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terobacteriaceae (such as some strains 
of Klebsiella spp.) and other organ-
isms (such as Staphylococcus aureus), 
can have similar requirements (7,8).

There is not 1 best way of per-
forming urine cultures. Guidelines for 
the diagnosis of UTI includes the use 
of sheep blood agar and either Mac-
Conkey agar or a similar selective 
medium for routine urine culture. The 
plates should be incubated overnight 
(at least 16 hours) at 37°C in ambient 
air; alternatively, the blood agar plate 
can be incubated in elevated (3%–8%) 
CO2 (9). For fastidious microorgan-
isms, chocolate agar can be added to 
the MacConkey agar and the plates in-
cubated in 5% CO2 for 2 days (9).

The real incidence of these infec-
tions is unknown, but the rarity of these 
strains suggests that the incidence is 
low. However, the real incidence of 
UTI caused by capnophilic E. coli 
may be underestimated because urine 
cultures are not usually incubated in 
CO2. In addition, urine cultures are not 
performed for many women with un-
complicated cystitis. Other fastidious 
uropathogens such as Haemophilus 
infl uenzae and H. parainfl uenzae, also 
require special media and incubation 
in an atmosphere of CO2 (9). The low 
frequency of these strains suggests that 
incubation of routine urine cultures in 
an atmosphere containing CO2 is not 
necessary. Incubation in CO2 should 
be ordered only if the patient has 
pyuria and a previous negative urine 
culture after incubation in ambient air 
or if the patient is unresponsive to em-
piric therapy and routine urine culture 
is negative. Good clinician–laboratory 
communication is vital. Further stud-
ies should be performed to ascertain 
the real incidence of UTIs caused by 
capnophilic strains of E. coli.

Because no breakpoints are avail-
able for antimicrobial agents against 
capnophilic strains of E. coli, we used 
published interpretative criteria or En-
terobacteriaceae (3). The strain was 
susceptible to all antimicrobial agents 
that we tested. The impact of CO2 on 

the susceptibility of capnophilic strains 
of E. coli is unknown. Susceptibility 
of some antimicrobial agents such as 
quinolones can be infl uenced by the 
pH change and enhanced growth that 
occur during CO2 incubation when 
testing capnophilic organisms (10).
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Duck Migration and 
Past Infl uenza A 
(H5N1) Outbreak 

Areas 
To the Editor: In 2005 and 2006, 

the highly pathogenic avian infl uenza 
(HPAI) virus subtype H5N1 rapidly 
spread from Asia through Europe, the 
Middle East, and Africa. Waterbirds 
are considered the natural reservoir 
of low pathogenic avian infl uenza vi-
ruses (1), but their potential role in the 
spread of HPAI (H5N1), along with 
legal and illegal poultry and wildlife 
trade (2), is yet to be clarifi ed.

The garganey (Anas querquedula) 
is the most numerous duck migrating 
between Eurasia and Africa: ≈2 mil-
lion gather in the wetlands of Western 
Africa every northern winter (3). We 
report on a spatial correlation between 
the 2007 migration path of a garganey 
monitored through satellite telemetry 
and areas that had major HPAI (H5N1) 
outbreaks from 2005 through 2007.

Seven garganeys were captured, 
sampled, and fi tted with a 12-g sat-
ellite transmitter in northern Nigeria 
(Hadejia-Nguru Wetlands; 12°48′N; 
10°44′E) in the period February 7–15, 
2007. All cloacal and tracheal swabs 
tested negative for avian infl uenza 
virus by real-time reverse transcrip-
tion–PCR analysis of the matrix 
gene. One second-year (>9-month-
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old) female garganey migrated from 
northern Nigeria to Russia in April–
May 2007 (online Appendix Figure, 
available from www.cdc.gov/EID/
content/14/7/1164–appG.htm), where 
she remained until the end of July. 
During this 6-week spring migration 
over the Sahara Desert, Mediterra-
nean Sea, and Eastern Europe, this 
duck stopped at 3 main stopover sites 
in Crete, Turkey (Bosphorus region), 
and Romania (Danube River delta). 
The duck migrated back to the Dan-
ube delta in August, where it remained 
until November, when the signal was 
lost. Other garganeys we monitored 
stopped transmitting before initiating 
spring migration (n = 3) or remained 
in West Africa during spring and sum-
mer (n = 3), which suggests a stress 
linked to capture or constraint from 
the transmitter attachment.

This transcontinental migration 
path connects several areas of past 
major HPAI (H5N1) outbreaks (on-
line Appendix Figure). The wintering 
area in Nigeria where this duck was 
caught and remained for 8 weeks be-
fore spring migration is located where 
a large number of outbreaks have oc-
curred repeatedly since February 2006 
(the closest being 30 km away). This 
bird reached its breeding ground in 
Russia near Moscow and stayed for 
2 months in an area that had several 
outbreaks in backyard poultry in Feb-
ruary 2007 (the closest being 30 km 
away). Finally, the Danube delta, used 
as a resting ground for 3 months in late 
summer and autumn, is also an area 
with recurring outbreaks since Octo-
ber 2005 in wild and domestic birds, 
with the most recent case reported in 
November 2007 (the closest being 10 
km away). The initial spread of HPAI 
virus (H5N1) from Eurasia to Africa 
occurred in autumn and winter 2005–
06. The migratory movements we ob-
served during spring and summer in 
this study were not temporally corre-
lated with any reported HPAI (H5N1) 
outbreak, either in sequence or period; 
hence, they should not be interpreted 

as evidence of the role of wild bird in 
expansions of the virus.

During spring migration from Ni-
geria to Russia, the garganey stopped 
several days in wetlands situated close 
to areas of past outbreaks in the Dan-
ube delta (4 days at a distance of 1–4 
km from October 2005 outbreaks) 
and Lake Kus, Turkey (8 days at a 
distance of 10–30 km from October 
2005 outbreaks). The occurrence of 
past outbreaks indicates that the duck 
used wetlands favorable to HPAI vi-
rus (H5N1) transmission as stopover 
sites. The relatively long stopover 
periods enabled prolonged contact of 
migratory ducks with local domestic 
and wild bird populations or through 
shared water, thus prolonging the po-
tential for virus transmission. Consid-
ering the persistence of infectivity of 
HPAI virus (H5N1) in aquatic habitats 
(4), the number of migratory ducks 
congregating at stopover sites from 
various geographic origins and desti-
nations, and the asynchronous timing 
of the arrival and departure of migra-
tory ducks (5), we believe that these 
sites may provide locations for disease 
transmission and possible spread upon 
movement of wild birds.

The satellite-fi tted female gar-
ganey covered distances between stop-
over sites of >2,000 km in <2 days, 
traveling at an estimated speed of 60 
km/h. This large-scale movement in 
a short period, coupled with experi-
mental exposure trials demonstrating 
viral shedding of up to 4 days in ducks 
with no clinical signs of infection (6), 
is consistent with potential viral trans-
mission over great distances.

These facts illustrate how a 
pathogen such as HPAI virus (H5N1) 
can potentially be transported rapidly 
by migratory birds across continents. 
However, the physiologic impact of 
an HPAI (H5N1) infection on the abil-
ity of birds to migrate long distances 
is still unknown (7) and to date, most 
empirical evidence suggests that wild 
birds have only moved short distances 
(a few hundred kilometers) likely car-

rying HPAI virus (H5N1) (8). Despite 
extensive global wildlife surveillance 
efforts and with the exception of a 
few reported cases of HPAI (H5N1) 
infection in apparently healthy wild 
ducks (9,10), evidence of wild bird 
involvement in the spread of HPAI vi-
rus (H5N1) over long distances is still 
lacking.
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Dihydrofolate 
Reductase I164L 

Mutation in 
Plasmodium 
falciparum, 
Madagascar 

To the Editor: Malaria remains 
a major public health problem and a 
primary cause of illness in Madagas-
car (1). Since 2005, the National Ma-
laria Control Program has revised its 
treatment policy and replaced chlo-
roquine (CQ) with artesunate plus 
amodiaquine as fi rst-line therapy for 
uncomplicated malaria and CQ with 
sulfadoxine-pyrimethamine (SP) for 
prevention of malaria during pregnan-
cy. The latter choice was partially sup-
ported by high effectiveness of SP and 
absence of pyrimethamine resistance 
in Madagascar, in contrast to proximal 
African countries such as the Comoros 
Islands (2,3).

Analysis of the molecular basis 
of antimalarial drug resistance has 
demonstrated that mutations in the 
dihydrofolate reductase (dhfr) and 
dihydropteroate synthase genes are 
associated with development of SP 
resistance. It has been assumed that 
pyrimethamine resistance conferred 
by multiple mutations arose through 
stepwise selection of the S108N 
single mutant (except for the A16V/
S108T allele). This single-point muta-
tion decreases the sensitivity of dhfr 
to pyrimethamine in vitro by ≈10× 
(4). Subsequent mutations, such as 
N51I and C59R, cause additional de-
creases in the sensitivity of dhfr to py-
rimethamine. Parasites with a triple-
mutant allele (51I/59R/108N) are less 
sensitive to pyrimethamine in vitro, 
and patients infected with these para-
sites have a high probability of not re-
sponding to SP treatment (5).

Addition of I164L to 
51I/59R/108N creates a quadruple-
mutant allele and decreases the sensi-
tivity of dhfr by ≈1,000× (4), eliminat-

ing the clinical effectiveness of SP, as 
observed in Southeast Asia and South 
America. However, the situation in 
Africa seems to be different because 
most studies conducted since the mid 
1990s have shown the quadruple mu-
tant to be rare, even in areas of inten-
sive pyrimethamine use (6). Increasing 
SP resistance is principally a result of 
rapid selection for parasites that car-
ry a triple-mutant allele that arose in 
Southeast Asia and has spread widely 
in Africa (7,8).

In 2006, blood samples were ob-
tained from 114 children 6 months to 
15 years of age enrolled in a clinical 
trial monitoring the effi cacy of SP in 
treatment of uncomplicated Plasmodi-
um falciparum malaria. The dhfr gene 
from pretreatment samples was se-
quenced at the Genomics Platform of 
the Pasteur Institute in Paris, France. 
Four (3%) samples contained the 108N 
single-mutant allele, 37 (32%) con-
tained the 51I/59R/108N triple-mu-
tant allele, and 1 (<1%) contained the 
I164L single-mutant allele. This latter 
allele was obtained from the blood of 
a 15-year-old girl from Ejeda in south-
ern Madagascar. At enrollment in the 
trial, she had an axillary temperature 
of 37.8°C and a P. falciparum asexual 
parasite count of 74,880/μL. She was 
treated with the standard SP regimen 
(25 mg/kg sulfadoxine and 1.25 mg/kg 
pyrimethamine as a single dose on day 
0). On the basis of the World Health 
Organization 2003 protocol (9), early 
treatment failure was noted on day 2, 
when the patient had signs of malaria 
with a temperature of 40°C and a para-
site count of 770/μL. She was success-
fully retreated with a rescue regimen 
(quinine, 8 mg base/kg, 3 times a day 
for 7 days). 

To confi rm detection of the I164L 
allele, parasite DNA was extracted 
from blood spots obtained on days 0, 1, 
and 2 and sequenced. DNA templates 
were sent to a second independent 
laboratory (Department of Genome 
Sciences, University of Washington, 
Seattle, WA, USA) to rule out misiden-
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