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Human hepatitis E virus infections may be caused by 
zoonotic transmission of virus genotypes 3 and 4. To de-
termine whether rodents are a reservoir, we analyzed the 
complete nucleotide sequence of a hepatitis E–like virus 
from 2 Norway rats in Germany. The sequence suggests a 
separate genotype for this hepatotropic virus.  

Hepatitis E virus (HEV) is a nonenveloped virus, diam-
eter 30–34 nm, that  belongs to the genus Hepevirus. 

Its single-stranded, positive-polarity RNA genome of 6.6–
7.3 kb harbors 3 major open reading frames (ORFs) fl anked 
by a capped 5′ end and a poly A at the 3′ end. ORF1 at the 5′ 
end of the genome codes for several nonstructural proteins, 
ORF2 encodes the immunodominant capsid protein, and 

the partially overlapping ORF3 codes for a cytoskeleton-
associated phosphoprotein with multiple functions (1).

Hepatitis E, an acute self-limiting disease, occurs 
worldwide; large outbreaks have occurred in developing 
countries, as was recently reported from Uganda (2). Ini-
tially, hepatitis E was believed to be endemic only to devel-
oping countries in Asia, Africa, and Central America, but 
recent studies have demonstrated autochthonous infections 
in industrialized countries (Europe, Japan) (3). In contrast 
to the fecal–oral transmission of HEV that occurs in devel-
oping countries, it is suspected that these human infections 
result from zoonotic transmission of HEV genotypes 3 and 
4; domestic pigs, wild boars, and deer represent major res-
ervoir hosts (1,4). However, rodents, especially commen-
sal rodents, may represent an additional HEV reservoir and 
may play a role in the epidemiology of hepatitis E. HEV-
reactive antibodies have been detected in several rat spe-
cies (Rattus norvegicus, R. rattus, R. exulans) but also in 
some noncommensal wild rodent species (5–8). By using 
broad-spectrum, nested, reverse transcription–PCR (RT-
PCR), we recently detected HEV-like sequences in fecal 
samples of Norway rats (R. norvegicus) trapped as part of 
the Rodent-borne Pathogens network (which coordinates 
activities with regard to rodent trapping during outbreaks) 
(9,10). These sequence fragments had high nucleotide se-
quence divergence to genotypes 1–4 and to avian HEV 
strains.

The Study
During July 8–16, 2009, a total of 6 Norway rats, 3 

male and 3 female, 65–432 g, were trapped in manholes 
of the sewer system of Hamburg, northern Germany, at 
the same locations where ≈12 months before HEV RNA 
had been detected in rat feces (10). Standardized necropsy 
(9) found no morphologic abnormalities. Initial serologic 
screening with a commercial genotype 1–based ELISA 
(Axiom, Bürstadt, Germany) detected no reactive antibod-
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Table. Nucleotide and deduced amino acid sequence identities between human, rabbit, and avian HEV strains compared with HEV 
isolated from 2 Norway rats, Germany, July 2009* 

Strain, GenBank 
accession  no. 

Rat no., GenBank accession no. 
63, GU345042 68, GU345043 

Genome, nt ORF1, aa ORF2, aa ORF3, aa Genome, nt ORF1, aa ORF2, aa ORF3, aa
Genotype 1, F076239 55.9 47.6 56.2 27.5 55.7 47.4 56.4 30.4
Genotype 2, M74506 55.3 48.7 55.4 28.4 55.2 48.6 55.5 29.4
Genotype 3, F060668 55.7 48.0 57.2 24.8 55.7 47.7 57.3 26.7
Genotype 4, J272108 55.5 48.2 55.9 27.5 55.3 47.8 56.1 26.5
Rabbit HEV, J906895 55.1 48.7 56.7 23.5 55.1 48.6 56.8 25.5
Avian HEV/Hungary, 
AM943646 

50.2 46.5 45.9 26.9 49.9 46.4 46.3 26.9

Avian HEV/Australia, 
AM943647   

49.9 46.6 46.1 26.9 49.3 46.5 46.5 26.9

Avian HEV/USA, 
AY535004 

49.5 46.7 46.1 26.9 49.8 46.7 46.5 26.9

*HEV, hepatitis E virus; ORF, open reading frame. 
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ies in transudates of any of the 6 rats. Liver RNA from 1 fe-
male (no. 68, 311 g) and 1 male (no. 63, 313 g) rat yielded 
an amplifi cation product of the expected size (331–334 nt) 
and a sequence identity of 83.8%–94.6 % with the HEV se-
quences recently obtained from rat feces (data not shown). 
Using a strategy according to Schielke et al. (4), we de-
termined the entire rat HEV genome sequences from each 
sample to be 6,945 nt and 6,948 nt; the sequences differed 
by an insertion–deletion polymorphism in the 3′ noncod-
ing region. The sequence identity between each complete 
sequence was 95.3% and reached 55.1%–55.9% to HEV 
genotypes 1–4 and 49.3%–50.2% to avian HEV strains 
(Table). Using prediction software, we identifi ed the major 
ORFs 1, 2, and 3 in the new genomes in an organization 
typical for HEV (Figure 1, panel A). In contrast to HEV 
genotypes 1–3, rat HEV ORFs 1 and 3 do not overlap. 
Three additional putative ORFs of 280–600 nt that overlap 
with ORFs 1 or 2 were predicted for each rat HEV genome 
(Figure 1, panel A). However, before the meaning of these 
fi ndings can be verifi ed, sequence information from addi-

tional rat HEV strains and experimental proof are needed. 
Phylogenetic analyses of a 1,576-nt segment available for 
all published rat HEV sequences demonstrated clear sepa-
ration from mammalian genotypes 1–4 and avian strains 
(Figure 1, panel B). The same 3 phylogenetic clusters were 
obtained when the complete genomes were analyzed (Fig-
ure 1, panel C) and when the nucleotide and deduced amino 
acid sequences of ORF1, ORF2, and ORF3 were investi-
gated separately (data not shown).

To compare viral load in different tissues of the 2 
HEV–positive rats, we developed a real-time RT-PCR se-
lective for a region in the ORF2 of rat HEV. Parallel analy-
sis of RNA isolated from 10 mg of each tissue or 10 μL 
of blood reproducibly showed the highest viral load to be 
in the liver; cycle threshold values for liver were 20.5 and 
21.6 for each animal and lower for all other tissues (online 
Appendix Figure, www.cdc.gov/EID/content/16/9/1452-
appF.htm). Further, immunohistochemical analysis, using 
anti-HEV serum, detected viral antigen in the cytoplasm 
of a few hepatocytes from each HEV-positive rat. Antigen 
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Figure 1. Genome structure and localization of putative open 
reading frames (ORFs) and functional domains in ORF1 of 
hepatitis E virus (HEV) sequences from Norway rats nos. 63 
and 68, collected in Germany, July 2009 (A); phylogenetic trees 
based on a partial nucleotide sequence of 1,576 nt (B); and the 
complete genomes (C). The methyltransferase (MeT), helicase 
(Hel), and RNA-dependent RNA polymerase (RdRp, GDD motif 
indicated) domains are conserved and in the same order in the 
rat HEV genomes. In contrast, the papain-like protease domain 
(PLP) and the proline-rich domain (Prol) were more variable. 
Three additional ORFs (4, 5, 6) were predicted for both rat HEV 
genomes. Phylogenetic relationships were reconstructed by 
using neighbor-joining and Bayesian algorithms after substitution 
model estimation (12). Robustness of nodes in phylogenetic 
trees is given above branches for Bayesian algorithms (sampling 
every 10 of 1 million generations; fi rst 25,000 samples discarded 
as burn-in) and below branches for neighbor joining (10,000 
bootstrap replicates). Only support values for main nodes 
that connect genotypes or major evolutionary lineages are 
displayed. *Indicates that neighbor-joining algorithms suggest 
instead a closer phylogenetic relationship between genotypes 
3 and 4 with genotype 1 basal to these 2. Scale bar indicates 
phylogenetic distances in nucleotide substitutions per site. 
Complete methods used are described online (www.cdc.gov/
EID/content/16/9/1452-F1.htm).



was also observed in some activated hepatic stellate cells 
(Figure 2). Hematoxylin-eosin staining showed a margin-
ally increased number of monocytes and granulocytes in 
sinusoids as well as a moderately increased number of lym-
phocytes and plasma cells in some Glisson triads of the liv-
ers (data not shown).

Conclusions
Phylogenetic analyses and nucleotide and amino acid 

sequence comparisons demonstrated that the complete rat 
HEV genome sequences were consistently well separated 
from those of mammalian genotypes 1–4 and the tentative 

avian genotype. This fi nding suggests that these sequences 
represent an additional genotype (Figure 1, Table). In our 
analyses, the recently described HEV strain found in domes-
tic rabbits, proposed to represent a separate genotype (13), 
clustered with human HEV genotypes irrespective of the 
genome part, nucleotide, or deduced amino acid sequenc-
es analyzed (Figure 1, panels B, C, and data not shown). 
Therefore, this strain may represent the consequence of 
recent spillover rather than the result of long-term virus–
host coevolution. In contrast, the nonzoonotic avian HEV 
strains strongly differ from the mammalian HEV genotypes 
1–4 (Figure 1, panels B, C). Although in the genus Hep-
evirus no species demarcation criteria have been defi ned, 
the marked sequence diversities suggest that the rat HEV 
represents an additional virus species other than HEV-1, 
HEV-2, HEV-3, HEV-4, and the tentative species avian 
HEV, which are currently classifi ed in this genus (14).

Detection of rat HEV RNA and antigen in the liver 
cells of the infected Norway rats may indicate hepatotro-
pism of this virus. Therefore, regarding its organ and cell-
type tropism, this virus seems to be similar to the human 
and pig HEV genotypes (15). Because the virus was also 
detected in the intestine and, in the previous study, in feces 
(10), fecal–oral transmission as for genotypes 1–4 is plau-
sible. The common properties of this virus and the human 
HEV genotypes suggest the usefulness of developing an 
HEV model in laboratory rats. In addition, the detection of 
rat HEV in animals from an urban region in Germany raises 
questions about the putative epidemiologic role of rat HEV 
for hepatitis E in humans.
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counterstained with hematoxylin and subsequently analyzed by 
light microscopy. Scale bars = 20 μm.
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