Biomonitoring Summary

Phthalates Overview

Di-isononyl Phthalate

CAS No. 28553-12-0

General Information

Di-isononyl phthalate (DiNP) is a mixture of phthalates with branched alkyl side chains of varying length (C8, C9, and C10). DiNP is primarily used to produce flexible plastics and has replaced di-2-ethylhexyl phthalate (DEHP) in some plastics, though not in medical products. DiNP is widely used in such products as toys, flooring, gloves, drinking straws, garden hoses, and in sealants used for food packaging. People exposed to DiNP will excrete small amounts of mono-isononyl phthalate (MiNP) and other secondary oxidative metabolites. Urinary MiNP represents only about 2% of a dose (Koch and Angerer, 2007; Silva et al., 2006a, 2006b). Because DiNP is a complex mixture, MiNP may not reflect exposure to all the chemical components.

DiNP administered to rodents produced liver and kidney toxicity, and may cause liver tumors by a mechanism involving peroxisomal proliferation. High dose DiNP was a developmental toxicant in rodents (NTP-CERHR, 2003c). Although DiNP is considered an animal carcinogen, neither IARC nor NTP has evaluated DiNP with respect to human carcinogenicity.

Biomonitoring Information

MiNP was detected mainly at the 95th percentiles in the National Report on Human Exposure to Environmental Chemicals (CDC, 2012). A low detection rate was also reported in a small sample of African-American women in Washington, DC (Hoppin et al., 2002).

Finding a measurable amount of MiNP in urine does not imply that the levels of MiNP or the parent compound cause an adverse health effect. Biomonitoring studies on levels of MiNP provide physicians and public health officials with reference values so that they can determine whether people have been exposed to higher levels of DiNP than are found in the general population. Biomonitoring data can also help scientists plan and conduct research on exposure and health effects.

References

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for di-n-butyl phthalate update [online]. September 2001. Available at URL: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=859&tid=167. 6/21/13

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for di(2-ethylhexyl)phthalate update [online]. September 2002. Available at URL: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=684&tid=65. 6/21/13

Albro PW, Corbett JT, Schroeder JL, Jordan S, Matthews HB. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect 1982;45:19-25.

Albro PW and Lavenhar SR. Metabolism of di(2-ethylhexyl) phthalate. Drug Metab Rev 1989;21:13-34.

Anderson WA, Castle L, Scotter MJ, Massey RC, Springall C. A biomarker approach to measuring human dietary exposure to certain phthalate diesters. Food Addit Contam 2001;18(12):1068-1074.

Calafat AM, Slakman AR, Silva MJ, Herbert AR, Needham LL. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B 2004;805:49-56.

Centers for Disease Control and Prevention (CDC). Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables, 2013. [online] Available at URL: https://www.cdc.gov/exposurereport/. 6/21/13

Clark K, Cousins IT, Mackay D. Assessment of critical exposure pathways. In Staples CA (ed), The Handbook of Environmental Chemistry, Vol, 3, Part Q: Phthalate Esters. 2003;New York, Springer, pp. 227-262.

Coldham NG, Dave M, Silvapathasundaram S, McDonnell DP, Connor C, Sauer MJ. Evaluation of a recombinant yeast cell estrogen screening assay. Environ Health Perspect 1997; 105:734-742.

Dirven HA, van der Broek PH, Jongeneelen FJ. Determination of four metabolites of the plasticizer di (2-ethylhexyl) phthalate in human urine samples. Int Arch Occup Environ Health 1993;64(8):555-560.

Duty SM, Calafat AM, Silva MJ, Brock JW, Ryan L, Chen Z, et al. The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters. J Androl 2004;25(2):293-302.

Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health 2007;210:21-33.

Harris CA, Henttu P, Park MG, Sumpter JP. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 1997;105:802-811.

Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age [published erratum appears in Environ Health Perspect 2004;112(17):1740]. Environ Health Perspect 2004;112(17):1734-1740.

Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L, Duty S, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 2007;22(3):688-695.

Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect 2002;110(5):515-518.

Jarfelt K, Dalgaard M, Hass U, Borch J, Jacobsen H, Ladefoged O. Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate. Reprod Toxicol 2005;19(4):505-515.

Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals including some phthalate plasticizers are weakly estrogenic. Environ Health Perspect 1995;103:582-587.

Jonsson BAG, Richthoff J, Rylander L, Giwercman A, Hagmar L. Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiol 2005;16(4):487-493.

Kessler W, Numtip W, Grote K, Csanády G, Chahoud I, Filser J. Blood burden of di(2-ethylhexylphthalate (DEHP) and its primary metabolite mono(2-ethylhexyl) phthalate (MEHP) in pregnant and non-pregnant rats and marmosets. Toxicol Appl Pharmacol 2004;195:142-153.

Koch HM, Angerer J. Di-iso-nonylphthalate (DINP) metabolites in human urine after a single oral dose of deuterium-labelled DINP. Int J Hyg Environ Health 2007;79:210:9-19.

Liss GM, Albro PW, Hartle RW, Stringer WT. Urine phthalate determinations as an index of occupational exposure to phthalic anhydride and di (2-ethylhexyl) phthalate. Scand J Work Environ Health 1985;11(5):381-387.

Lovekamp-Swan T, Davis BJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect 2003;111(2):139-145.

McKee RH, Butala JH, David RM, Gans G. NTP center for the evaluation of risks to human reproduction reports on phthalates: addressing the data gaps [review]. Reprod Toxicol 2004;18(1):1-22.

Milligan SR, Balasubramanian AV, Kalita JC. Relative potency of xenobiotic estrogens in an acute in vivo mammalian assay. Environ Health Perspect 1998;106(1):23-26.

Mortensen GK, Main KM, Andersson A-M, Leffers H, Skakkebaek NE. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS). Anal Bioanal Chem 2005;382:1084-1092.

Nielsen J, Akesson B, Skerfving S. Phthalate ester exposure—air levels and health of workers processing polyvinylchloride. Am Ind Hyg Assoc J 1985;46(11):643-647.

NTP-CERHR. National Toxicology Program-Health Assessment and Translation (formerly CERHR). Monograph on the Potential Human Reproductive and Developmental Effects of Butyl Benzyl Phthalate (BBP). Research Triangle Park (NC). 2003a [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/ohat/phthalates/bb-phthalate/BBP_Monograph_Final.pdfpdf iconexternal icon. 11/14/12

NTP-CERHR. National Toxicology Program-Health Assessment and Translation (formerly CERHR). Monograph on the Potential Human Reproductive and Developmental Effects of Di-n-Butyl Phthalate (DBP). Research Triangle Park (NC). 2003b [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/ohat/phthalates/dbp/DBP_Monograph_Final.pdfpdf iconexternal icon.11/14/12

NTP-CERHR. National Toxicology Program-Health Assessment and Translation (formerly CERHR). Monograph on the Potential Human Reproductive and Developmental Effects of Di(2-ethylhexyl) Phthalate (DEHP). Research Triangle Park (NC). 2006 [online]. Available at URL: https://ntp.niehs.nih.gov/ntp/ohat/phthalates/dehp/DEHP-Monograph.pdfpdf iconexternal icon. 11/14/12

NTP-CERHR. National Toxicology Program- Health Assessment and Translation (formerly CERHR). Monograph on the Potential Human Reproductive and Developmental Effects of Di-isononyl Phthalate (DINP). Research Triangle Park (NC). 2003c [online]. Available at URL: . https://ntp.niehs.nih.gov/ntp/ohat/phthalates/dinp/DiNP_Monograph_Final.pdfpdf iconexternal icon.11/14/12

Okubo T, Suzuki T, Yokoyama Y, Kano K, Kano I. Estimation of estrogenic and anti-estrogenic activities of some phthalate diesters and monoesters by MCF-7 cell proliferation assay in vitro. Biol Pharm Bull 2003;26(8):1219-24.

Pan G, Hanaoka T, Yoshimura M, Zhang S, Wang P, Tsukino H, et al. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 2006;114(11):1643-1648.

Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, et al. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 2000;58:339-349.

Peck CC, Albro PW. Toxic potential of the plasticizer di (2-ethylhexyl) phthalate in the context of its disposition and metabolism in primates and man. Environ Health Perspect 1982;45:11-17.

Rhodes C, Orton TC, Pratt IA, Batten PL, Bratt H, Jackson SJ, et al. Comparative pharmacokinetics and subacute toxicity of di(2-ethylhexyl)phthalate (DEHP) in rats and marmosets: Extrapolation of effects in rodents to man. Environ Health Perspect 1986;65:299-308.

Rusyn I, Peters JM, Cunningham ML. Modes of action and species-specific effects of di-(2-ethylhexyl) phthalate in the liver. Crit Rev Toxicol 2006;36:459-479.

Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000 [published erratum appears in Environ Health Perspect 2004; 112(5):A270]. Environ Health Perspect 2004;112(3):331-338.

Silva MJ, Kato K, Wolf C, Samandar El, Silva SS, Gray EL, et al. Urinary biomarkers of di-isononyl phthalate in rats. Toxicol 2006a;223:101-112.

Silva MJ, Reidy JA, Preu Jr JL, Needham LL, Calafat AM. Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment. Environ Health Perspect 2006b;114(8):1158-1161.

Zacharewski TR, Meek MD, Clemons JH, Wu ZF, Fielden MR, Matthews JB. Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. Toxicol Sci 1998;46:282-293.

Page last reviewed: April 7, 2017