Efficient Surveillance of *Plasmodium knowlesi* Genetic Subpopulations, Malaysian Borneo, 2000–2018

Appendix

Appendix Table 1. Unique primer pairs designed at each locus to discriminate the 2 Plasmodium knowlesi subpopulation clusters					
Subpopulation, set	Chromosome, location of locus*	Primer ID	Sequence, $5' \rightarrow 3'^{\dagger}$		
Cluster 1			•		
C1A	1	C101AF	GTTTGGTACGTTCAAGTGTTGC <u>G</u> CTA <u>TGG</u>		
	(745,563–745,763) ^a	CX01AR	CGTCTTCCGCTTGTCGTTTTCCATGTAC		
C1C	6	C106BF	GATATAACCACATGTTTGCTTCGAAGGAA		
	(17,264–17,523) ^c	C106BR	GGAAAGGTACCTCTTCCTCATAGTCC <u>C</u>		
C1B	6	C106AF	TCCATGTGCACCCTGGCATACATGG <u>T</u> A <u>C</u>		
	(35,925–36,162) ^b	C106AR	TGTACAGAGTGTACAGGAGCTGGGAC		
C1D	6	C106CF	GGATGATTTAGGTAAGGATGAGGAG <u>G</u> G <u>T</u>		
	(1,014,117 – 1,014,286) ^d	CX06CR	CGTCATCCTTATCCTTTTTACCCTTATCC		
C1E	6	C106DF	GATGATAATTATCTTAAAGAGCCGGA <u>TG</u>		
	(1,039,470–1,039,954) ^e	C106DR	CAAGACATTATGAACATTGGACCGA <u>T</u> T <u>A</u>		
Cluster 2					
C2F	1	C201AF	GTTTGGTACGTTCAAGTGTTGC <u>T</u> CTA <u>CAT</u>		
	(745,563–745,763) ^a	CX01AR	CGTCTTCCGCTTGTCGTTTTCCATGTAC		
C2G	6	C206AF	GATATAACCACATGTTTGCTTCGAA <u>A</u> GA <u>G</u>		
	(17,264 – 17,523)°	C206AR	GGAAAGGTACCTCTTCCTCATAGTCC <u>A</u>		
C2H	6	C206BF	TCCATGTGCACCCTGGCATACATGG C AT		
	(35,925–36,162) ^b	C106AR	TGTACAGAGTGTACAGGAGCTGGGAC		
C2I	6	C206CF	GGATGATTTAGGTAAGGATGAGGAG <u>T</u> G <u>C</u>		
	(1,014,117–1,014,286) ^d	CX06CR	CGTCATCCTTATCCTTTTTACCCTTATCC		
C2J	6	C206DF	GATGATAATTATCTTAAAGAGCCGGA <u>G</u>		
	(1,039,470–1,039,954) ^e	C206DR	CAAGACATTATGAACATTGGACCGA <u>C</u> T <u>G</u>		

*Superscripted letters at the end of locations indicate same loci for both subpopulation clusters.

+Single-nucleotide polymorphisms with complete fixed (FST = 1) as shown at the 3'-end sequence are in bold and underlined.

Appendix Table 2. Summary of PCR optimizations for discriminating 2 subpopulations of Plasmodium knowle	si infection*
---	---------------

		Optimum annealing		
Primer set	Types of PCR	temperature, °C	Allele specificity	PCR summary
C1A	Conventional PCR	60	Cluster 1	Cluster 1-specific
C1B	Conventional PCR	ND	ND	Weak amplification
C1C	Conventional PCR	61	Cluster 1 and Cluster 2	Not specific
C1D	Conventional PCR	ND	ND	Weak amplification
C1E	Touchdown PCR	68, 60	Cluster 1 and Cluster 2	Not specific
C2F	Conventional PCR	60	Cluster 2	Cluster 1-specific but inconsistent
C2G	Touchdown PCR	68, 60	Cluster 1 and Cluster 2	Not specific
C2H	Conventional PCR	ND	ND	Weak amplification
C2I	Conventional PCR	ND	ND	Weak amplification
C2J	Touchdown PCR	68, 62	Cluster 2	Cluster 2–specific

*The specificity of primers tested on DNA of Cluster 1 and Cluster 2 clinical infections where cluster identity of infections was confirmed previously by multilocus microsatellite analysis or whole-genome sequencing. ND, further optimization of annealing temperature was not done due to weak amplification during gradient PCR when visualized on agarose gel.

Appendix Table 3: Specificity of allele-specific PCRs for primer sets C1A and C2J for *Plasmodium knowlesi* Cluster 1 and Cluster 2 subpopulations, respectively, Malaysian Borneo*

Location		Total	Infections per primer set, no. (%)		
	Host		C1A	C2J	Both
Betong	Human	29	21 (72)	7 (24)	1 (4)
Kanowit	Human	34	14 (41)	19 (56)	1 (3)
Miri	Human	46	15 (33)	31 (67)	0
Sarikei	Human	23	14 (61)	9 (39)	0
Kapit	Human	1,204	833 (69)	342 (29)	29 (2)
Kudat	Human	46	46 (100)	0	0
Ranau	Human	62	53 (85)	9 (15)	0
Tenom	Human	48	43 (90)	4 (8)	1 (2)
Kapit	Long-tailed macaque	10	9 (90)	0	1 (10)
Kapit	Pig-tailed macague	5	0	5 (100)	0

*All DNA samples were blinded with regards to their cluster assignments deduced from microsatellite (1) and whole genome sequencing (2) analyses.

Appendix Table 4. *Plasmodium knowlesi* subpopulation genotyping results for 3 study periods, Kapit division, Sarawak state, Malaysian Borneo, 2000–2018

			Infections, no. (%)	
Study period	Total no. samples	Cluster 1	Cluster 2	Mixed
2000-2002	110	74 (67)	33 (30)	3 (3)
2006-2008	176	122 (69)	51 (29)	3 (2)
2013–2018	918	637 (69)	258 (28)	23 (3)
Total	1,204	833 (69)	342 (28)	29 (3)

Appendix Figure 1. Species specificity of PCR primer sets C1A and C2J for discriminating *Plasmodium knowlesi* infections of Cluster 1 and Cluster 2 subpopulations. Gel electrophoresis on 2.7% agarose shows both primer sets did not cross-react to DNA of human *Plasmodium* species (*P. falciparum*, *P. malariae*, *P. ovale*, and *P. vivax*) and common *Plasmodium* species found in Southeast Asian macaques (*P. cynomolgi*, *P. inui*, *P. coatneyi*, and *P. fieldi*), as well as DNA of humans, long-tailed macaque, and pig-tailed macaque.

Appendix Figure 2. Analytical sensitivity of PCR primer sets C1A and C2J for discriminating *Plasmodium knowlesi* infections of Cluster 1 and Cluster 2 subpopulations. Pure DNA of Cluster 1 sample with parasitemia of 13,793 parasites/µL blood and Cluster 2 sample of 8,017 parasites/µL blood were used (denoted as 'Neat') for respective primer sets C1A and C2J. Each pure DNA sample was diluted 5-fold with nuclease free water and served as template in separate PCRs.

References

- Divis PC, Singh B, Anderios F, Hisam S, Matusop A, Kocken CH, et al. Admixture in humans of two divergent *Plasmodium knowlesi* populations associated with different macaque host species. PLoS Pathog. 2015;11:e1004888. <u>PubMed https://doi.org/10.1371/journal.ppat.1004888</u>
- Assefa S, Lim C, Preston MD, Duffy CW, Nair MB, Adroub SA, et al. Population genomic structure and adaptation in the zoonotic malaria parasite *Plasmodium knowlesi*. Proc Natl Acad Sci U S A. 2015;112:13027–32. <u>PubMed https://doi.org/10.1073/pnas.1509534112</u>