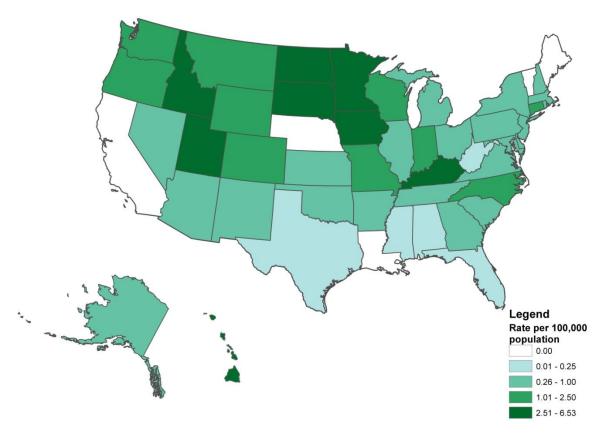
# National Enteric Disease Surveillance: Shiga toxin-producing *Escherichia coli* (STEC) Annual Summary, 2007


# Shiga toxin-producing Escherichia coli (STEC) Annual Summary, 2007

In this summary, we summarize the number of isolates reported, as well as isolation rates and specimen submission rates. The isolation rate is the number of STEC isolates from humans reported for a given year, divided by the population for that year. The non-O157 STEC specimen submission rate is the number of presumptive non-O157 STEC isolates and Shiga toxin-positive enrichment culture broths submitted to the enteric diseases laboratory branch (EDLB) at CDC for further characterization for a given year, divided by the population for that year. Reporting to LEDS and submission to the National *Escherichia coli* Reference Laboratory is voluntary, and the number of states submitting isolates varies from year to year. An overview of surveillance methods and systems for Shiga toxin-producing *Escherichia coli* (STEC) infections is available at

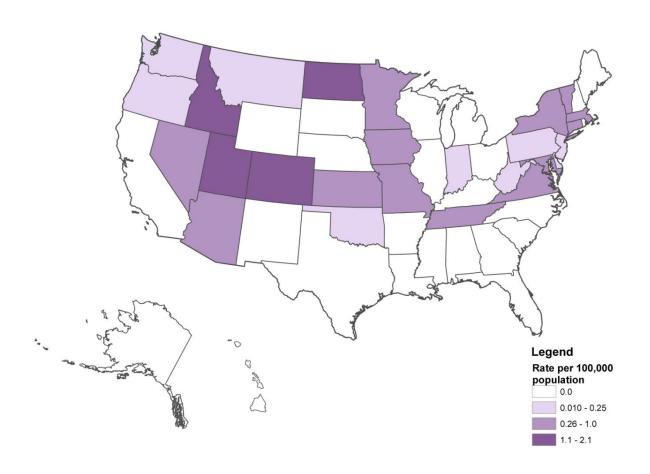
http://www.cdc.gov/ncezid/dfwed/PDFs/national-stec-surveillance-overiew-508c.pdf.

### Laboratory-based Enteric Disease Surveillance (LEDS) data

Figure 1. Isolation rate of STEC O157 by state, United States, LEDS, 2007 (n=2,360).



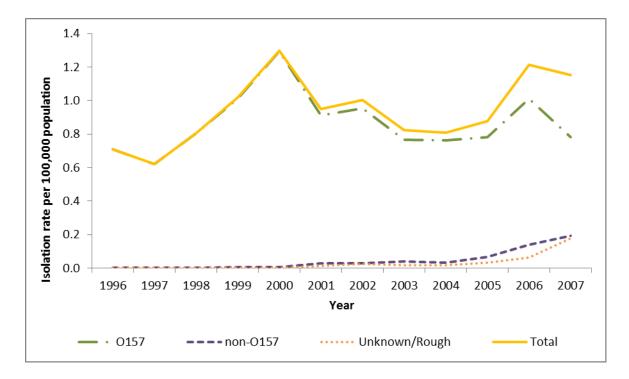
National Center for Emerging and Zoonotic Infectious Diseases


Division of Foodborne, Waterborne, and Environmental Diseases



April 2012 Page 1 of 8

- During 2007, 45 states reported a total of 2,360 STEC O157 isolates, corresponding to an overall isolation rate of 0.78 per 100,000 population.
- States in the upper Midwest generally had the highest STEC O157 isolation rates, whereas states in the south generally had the lowest isolation rates.


Figure 2. Isolation rate of non-O157 STEC, by state, United States, LEDS, 2007 (n=584).



- During 2007, 26 states reported a total of 584 non-O157 STEC isolates, corresponding to an overall isolation rate of 0.19 per 100,000 population.
- Fewer states reported non-O157 STEC isolates to LEDS than reported STEC O157 isolates. This
  finding reflects, at least in part, substantial state-to-state variation in clinical testing practices
  and public health reporting practices, as well as possible true variation in infection rates. See
  Surveillance Overview (link) for further information.

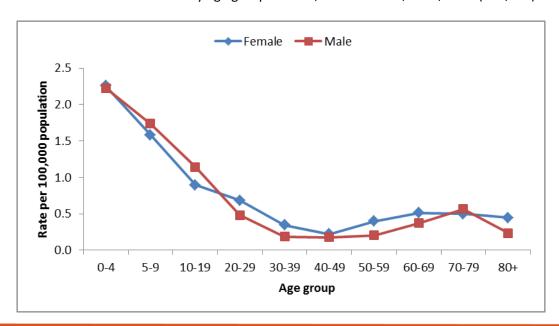

April 2012 Page 2 of 8

Figure 3. Isolation rates of STEC by serogroup and year, United States, LEDS, 1996-2007



- While the overall STEC isolation rate (including both O157 and non-O157) was lower in 2007 than in 2006, it was higher than in 2001 through 2005. Increased testing for and reporting of non-O157 STEC in recent years may have contributed to this overall upward pattern.
- The STEC O157 isolation rate was lower in 2007 than 2006 but was similar to 2003–2005.
- Isolation rates of non-O157 STEC and STEC reported as "unknown serogroup" or "rough" have steadily increased since 2000, likely due to increased testing for non-O157 STEC in clinical laboratories.

Figure 4. Isolation rate of STEC O157 by age group and sex, United States, LEDS, 2007 (n=2,028).



April 2012 Page 3 of 8

- The isolation rate of STEC O157 was slightly higher in males aged 5 to 19 years than females in the same age group. However, isolation rates of STEC O157 were higher in females aged 20 to 69 years than in males of the same age group.
- The highest isolation rates for both O157 and non-O157 STEC were in children aged <4 years.

Figure 5. Isolation rates of non-O157 STEC by age group and sex, United States, LEDS, 2007 (n=565).

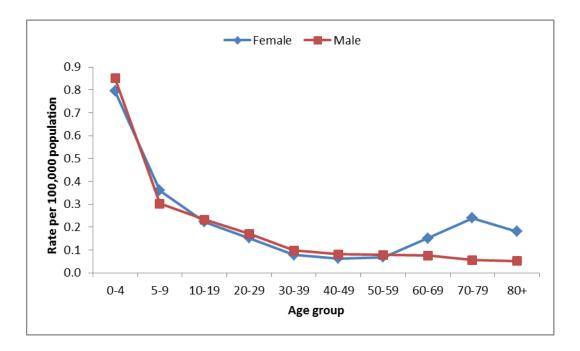
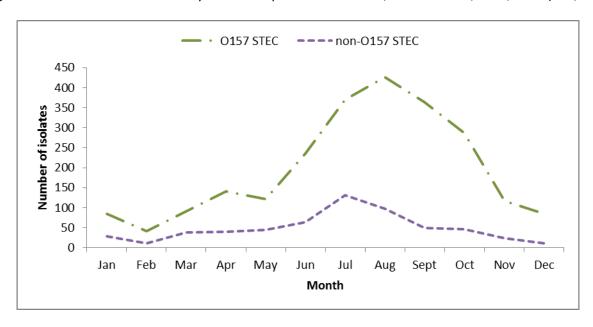
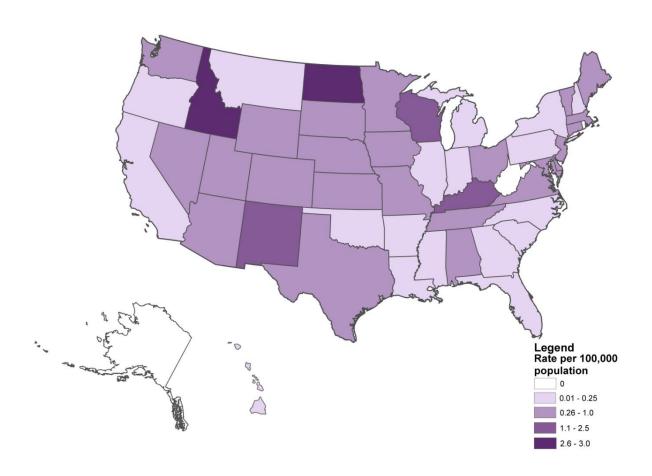



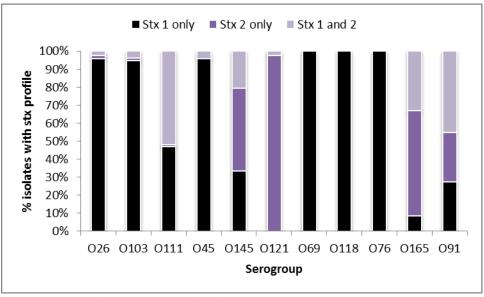

Figure 6. Number of STEC isolates by month of specimen collection, United States, LEDS, 2007 (n=2,944).




 As in previous years, both O157 and non-O157 STEC isolations showed a summer and fall peak, with the largest number of isolations in July and August

April 2012 Page 4 of 8

## National Escherichia coli Reference Laboratory data


Figure 7. Rate of submission of specimens for further characterization by state, United States, National *Escherichia coli* Reference Laboratory, 2007 (n=1,044).



- 48 states submitted a total of 1,044 specimens for further characterization, which includes serogrouping and identification of genes encoding Shiga toxin types.
- The submission rate reflects the frequency of specimen submission. It is important to note that the National *Escherichia coli* Reference Laboratory is not intended to function as a nationwide surveillance system; many states have the capacity to determine the serogroups of STEC isolates in their state public health laboratories and so do not use the National *Escherichia coli* Reference Laboratory for serogrouping.
- Because many states can identify the most common STEC serogroups, the distribution of serogroups among STEC isolates that are sent to the National *Escherichia coli* Reference Laboratory for characterization is likely not representative of all STEC isolated from ill persons

April 2012 Page 5 of 8

Figure 8. Percentage of non-O157 STEC isolates by serogroup and Shiga toxin (stx) profile, National *Escherichia coli* Reference Laboratory, 2007.



Note: STEC 0111 and 0111ac were combined.

- Shiga toxin profiles (presence of genes encoding Shiga toxin 1 (*stx1*), Shiga toxin 2 (*stx2*), or both) varied by serogroup.
- Non-O157 serogroups for which greater than 90% of isolates were *stx1*-positive were O26, O103, O45, O69, O118 and O76.
- The only non-O157 serogroup for which greater than 90% of isolates were *stx2*-positive was O121.

Table 1. Non-O157 STEC isolates characterized at the National *Escherichia coli* Reference Laboratory, by serogoup, 2007 (n=964).

| Serogroup | Number of isolates | Percent of total |
|-----------|--------------------|------------------|
| O26       | 189                | 20               |
| 0111*     | 157                | 16               |
| O103      | 150                | 16               |
| O45       | 47                 | 4.9              |
| 0145      | 40                 | 4.1              |
| O121      | 39                 | 4.0              |
| O69       | 20                 | 2.1              |
| 0118      | 18                 | 1.9              |
| 076       | 18                 | 1.9              |
| O165      | 12                 | 1.2              |
| 091       | 11                 | 1.1              |
| 0123      | 7                  | 0.7              |
| 08        | 6                  | 0.6              |
| 09        | 6                  | 0.6              |

April 2012 Page 6 of 8

| 1                                 |     |     |
|-----------------------------------|-----|-----|
| Total                             | 964 | 100 |
| Unknown                           | 4   | 0.4 |
| All other serogroups <sup>¶</sup> | 40  | 4.1 |
| Undetermined <sup>§</sup>         | 82  | 8.5 |
| Rough                             | 36  | 3.7 |
| 0179                              | 2   | 0.2 |
| 0175                              | 2   | 0.2 |
| 0156                              | 2   | 0.2 |
| 0117                              | 2   | 0.2 |
| 0109                              | 2   | 0.2 |
| 084                               | 2   | 0.2 |
| 0178                              | 3   | 0.3 |
| 0130                              | 3   | 0.3 |
| 080                               | 3   | 0.3 |
| 055                               | 3   | 0.3 |
| 06                                | 3   | 0.3 |
| 0153                              | 4   | 0.4 |
| 0128*                             | 4   | 0.4 |
| 088                               | 4   | 0.4 |
| 02                                | 4   | 0.4 |
| 01                                | 4   | 0.4 |
| O28ac                             | 5   | 0.5 |
| 0177                              | 6   | 0.6 |
| 0174                              | 6   | 0.6 |
| 0146                              | 6   | 0.6 |
| O113<br>O119                      | 6   | 0.6 |

<sup>\*</sup> Note: STEC O111 and O111ac were combined; STEC O128 and O128ab were combined.

• During 2007, 964 (92%) of the 1,044 presumptive non-O157 STEC isolates received were determined to be non-O157 STEC.

#### **NNDSS Data**

The National Notifiable Disease Surveillance System (NNDSS) collects and compiles reports of nationally notifiable infectious diseases, including STEC infection. The 2007 NNDSS report is available at <a href="http://www.cdc.gov/mmwr/PDF/wk/mm5653.pdf">http://www.cdc.gov/mmwr/PDF/wk/mm5653.pdf</a>.

• A total of 4,847 cases of STEC infection were reported to NNDSS during 2007, which includes laboratory-confirmed, probable, and suspect cases (2).

April 2012 Page 7 of 8

<sup>†</sup> Rough means that part of the O antigen was missing and therefore the isolate could not be assigned to a serogroup. § Undetermined means that the O antigen has not been assigned a number.

<sup>¶</sup> Serogroups with only 1 reported isolate were: O105, O110, O112, O12, O126, O134, O135, O137, O143, O151, O152, O162, O163, O168, O175, O18, O181, O20, O21, O22, O28ab, O50, O61, O73, O77, O82, O86, O96, O98.

#### **Outbreak Data**

The Foodborne Disease Outbreak Surveillance System (FDOSS) collects reports of foodborne disease outbreaks from local, state, tribal, and territorial public health agencies. The 2007 annual summary of foodborne disease outbreaks is available at

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5931a1.htm (3).

- In 2007, 497 foodborne outbreaks with an identified etiologic agent were reported; 40 were caused by STEC, with 593 illnesses
  - The most common serogroup causing confirmed, single-etiology STEC outbreaks, was
     O157 (39 outbreaks).
  - One outbreak was caused by STEC serogroup O111.

The Waterborne Disease and Outbreak Surveillance System (WBDOSS) collects reports of disease outbreaks associated with drinking water and recreational water from local, state, tribal, and territorial public health agencies. The 2007 annual summary is available at <a href="http://www.cdc.gov/mmwr/pdf/ss/ss6012.pdf">http://www.cdc.gov/mmwr/pdf/ss/ss6012.pdf</a> (4,5).

- In 2007, 36 waterborne disease outbreaks associated with drinking water were reported; 1 was caused by STEC O157, which was associated with ground water from an individual water system resulted in 6 cases (4)
- In 2007, 134 waterborne disease outbreaks associated with recreational water were reported; 3 were caused by STEC (5)
  - 2 outbreaks of STEC 0157 infection associated with treated water resulted in 42 cases
  - 1 outbreaks of STEC 0157 infection associated with untreated water resulted in 3 cases

#### References

- 1. Ethelberg S, Olsen K, Flemming S, Jensen C, Schiellerup P, Engberg J, Munk Petersen A, Olesen B, Gerner-Smidt P, Molbak K. Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis [serial online]. 2004 May [10/13/2011]. Available from: http://wwwnc.cdc.gov/eid/article/10/5/03-0576.htm.
- 2. CDC. Summary of notifiable diseases—United States, 2007. MMWR 2009; 56(53): 1-94.
- 3. CDC. Surveillance for foodborne disease outbreaks—United States, 2007. MMWR 2010; 59(31):1277-1280.
- 4. Brunkard JM, Ailes E, Roberts VA, et al. Surveillance for waterborne disease outbreaks associated with drinking water---United States, 2007--2008. MMWR Surveillance Summary. 2011 Sep 23;60(12):38-68.
- 5. Hlavsa MC, Roberts VA, Anderson AR, et al. Surveillance for waterborne disease outbreaks and other health events associated with recreational water --- United States, 2007--2008. MMWR Surveillance Summary. 2011 Sep 23;60(12):1-32.

#### **Reference Citation:**

Centers for Disease Control and Prevention (CDC). National Shiga toxin-producing *Escherichia coli* (STEC) Surveillance Annual Summary, 2007. Atlanta, Georgia: US Department of Health and Human Services, CDC, 2012.

April 2012 Page 8 of 8