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Outbreak detection systems for use with very large
multiple surveillance databases must be suited both to the
data available and to the requirements of full automation.
To inform the development of more effective outbreak
detection algorithms, we analyzed 20 years of data (1991—
2011) from a large laboratory surveillance database used
for outbreak detection in England and Wales. The data
relate to 3,303 distinct types of infectious pathogens, with a
frequency range spanning 6 orders of magnitude. Several
hundred organism types were reported each week. We
describe the diversity of seasonal patterns, trends, artifacts,
and extra-Poisson variability to which an effective multiple
laboratory-based outbreak detection system must adjust.
We provide empirical information to guide the selection
of simple statistical models for automated surveillance of
multiple organisms, in the light of the key requirements
of such outbreak detection systems, namely, robustness,
flexibility, and sensitivity.

he past decade has witnessed much interest in real-

time outbreak detection methods for infectious
diseases, driven by worries about the possibility of large-
scale bioterrorism, public concern about emerging and
reemerging infections, and the increased availability of
computerized data (/—3). More prosaically, outbreaks of
commonly occurring pathogens, notably, those causing
infectious intestinal disease, remain a serious public
health issue, causing an appreciable number of deaths and
imposing a substantial drain on public health resources in
many countries (4,5).

In England and Wales, automated laboratory
surveillance of infectious diseases has been undertaken
since the early 1990s. Laboratory surveillance is based on
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counts of laboratory isolates of infectious pathogens, usually
classified for epidemiologic purposes by subtype or phage
type. The organism reports come mainly from samples sent
to hospital laboratories or to specialist laboratories when
additional typing is required, as for salmonellae.

This automated system was designed to supplement the
frontline investigator-led outbreak detection methods used
by national and regional epidemiologists, with the primary
aim of identifying geographically distributed outbreaks
that may have escaped local detection. In a typical week,
several hundred different pathogens are reported; the
automated system provides a back-up and the assurance
that the entire database is routinely scanned. The output
comprises a short list of organisms with potential outbreaks
for review, ranked according to an exceedance score that
measures the degree of statistical aberrance. The statistical
methodology of the system was described previously (6)
and has since been applied in Scotland (7) and in several
other European countries (8).

Much research on statistical methods of prospective
outbreak detection has been aimed at identifying unusual
clusters of 1 syndrome or disease (9-12), and some work
has focused on multivariate surveillance methods (/2).
However, little research has been directed toward developing
outbreak detection methods that are suited to large, multiple
surveillance systems involving thousands of different
organisms, such as the system used in England and Wales.

We are reviewing the statistical methods used in the
England and Wales system. The first stage of this review,
reported here, has been to carry out a detailed analysis
of the data accumulated over the 2 decades since 1991.
We aimed to document some of the generic features of
surveillance data and their imperfections across the range
of organisms of interest and to identify the key problems
confronting automated outbreak detection systems.
Specifically, we endeavored to answer 2 key questions:
How diverse are the patterns displayed by the range of
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organisms monitored? How complex must a statistical
algorithm be to handle this diversity?

Data and Methods

Data

The data were provided by the Health Protection
Agency (www.hpa.org.uk) from their LabBase surveill-
ance database. This is a computerized database that
receives details of all organisms reported by participating
laboratories (the numbers of which vary from week to
week) in England and Wales. The data are routinely
subjected to intensive de-duplication checks at the time
of report. A single report contains a data trail that starts
with the date of collection of the first specimen and ends
with the date at which the complete identification of the
organism is entered into the database. The delay between
the first specimen date (hereafter referred to as specimen
date) and the date of final entry (referred to as report date)
is a key feature of all systems of laboratory surveillance.
The outbreak detection system operates on the basis of
report dates (current and historical); the alternative is to
operate on the basis of specimen dates, which requires
explicit modeling of the delay distribution.

The outbreak detection system runs automatically
every weekend, processing the previous week’s reports.
Thus, the time unit of analysis is by the week unless
otherwise specified. We obtained weekly counts of all
infectious disease organisms reported to the Health
Protection Agency between week 1, 1991, and week 52,
2011, by date of report and date of specimen collection.
In years with 53 weeks, the week 53 count was added to
the week 1 count of the following year. To mitigate the
effect of delays at the end of the series, only isolates with
specimen dates through week 26 of 2011 were used in the
analyses. All analyses are by week of specimen collection
unless otherwise specified.

Data Processing

Calculating rates and other organism-specific
statistics is complicated by the fact that it is not possible
to distinguish between genuine zeroes, corresponding to
organisms looked for but not found, and missing values
that arise when organisms are not sought. It is highly likely
that some organisms that were identified toward the end
of the study period would not have been identified by the
tests that were performed a decade or so earlier. Rates
and trends calculated without taking any account of this
feature would be biased. To reduce this bias, we recoded
all leading sequences of zeroes as missing. However, this in
turn introduces a selection bias, because every time series
would then start with a nonzero count. To mitigate this, we
reduced the first nonzero count by 1.

Statistical Models

The statistical models are described informally; a
technical account is provided in the online Technical
Appendix (wwwnc.cde.gov/EID/pdfs/12-0493-Techapp.
pdf). To summarize the mean frequencies, trends, and
seasonality of each organism, we used log-linear models
structured as follows:

log (average count in week f) = baseline + trend at
week ¢ + seasonality at week ¢

We fitted a range of such log-linear models to the
data, incorporating a smooth long-term trend component
and monthly seasonality for each series of organism
counts (/3,/4). A key aim was to identify a simple family
of models that adequately represents all organisms. The
simplest model is the Poisson model, for which the variance
of the count in week ¢ equals its average value. The model
is convenient and easy to automate, but restrictive. We
therefore considered other convenient but less restrictive
models where

Variance of count in week ¢ = dispersion X average
count in week 7 (1)

Models of this form are called quasi-Poisson. The
dispersion in Equation 1 is a constant specific to each
organism. In a Poisson model, the dispersion is equal
to 1. When the dispersion is >1, more variability is
thereby allowed.

We also investigated the negative binomial model.
This model satisfies equation 1 but also allows a greater
degree of skewness (that is, asymmetry around the mean)
than the Poisson model. For the negative binomial model,

Skewness of count in week ¢ = antilog [constant — 0.5
x log (average count in week 7)] (2)
where the constant in equation 2 is nonnegative. For the
Poisson model, this constant is zero: equation 2 allows
greater positive skewness.

Model Evaluation: Relationships between
Mean, Variance, and Skewness

We sought a simple family of models that adequately
describes all organisms, rather than a well-fitting model for
any particular organism. Formal goodness-of-fit tests were
not used because they can be unreliable with sparse data.
Our criterion was that the relationships between mean,
variance, and skewness should be adequately described.
To display these relationships for each organism, we
subdivided the data into 41 half-years, dropped weeks 52
(or 53) and 1 (which are atypical, as noted above), and
de-seasonalized the data. We then calculated the mean,
variance, and skewness in each half-year.

For each organism, we investigated the validity of
equation 1 by plotting the log of the variance of the weekly
counts against the log of the average weekly count in the
41 half-years. If equation 1 holds, the points should lie on
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a straight line with slope 1. We obtained the histogram of
these slopes; a narrow spread around 1 suggests that the
quasi-Poisson model is adequate.

Similarly, we investigated the validity of equation 2
by plotting the skewness of the weekly counts against the
log of the average weekly counts. If equation 2 holds, the
points should lie on the curve determined by this equation,
for which the coefficient of the log of the average weekly
count is —0.5. We obtained these coefficients and plotted
their histogram; a narrow spread around —0.5 suggests that
the negative binomial model is adequate.

Results

We present the results in 5 subsections: global features
of the surveillance system; frequency distributions; means,
seasonality and trends; dispersion; and relationships
between mean, variance, and skewness. Additional details
are available in the online Technical Appendix.

Global Features of the Surveillance System

More than 9 million individual isolates were
collected with specimen dates from week 1 in 1991
through week 26 in 2011. These isolates were of 3,303
different organism types. Figure 1 shows the time series
of counts of organism types and organism isolates by
week of specimen collection. The number of types is
highly seasonal with summer peaks; such seasonality is
less apparent for individual isolates because of the large
number of distinct, rare enteric infections. Also apparent
are troughs at weeks 52 and 1, representing lower activity
over the Christmas period.

The strong upward trends shown in Figure 1 represent
a genuine increase in numbers of isolates and organism
types over time, rather than an increase in the number
of reporting laboratories. The numbers of laboratories
reporting to the system tended to decline over time (online
Technical Appendix Figure 1). When ordered by date of
report, the number of laboratories reporting is fewer than
when ordered by date of specimen, reflecting batching
of reports (some laboratories wait to accumulate isolates
before reporting them). This factor is a notable source
of additional noise in the surveillance system when
considering counts by week of report. This batching will
also affect the timeliness of the surveillance system.

On average, the weekly count of isolates is the same,
whether ordered by week of specimen or by week of report;
this is also true of organism counts. The variation in the
differences in counts reflects the variability in delays from
specimen collection to reporting, which can be considerable
(online Technical Appendix Figure 2).

The distribution of delays between date of specimen
and date of report varies from organism to organism, with
the median typically in the range of 7-28 days, depending
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on the complexity of the laboratory procedures involved.
For example, modal delays for salmonellae are increased
by the additional subtyping step required. Extreme delays
are not uncommon, owing to late submissions or data entry
errors (online Technical Appendix Figure 3).

Frequency Distributions

There is huge variation in frequency, seasonality, and
trends among the 3,303 organism types reported. Figure 2
exemplifies this variation, even among more common
organisms. Most organisms were seldom reported; of the
3,303 recorded organisms, nonzero counts occurred in
only 1 week for 637 organisms (19%), in only 2 weeks
for 291 (8.8%), and in only 3 weeks for 225 (6.8%). At
the other end of the scale, for 30 organisms the count by
week of specimen was nonzero for each of the 1,070 weeks
(including the 4 occurrences of a 53rd week) spanning the
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Figure 1. Weekly counts of organisms by date of specimen
collection, England and Wales, 1991-2011: A) isolates; B) organism
types.

450

400 —

350 -

300 —

250 —

Total no. organisms reported

200 —

Emerging Infectious Diseases *« www.cdc.gov/eid « Vol. 19, No. 1, January 2013 37



RESEARCH

Campylobacier spp.

Respiratory syncytial virus

1,500 1

1,000

—
—
——
No. organisms

500 4

Ml I

\
'MUUUU Jd U‘UU

Mycoplasma pneumoniae

2001 2008 2011 1891 1906 2001 2008 2011

Salmonella enterica serovar Infantis

\“W

No. organisms

0 W

Chlamydia trachomatis
40007 2,000 |
30007 2 1500-]
£
£ 8
= [ =
% [l
& g
2 2,000 - o 1,000
-4 = \
1,000 500 J J H o
T T T T T I T
1991 1996 2001 2006 2011 1691 1996
Noravirus
800
100
800 80
£
w
2 5 60 -
T 400 c
3 :
g o 40
z z
200
20
MMW M il
0 W‘u 0
1991 1996 2001 2008 2011 1991 1995

2001 2006 201 1 1991 1996 2001 2008 2011

Figure 2. Weekly counts for 6 selected organisms, by date of specimen collection, England and Wales, 1991-2011.

period. These organisms are listed in Table, along with the
mean weekly counts by week of specimen.

This variation in the number of nonzero counts is
mirrored by the maximum weekly count for each organism.
For 90% of all organisms, the weekly maximum was <12;
1,651 (50%) had a maximum weekly count of 1. The
remaining 10% includes several organisms with maximum
weekly counts of several thousand, such as Chlamydia
trachomatis (maximum 4,133) and Staphylococcus aureus
(maximum 2,317).

Means, Seasonality, and Trends

The large increase in numbers of organisms reported
over time (Figure 1, panel B) suggests that laboratory
procedures have changed over time. A total of 2,675
organisms with nonzero counts were left after recoding
leading sequences of zeroes. The median weekly count for
2,408 (90%) of these organisms was zero. Figure 3 shows
histograms of the mean and standard deviation of weekly
counts by organism. The means span 6 orders of magnitude.
There is also much variation in standard deviations, the 3
largest being for C. trachomatis (982.6), S. aureus (637.8),
and rotavirus (338.4). The means for these organisms are
1,480, 764, and 303, respectively.

We fitted log-linear models to the 2,254 organisms for
which nonzero counts spanned >1 year. The distribution of
slope parameters for linear trend is shown in Figure 4, panel

A: 1,107 organisms display some evidence of an increasing
trend (positive slopes, of which 655 are significant at the
5% level) and 1,146 of decreasing trend (negative slopes,
683 are significant).

Figure 4, panel B, shows the bar chart of the modal
season for the 2,254 organisms analyzed. Every period is
modal for some organism, though organisms with summer
peaks predominate. However, the seasonal effect was
significant at the 5% level for only 723 (32%) of the 2,254
organisms analyzed.

Some organisms displayed evidence of nonconstant
seasonality. Rotavirus, for example, which typically peaks
in the early months of the year, had slightly earlier peaks in
the earlier years of data collection.

Dispersion

For 1,333 (59%) organisms, the dispersion (that is, the
ratio of variance to mean, equation 1) is >1, indicating that
the variability of weekly counts of that organism is greater
than that of a Poisson distribution. There is a general
tendency for the dispersion to increase with the mean: the
more common the organism, the less appropriate a Poisson
model tends to be (online Technical Appendix Figure 4, left
panel). For many organisms, the dispersion is greater when
calculated from data based on week of report, than when
calculated from data based on week of specimen (online
Technical Appendix Figure 4, right panel). This extra
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Table. Organisms (mean weekly count, by specimen collection

week) with nonzero specimen counts in every week from 1991 to

mid-2011, England and Wales

Organism name

Mean weekly count

Chlamydia trachomatis 1,480
Campylobacter spp. 899
Staphylococcus aureus 764
Clostridium difficile toxin detection 313
Rotavirus 303
Escherichia coli untyped 267
Staphylococcus coagulase negative 167
Streptococcus pneumoniae 119
Herpes simplex virus untyped 102
Herpes simplex virus type 2 100
Pseudomonas aeruginosa 96
Herpes simplex virus type 1 92
Cryptosporidium spp. 86
Giardia lamblia 86
Clostridium difficile not stated 81
Norovirus 76
Streptococcus group B 57
Mycobacterium tuberculosis 54
Enteroccoccus faecalis 52
Klebsiella pneumoniae 50
Streptococcus group A 49
Adenovirus untyped 43
Staphylococcus epidermidis 36
Proteus mirabilis 35
Enterobacter cloacae 34
Cytomegalovirus 29
Streptococcus group G 26
M. pneumoniae 21
Enterococcus faecium 19
Bacteroides fragilis 14

variability likely reflects the extra clustering induced by
reporting delays. The increase in the dispersion primarily
affects the more common organisms. The mean value of
the ratio of the 2 dispersion values is 1.14 (median 1);
when restricted to organisms for which the dispersion by
specimen date is >1, it is 1.26 (median 1.04).

In some cases, a contributing factor to the extra
variation is large systematic variation in diagnostic
practice, resulting in large variations in reporting intensity,
notably, long runs of zeroes, as with Helicobacter pylori
(online Technical Appendix Figure 5). However, such
patterns appear to be unusual; it is most likely that the extra
variation is caused by clustering of cases in time, which can
be accommodated relatively simply by a suitable choice of
statistical model, to be discussed next.

Relationships between Mean, Variance, and Skewness

Relationships between mean, variance, and skewness
were investigated for the 1,001 organisms with dispersion
>1 for which nonzero means and variance were obtained for
>3 half-years. In all cases, the scatterplot of log(variance)
against log(mean) was remarkably linear. Figure 5, panel
A, shows this relationship for Cyclospora spp. (the full set
of plots is available from the corresponding author). The
full line is the best fit line through the points, and lies some
way above the dotted line, which corresponds to the Poisson

Automated Biosurveillance Data

model. The dashed line corresponds to a quasi-Poisson
model (equation 1). The closeness of the dashed line to the
full line suggests that this model is not unreasonable for
Cyclospora spp.

For 538 (54%) of these 1,001 organisms, the slope of
the best-fit line is significantly different from 1, the value
corresponding to the quasi-Poisson model, and in 535
of these the slope is >1 (the exceptions are Providencia
stuartii, Mycobacterium bovis (bacillus Calmette-Guérin
strain), and Neisseria meningitidis serotype B not further
typed). This indicates that there is statistical evidence
against the quasi-Poisson in about half the cases. However,
departures from the quasi-Poisson model are typically
moderate, the slope parameters lying for the most part
between 0.9 and 1.7 (and thus reasonably close to 1), as
shown in Figure 5, panel B.
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Figure 3. Distributions of mean (A) and SD (B) of weekly counts for
all organisms, England and Wales, 1991-2011.
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extreme slopes), England and Wales, 1991-2011. B) Stacked bar
chart of modal seasonal period for 2,254 organisms. The black
bar sections represent organisms for which the seasonal effect is
statistically significant.

Most organisms, other than the most common,
displayed a degree of positive skeweness, that is, long upper
tails. The plots of skewness against log(mean), though
often broadly exponential, showed more scatter than those
of log(variance) against log(mean). Figure 6, panel A,
shows the plot for Cyclospora spp., the dashed line now
corresponding to the negative binomial model (the full set
of plots is available from the corresponding author).

For 486 (49%) of the 1,001 organisms, the slope
parameter (on the log scale) is significantly different
from —0.5, the value corresponding to the negative
binomial. For 475 of these it was greater than —0.5. Again,

departures from this reference value were moderate, most
slope parameters lying between —0.6 and 0, as shown in
Figure 6, panel B.

What these results signify is that the quasi-Poisson
model provides an adequate, though far from perfect,
account of the week-to-week variability in organism
counts for the broad range of organisms considered. The
negative binomial model may also provide an adequate
representation of these highly heterogeneous data; because
this model accounts for the skewness in the data, which
the quasi-Poisson model does not, it may provide more
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Figure 5. Relationships between mean and variance for data on
organisms collected, England and Wales, 1991-2011. A) The log
of variance plotted against log of mean for Cyclospora spp. The full
line is the best fit to the points; the dashed line corresponds to the
quasi-Poisson model; the dotted line corresponds to the Poisson
model. B) Histogram of the slopes of the best-fit lines for 1,001
organisms; the value 1 corresponds to the quasi-Poisson model
(equation 1).
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accurate threshold values, above which counts are declared
to be aberrant.

Conclusions

We have undertaken a detailed analysis of the global
features of a large surveillance database accumulated
during >20 years. Most striking is the variety of temporal
patterns, in terms of frequencies, trends, and seasonality.
Some valuable general conclusions emerge of direct
relevance to the design of outbreak detection systems.

The first stems from the great variation in organism
frequency, which stretches over 6 orders of magnitude
(from 107 to 10° per week). The sensitivity and specificity
of the detection system should remain broadly constant
over this range, so that the system performs well for both
rare and common organisms. The primary output from a
multiple outbreak detection system is likely to be a ranking
of aberrances in decreasing order of the statistical evidence
underpinning them. The correctness of the ordering is
arguably more important than achieving nominal sensitivity
and specificity levels, so that attention is focused on the
most discrepant organisms. In practice, this means that
outbreak detection methods used with multiple surveillance
systems must perform robustly and consistently over the
range of frequencies expected (or a large part of this range).

A second conclusion is that the systematic components
of the statistical outbreak detection models must be able to
cope automatically with the idiosyncrasies of individual
data series, notably seasonality and trends, without
requiring intervention by the user. This necessitates the
use of suitably flexible modeling environments, though
excessive flexibility can itself cause problems of overfitting.
A careful balance needs to be struck: for example, between
the detailed modeling required to incorporate seasonal
effects, which is crucial for some organisms, while
recognizing that such effects are not greatly relevant for
many others. In addition, robust numerical algorithms that
are guaranteed to work for all but known extreme data
configurations are essential.

Third, our analyses provide empirical support for
the use of a single, robust algorithm across this range of
organisms. The data suggest that the great majority of
organisms can adequately—though far from perfectly—be
represented by a statistical model in which the variance
is proportional to the mean, such as the quasi-Poisson or
negative binomial models. Some improvement would
nevertheless be possible through the use of more general
models in which the variance is proportional to a power of
the mean. Such more general distributions, based on birth
processes, have been studied (/5); further investigation is
warranted for application to surveillance data.

These conclusions apply specifically to the use of
automated biosurveillance as a second line of defense in
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Figure 6. Relationships between mean and skewness for data
on organisms collected, England and Wales, 1991-2011. A)
Skewness plotted against log of mean for Cyclospora spp. The full
curve is the best fit to the points; the dashed curve corresponds to
the negative binomial model; the dotted curve corresponds to the
Poisson model. B) Histogram of the parameters corresponding to
the best-fit curves for 1,001 organisms; the value —0.5 corresponds
to the negative binomial model (equation 2).

support of investigator-led outbreak detection methods,
as implemented in England and Wales. Thus, we seek a
system that performs adequately over the entire range of
organisms, to be scanned routinely, rather than one that
is optimized for a particular organism. We believe that
integrating investigator-led and automated surveillance in
this way plays best to the strengths of each method.

Each week, the England and Wales detection
system flags =20 organisms, listed in decreasing order
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of aberrance, for further investigation. A proportion of
these results are false positive and do not correspond to a
genuine outbreak. The remainder are genuine outbreaks,
many of which will also have been picked up by the front-
line investigator-led network of surveillance specialists,
as intended. Occasionally, genuine outbreaks are picked
up which have escaped detection by other means. These
events often involve pathogens with a wide geographic
distribution and relatively high baseline frequency of
reporting. Such dispersed outbreaks may be overlooked at
the local level, where they often equate to only marginal
increases, but nationally may represent noteworthy events.
Recent examples include outbreaks of Salmonella enterica
serotype Enteritidis phage type 14b in 2009 (16), S. enterica
ser. Java in 2010 (17), S. enterica ser. Montevideo in 2011,
and S. enterica ser. Poona in 2012.

Our current efforts at improving the system are to
reduce the false-positive rate while maintaining sufficient
power to detect genuine outbreaks. Some of the key
issues to be revisited are treatment of trends, seasonality,
and calculation of thresholds, in the light of the findings
presented here. Other issues are how to handle past
outbreaks and delays between specimen collection and
reported identification. The data and experience gained
from >20 years’ of automated biosurveillance will provide
valuable empirical underpinning for such improvements.
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