excluding each of the top 5 outbreaks most influential on attribution 

estimates for Salmonella, E. coli O157, L. monocytogenes, and Campylobacter, based on analysis of 

single pathogen, single food category outbreaks – Foodborne Disease Outbreak Surveillance System, 

1998–2012. Each panel shows baseline estimates of attribution percentages compared to estimates for 

scenarios in which the most influential outbreaks have been excluded. In each scenario, a single outbreak 

is excluded from the model. 


