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Rarity of Infl uenza 
A Virus in Spring 

Shorebirds, 
Southern Alaska
To the Editor: Knowledge of 

avian infl uenza (AI) virus and its host 
epidemiology and ecology is essential 
for effective monitoring and mitiga-
tion (1). Applicability of global and 
continental-scale models will be key 
for expanding this knowledge base. 
Research in the Delaware Bay area, 
eastern United States, suggests an 
ecologic and epidemiologic viewpoint 
of AI virus in wild birds in which 
shorebirds (family Scolopacidae) are 
predominant hosts in spring; however, 
research in Alberta, Canada, suggests 
that waterfowl are such in autumn 
(2,3). AI virus surveillance in Europe 
(4) suggests that the spring aspect of 
this scenario does not apply there. To 
increase knowledge of AI transport 
among shorebirds in spring in the 
North Pacifi c, we conducted AI virus 
surveillance during the springs of 2006 
and 2007 at the Copper River Delta 
area of Alaska. Millions of birds con-
gregate at this location in the spring, 
resulting in the highest spring shore-
bird concentrations in the New World 
(5). We also sampled gulls (Laridae), 
which are common and heretofore un-
surveyed for AI in this ecosystem.

In 2006 and 2007, 1,050 shorebirds 
(Western Sandpiper, Calidris mauri, 
and Least Sandpiper, C. minutilla) and 
770 Glaucous-winged Gulls (Larus 
glaucescens) were sampled during peak 
spring migration at Hartney Bay, Cor-
dova, Alaska (60°28′N 146°8′W; Ta-
ble). Fresh fecal samples were obtained 
from tidal fl ats within <1 to 90 min af-
ter identifi ed fl ocks were dispersed, and 
samples were placed in sterile medium 
(brain heart infusion buffer with 10,000 
U/mL penicillin G, 1 mg/mL gentami-
cin, and 20 μg/mL amphotericin B) and 
either kept cool (<1 week) before trans-
port to Fairbanks (2006) or placed into 
liquid nitrogen within 2 h of collection 
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(2007). Samples were stored at –70° 
C; shipped frozen overnight to Athens, 
Georgia; and maintained frozen until 
analyzed.

Samples were screened by real-
time reverse transcriptase–PCR (RT-
PCR) for infl uenza A virus, and virus 
isolation was performed on samples 
that were positive. RNA was extracted 
by adding 250 μL of sample to 750 μL 
Trizol LS reagent (Invitrogen, Inc., 
Carlsbad, CA, USA). Samples were 
mixed and incubated at room tem-
perature for 10 min. A total of 200 μL 
of chloroform was then added, incu-
bation was continued for 5 min, and 
samples were centrifuged for 15 min 
at 12,000 × g at 4° C. Supernatant was 
removed, and 50 μL was extracted 
with the MagMax AI/ND viral RNA 
extraction kit (Ambion, Inc. Austin, 
TX, USA). RNA was tested for AI 
virus matrix (M) gene. A positive test 
result for this gene indicates the pres-
ence of any infl uenza viruses (6) when 
an internal positive control is used 
(7). Positive samples were processed 
for virus isolation in embryonated 
chicken eggs by standard methods (8). 
Real-time RT-PCR results were cor-
roborated by processing 50 randomly 
selected negative samples for virus 
isolation with 3 egg passages.

Screening for AI virus was con-
ducted on 1,820 samples (Table). 
Among these, 1 AI virus was identi-
fi ed (A/Glaucous-wingedGull/AK/
4906A/2006; H16N?), refl ecting an 
overall prevalence of 0.055% (0% in 
shorebirds and 0.13% in gulls).

Results of power analysis (9) 
suggested that our shorebird samples 
would detect infection rates >0.9% 
with 99% probability (95% probabil-
ity of detecting rates 1%–2% or higher 
in each year). In gulls, probability of 
detecting infection rates >1% across 
both years of the study (>6% in 2006 
and >1%–2% in 2007) was 95%.

Virus prevalence in spring shore-
birds in Alaska was substantially low-
er than prevalence in spring shorebirds 
in the Delaware Bay area (3) and more 

similar to prevalence in spring shore-
birds in Europe (4). Our shorebird 
samples (1,050) were fewer than those 
in other studies (3; 4,266 samples from 
4 species over 16 years, and 4; 3,159 
samples from 47 species over 8 years, 
with 35% from spring), representing 
25% and 33% of those studies, respec-
tively. Our study covered only 2 years, 
but it would detect AI virus infections 
in shorebirds at rates >1%–2% within 
each year with 95% probability and 
at rates >0.9% across years with 99% 
probability. Thus, the prevalence rate 
among Copper River Delta shorebirds 
in our study is lower than that found in 
the 16-year Delaware Bay study (3). 
In the Delaware Bay area, 4 shorebird 
species were sampled: 3 Calidris and 
1 Arenaria (3). Precise statistics are 
unavailable, but the average 16-year 
prevalence rate was 14.2%, fl uctuat-
ing annually from ≈2% to ≈38% (3).

In Europe AI viruses were absent 
among spring shorebirds (4). Differ-
ences in prevalence rates found among 
studies may be infl uenced by species 
sampled, sampling procedures, and 
seasonal timing (4). However, with 
>1,000 spring shorebirds sampled, 
results suggest that differences might 
exist between the world’s major mi-
gration systems (3,4).

Our results corroborate other re-
cent results (10) suggesting that AI 
prevalence rates among shorebirds at 
Delaware Bay are not typical within 
North America. Present evidence in-
dicates (this study; 3,10) that the role 
of shorebirds in AI virus ecology and 
epidemiology is heterogeneous within 
North America and within a genus 
(Calidris). These fi ndings confi rm that 
knowledge of how AI viruses cycle in 
wild bird hosts remains incomplete at 

continental and family-level taxonom-
ic scales. Only further surveillance can 
fi ll these knowledge gaps.
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Table. Species and sample sizes of wild bird hosts screened for avian influenza virus, 
Cordova, Alaska, May 2006 and May 2007 

Sample size 
Species 2006 2007 Total
Western sandpiper (Calidris mauri) 500 300 800
Least sandpiper (C. minutilla) 0 250 250
Glaucous-winged gull (Larus glaucescens) 100 670 770
Totals 600 1,220 1,820
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Isolation of 
Brucella microti 

from Soil 
To the Editor: Brucella microti 

is a recently described Brucella spe-
cies (1) that was isolated in 2000 from 
systemically infected common voles 
(Microtus arvalis) in South Mora-
via, Czech Republic. The organism is 
characterized by rapid growth on stan-
dard media and high metabolic activ-
ity, which is atypical for Brucella (2). 
The biochemical profi le of B. microti 
is more similar to that of Ochrobac-
trum spp., of which most species are 
typical soil bacteria.

On the basis of the close phylo-
genetic relationship of Brucella spp. 
and Ochrobactrum spp. and the high 
metabolic activity of B. microti, we 
hypothesized that this Brucella spe-
cies might also have a reservoir in 
soil. To test this hypothesis, we in-
vestigated 15 soil samples collected 
on December 11, 2007, from sites in 
the area where B. microti was isolated 
from common voles in 2000 (2). Ten 
of the samples were collected from 
the surface and at a depth of up to 5 
cm near different mouse burrows 5 m 
apart. The remaining 5 samples were 
collected from an unaffected area 
without clinical cases of vole infec-
tion. The pH of soil samples ranged 
from 5.9 to 6.3. No frosts were re-
corded before the time of collection.

To specifi cally detect B. mi-
croti in soil samples, we have devel-
oped a PCR that targets a genomic 
island of 11 kb (H.C. Scholz et al., 
unpub. data) that is unique for B. mi-
croti. Briefl y, primers Bmispec_f (5′-
AGATACTGGAACATAGCCCG-3′) 
and Bmispec_r (5′-ATACTCAGGC
AGGATACCGC-3′) were used to am-
plify a 510-bp fragment of the genomic 
island. PCR conditions were denatur-
ation at 94°C for 5 min, followed by 29 
cycles at 94°C for 30 s, 60°C for 30 s, 
and 72°C for 30 s. Total DNA was pre-
pared from 0.5 g of each soil sample 

by using the MO BIO Ultra Clean Soil 
DNA Kit (Dianova, Hamburg, Ger-
many). DNA was eluted with 50 μL 
of double-deionized water of which 2 
μL was used in PCRs. Template DNA 
of B. microti CCM 4915T was used as 
a positive control. Type strains of all 
recognized Brucella species, 1 strain 
of each biovar of all species, and type 
strains of 11 Ochrobactrum species 
were used as negative controls.

In this PCR, 5 of 15 soil samples 
and the positive control were positive 
for the 510-bp fragment; other Brucel-
la spp. and Ochrobactrum spp. were 
negative. Of the 5 positive samples, 3 
were collected from surface soil col-
lected near mouse burrows. However, 
the remaining 2 positive samples were 
collected from the unaffected and sup-
posedly negative-control area.

For direct cultivation of Brucella 
spp. from soil, 2 g each of 2 selected 
PCR-positive samples with the highest 
amplifi cation rate (both from the af-
fected area) were thoroughly homog-
enized in 5 mL of phosphate-buffered 
saline (PBS), pH 7.2, in 50-mL tubes. 
Of a serial dilution in PBS (100–10–4), 
100 μL was plated onto Brucella agar 
(Merck, Darmstadt, Germany) supple-
mented with 5% (vol/vol) sheep blood 
(Oxoid, Wesel, Germany) and Bru-
cella selective supplement (Oxoid) 
and incubated at 37°C. Twenty suspi-
cious colonies from the 100 dilution 
plate of 1 soil sample were subculti-
vated on Brucella selective agar. Two 
of the subcultivated bacteria (BMS 17 
and BMS 20) reacted positively with 
monospecifi c anti-Brucella (M) serum. 
Both isolates were positive in the B. 
microti–specifi c PCR. Sequencing of 
the 510-bp fragments from both strains 
(GenBank accession nos. AM943814 
and AM943815) and comparison with 
the known nucleotide sequence of B. 
microti showed 100% identity. 

To confi rm that strains BMS 17 
and BMS 20 were B. microti, these 
strains were subjected to multilo-
cus sequence analysis and multilo-
cus variable number of tandem re-
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