1	
2	
3	
4	
5	
6	
7	IMMEDIATELY DANGEROUS TO LIFE OR HEALTH (IDLH) VALUE PROFILE
8	
9	
10	
11	FOR
12	
13	
14	
15	1,3-BUTADIENE
16	
17	
18	
19	[CAS No. 106-99-0]
20	
21	
22	
23	
24	
25 26	Department of Health and Human Services
20 27	Centers for Disease Control and Prevention
28	National Institute for Occupational Safety and Health
29	
30	

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

i

1 Disclaimer

- 2 3
- Mention of any company or product does not constitute endorsement by the National Institute for Occupational
- 4 Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH
- endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not
 responsible for the content of these Web sites.

78 Ordering Information

- 9
- 10 To receive this document or information about other occupational safety and health topics, contact NIOSH:
- 11
- 12 Telephone: 1-800-CDC-INFO (1-800-232-4636)
- **13** TTY: 1-888-232-6348
- 14 E-mail: cdcinfo@cdc.gov
- 15 Or visit the NIOSH Web site: www.cdc.gov/niosh

17 For a monthly update on news at NIOSH, subscribe to *NIOSH eNews* by visiting www.cdc.gov/niosh/eNews.

- 1819 DHHS (NIOSH) Publication No. XXX
- 20 21

16

1 Foreword

2 Chemicals are a ubiquitous component of the modern workplace. Occupational exposures to chemicals have the 3 potential to adversely affect the health and lives of workers. Acute or short-term exposures to high concentrations of some airborne chemicals have the ability to quickly overwhelm workers, resulting in a spectrum of undesirable 4 5 health outcomes that may inhibit the ability to escape from the exposure environment (e.g., irritation of the eyes 6 and respiratory tract or cognitive impairment), cause severe irreversible effects (e.g., damage to the respiratory 7 tract or reproductive toxicity), and in extreme cases, cause death. Airborne concentrations of chemicals capable 8 of causing such adverse health effects or of impeding escape from high-risk conditions may arise from a variety of 9 non-routine workplace situations, including special work procedures (e.g., in confined spaces), industrial accidents (e.g., chemical spills or explosions), and chemical releases into the community (e.g., during 10 transportation incidents or other uncontrolled-release scenarios). 11 12 The "immediately dangerous to life or health air concentration values (IDLH values)" developed by the National 13 14 Institute for Occupational Safety and Health (NIOSH) characterize these high-risk exposure concentrations and conditions [NIOSH 2013]. IDLH values are based on a 30-minute exposure duration and have traditionally 15 served as a key component of the decision logic for the selection of respiratory protection devices [NIOSH 2004]. 16 Occupational health professionals have employed these values beyond their initial purpose as a component of the 17 NIOSH Respirator Selection Logic to assist in developing Risk Management Plans for non-routine work practices 18 19 governing operations in high-risk environments (e.g., confined spaces) and the development of Emergency

- 20 Preparedness Plans.
- 21

The approach used to derive IDLH values for high priority chemicals is outlined in the Current Intelligence
Bulletin (CIB) 66: Derivation of Immediately Dangerous to Life or Health Values [NIOSH 2013]. CIB 66
provides 1) an update on the scientific basis and risk assessment methodology used to derive IDLH values, 2) the
rationale and derivation process for IDLH values, and 3) a demonstration of the derivation of scientifically
credible IDLH values using available data resources.

27

28 The purpose of this technical report is to present the IDLH value for 1,3-butadiene (CAS # 106-99-0). The 29 scientific basis, toxicologic data and risk assessment approach used to derive the IDLH value are summarized to 30 ensure transparency and scientific credibility.

- 31
- 32 John Howard, M.D.
- 33 Director
- 34 National Institute for Occupational Safety and Health

1 Centers for Disease Control and Prevention

1 Table of Contents

111
vi
. VII
x
1
1 1 1
4
7
7
9

1 Abbreviations

2

2		
3	ACGIH	American Conference of Governmental Industrial Hygienists
4	AEGL	Acute Exposure Guideline Levels
5	AIHA	American Industrial Hygiene Association
6	BMC	benchmark concentration
7	BMCL	benchmark concentration lower confidence limit
8	С	ceiling
9	CAS	chemical abstract service
10	ERPG	Emergency Response Planning Guidelines
11	IDLH	immediately dangerous to life or health
12	LC_{50}	median lethal concentration
13	LC _{Lo}	lowest concentration of a chemical that caused death in humans or animals
14	LEL	lower explosive limit
15	LOAEL	lowest observed adverse effect level
16	mg/m ³	milligram(s) per cubic meter
17	NAC	National Advisory Committee
18	NAS	National Academy of Sciences
19	NIOSH	National Institute for Occupational Safety and Health
20	NOAEL	no observed adverse effect level
21	OSHA	Occupational Safety and Health Administration
22	PEL	permissible exposure limit
23	ppm	parts per million
24	RD ₅₀	concentration of a chemical in the air that is estimated to cause a 50% decrease in the respiratory
25		rate
26	REL	recommended exposure limit
27	SCP	Standard Completion Program
28	STEL	short term exposure limit
29	TLV	threshold limit value
30	TWA	time weighted average
31	UEL	upper explosive limit
32	WEEL	workplace environmental exposure level

1 Glossary

2

36

- 3 Acute Exposure: Exposure by the oral, dermal, or inhalation route for 24 hours or less.
- 4 Acute Exposure Guideline Levels (AEGLs): Threshold exposure limits for the general public applicable to 5 emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-1, AEGL 2, and AEGL-3 are 6 developed for five exposure periods (10 and 30 minutes, 1 hour, 4 hours, and 8 hours) and are distinguished 7 by varying degrees of severity of toxic effects ranging from transient, reversible effects to life threatening 8 effects [NAS 2001]. AEGLs are intended to be guideline levels used during rare events or single once-in-a-9 lifetime exposures to airborne concentrations of acutely toxic, high-priority chemicals [NAS 2001]. The threshold exposure limits are designed to protect the general population, including the elderly, children or 10 other potentially sensitive groups that are generally not considered in the development of workplace exposure 11 12 recommendations (additional information available at http://www.epa.gov/oppt/aegl/).
- Acute Reference Concentration (RfC): An estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure for an acute duration (24 hours or less) of the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It can be derived from a NOAEL, LOAEL, or benchmark concentration, with uncertainty factors (UFs) generally applied to reflect limitations of the data used. Generally used in USEPA noncancer health assessments [USEPA 2014].
- Acute Toxicity: Any poisonous effect produced within a short period of time following an exposure, usually 24 to 96 hours.
- Adverse Effect: A substance-related biochemical change, functional impairment, or pathologic lesion that affects
 the performance of an organ or system or alters the ability to respond to additional environmental challenges.
- Benchmark Dose/Concentration (BMD/BMC): A dose or concentration that produces a predetermined change
 in response rate of an effect (called the benchmark response, or BMR) compared to background [USEPA
 2014] (additional information available at http://www.epa.gov/ncea/bmds/).
- Benchmark Response (BMR): A predetermined change in response rate of an effect. Common defaults for the
 BMR are 10% or 5%, reflecting study design, data variability, and sensitivity limits used.
- 28 BMCL: A statistical lower confidence limit on the concentration at the BMC [USEPA 2014].
- 29 Bolus Exposure: A single, relatively large dose.
- 30 Ceiling Value ("C"): U.S. term in occupational exposure indicating the airborne concentration of a potentially
 31 toxic substance that should never be exceeded in a worker's breathing zone.
- 32 Chronic Exposure: Repeated exposure for an extended period of time. Typically exposures are more than
 33 approximately 10% of life span for humans and >90 days to 2 years for laboratory species.
- 34 Critical Study: The study that contributes most significantly to the qualitative and quantitative assessment of risk
 35 [USEPA 2014].
- 37 Dose: The amount of a substance available for interactions with metabolic processes or biologically significant
 38 receptors after crossing the outer boundary of an organism [USEPA 2014].
- 39 ECt₅₀: A combination of the effective concentration of a substance in the air and the exposure duration that is
 40 predicted to cause an effect in 50% (one half) of the experimental test subjects.

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

vii

- Emergency Response Planning Guidelines (ERPGs): Maximum airborne concentrations below which nearly all
 individuals can be exposed without experiencing health effects for 1-hour exposure. ERPGs are presented in a
 tiered fashion with health effects ranging from mild or transient to serious, irreversible, or life threatening
- 4 (depending on the tier). ERPGs are developed by the American Industrial Hygiene Association [AIHA 2006].
- 5 Endpoint: An observable or measurable biological event or sign of toxicity ranging from biomarkers of initial
 6 response to gross manifestations of clinical toxicity.
- 7 Exposure: Contact made between a chemical, physical, or biological agent and the outer boundary of an
 8 organism. Exposure is quantified as the amount of an agent available at the exchange boundaries of the
 9 organism (e.g., skin, lungs, gut).
- Extrapolation: An estimate of the response at a point outside the range of the experimental data, generally
 through the use of a mathematical model, although qualitative extrapolation may also be conducted. The
 model may then be used to extrapolate to response levels that cannot be directly observed.
- Hazard: A potential source of harm. Hazard is distinguished from risk, which is the probability of harm under
 specific exposure conditions.
- Immediately Dangerous to Life or Health (IDLH) condition: A situation that poses a threat of exposure to airborne contaminants when that exposure is likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment [NIOSH 2004, 2013].
- 18 IDLH value: A maximum (airborne concentration) level above which only a highly reliable breathing apparatus
 19 providing maximum worker protection is permitted [NIOSH 2004, 2013]. IDLH values are based on a 30 20 minute exposure duration.
- LC₀₁: The statistically determined concentration of a substance in the air that is estimated to cause death in 1% of
 the test animals.
- LC₅₀: The statistically determined concentration of a substance in the air that is estimated to cause death in 50%
 (one half) of the test animals; median lethal concentration.
- LC_{LO}: The lowest lethal concentration of a substance in the air reported to cause death, usually for a small percentage of the test animals.
- LD₅₀: The statistically determined lethal dose of a substance that is estimated to cause death in 50% (one half) of
 the test animals; median lethal concentration.
- 30 LD_{LO}: The lowest dose of a substance that causes death, usually for a small percentage of the test animals.

27

- LEL: The minimum concentration of a gas or vapor in air, below which propagation of a flame does not occur in
 the presence of an ignition source.
- Lethality: Pertaining to or causing death; fatal; referring to the deaths resulting from acute toxicity studies. May
 also be used in lethality threshold to describe the point of sufficient substance concentration to begin to cause
 death.
- 36 Lowest Observed Adverse Effect Level (LOAEL): The lowest tested dose or concentration of a substance that
 37 has been reported to cause harmful (adverse) health effects in people or animals.

- Mode of Action: The sequence of significant events and processes that describes how a substance causes a toxic
 outcome. Mode of action is distinguished from the more detailed mechanism of action, which implies a more
 detailed understanding on a molecular level.
- 4 No Observed Adverse Effect Level (NOAEL): The highest tested dose or concentration of a substance that has
 5 been reported to cause no harmful (adverse) health effects in people or animals.
- Occupational Exposure Limit (OEL): Workplace exposure recommendations developed by governmental agencies and non-governmental organizations. OELs are intended to represent the maximum airborne concentrations of a chemical substance below which workplace exposures should not cause adverse health effects. OELs may apply to ceiling, short-term (STELs), or time-weighted average (TWA) limits.
- 10 **Peak Concentration**: Highest concentration of a substance recorded during a certain period of observation.

14

- Permissible Exposure Limit (PEL): Occupational exposure limits developed by OSHA (29 CFR 1910.1000) or
 MSHA (30 CFR 57.5001) for allowable occupational airborne exposure concentrations. PELs are legally
 enforceable and may be designated as ceiling, STEL, or TWA limits.
- Point of Departure (POD): The point on the dose–response curve from which dose extrapolation is initiated.
 This point can be the lower bound on dose for an estimated incidence or a change in response level from a concentration-response model (BMC), or it can be a NOAEL or LOAEL for an observed effect selected from a dose evaluated in a health effects or toxicology study.
- **RD**₅₀: The statistically determined concentration of a substance in the air that is estimated to cause a 50% (one half) decrease in the respiratory rate.
- Recommended Exposure Limit (REL): Recommended maximum exposure limit to prevent adverse health
 effects based on human and animal studies and established for occupational (up to 10-hour shift, 40-hour
 week) inhalation exposure by NIOSH. RELs may be designated as ceiling, STEL, or TWA limits.
- Short-Term Exposure Limit (STEL): A worker's 15-minute time-weighted average exposure concentration that
 shall not be exceeded at any time during a work day.
- 26 Target Organ: Organ in which the toxic injury manifests in terms of dysfunction or overt disease.
- Threshold Limit Values (TLVs®): Recommended guidelines for occupational exposure to airborne contaminants, published by the American Conference of Governmental Industrial Hygienists (ACGIH). TLVs
 refer to airborne concentrations of chemical substances and represent conditions under which it is believed that nearly all workers may be repeatedly exposed, day after day, over a working lifetime, without adverse effects. TLVs may be designated as ceiling, short-term (STELs), or 8-hr TWA limits.
- Time-Weighted Average (TWA): A worker's 8-hour (or up to 10-hour) time-weighted average exposure
 concentration that shall not be exceeded during an 8-hour (or up to 10-hour) work shift of a 40-hour week.
 The average concentration is weighted to take into account the duration of different exposure concentrations.
- 35 **Toxicity**: The degree to which a substance is able to cause an adverse effect on an exposed organism.
- 36
 37 Uncertainty Factors (UFs): Mathematical adjustments applied to the POD when developing IDLH values. The
 38 UFs for IDLH value derivation are determined by considering the study and effect used for the POD, with
 39 further modification based on the overall database.

1	Workplace Environmental Exposure Levels (WEELs): Exposure levels developed by the American Industrial
2	Hygiene Association (AIHA) that provide guidance for protecting most workers from adverse health effects
3	related to occupational chemical exposures expressed as a TWA or ceiling limit.
4	
5	
6	
7 8	
9	
10	
11	$\sim \mathcal{V}$
12	
13	
14	
15	
16 17	
18	Acknowledgments
	Acknowledgments
19	This desument was developed by the Education and Information Division (David Schultz, Dh.D., Diverton). C
20	This document was developed by the Education and Information Division (Paul Schulte, Ph.D., Director). G.
21	Scott Dotson, Ph.D., was the project officer and lead NIOSH author for this technical report. The basis for this
22	document was a report contracted by NIOSH and prepared by Andrew Maier, Ph.D., Ann Parker, and Lynn
23	Haber, Ph.D. (Toxicology Excellence for Risk Assessment [TERA]).
24	
25	Education and Information Division
26	Devin Baker, M.Ed.
27	Charles L. Geraci, Ph.D.
28	Thomas J. Lentz, Ph.D.
29 30	Richard Niemeier, Ph.D.
30 31	Chris Sofge, Ph.D.
32	NIOSH would like to acknowledge the contribution of the following subject matter experts for their critical
33	technical review of this report.
34	
35	Michael S. Bisesi, Ph.D., R.E.H.S., C.I.H., Senior Associate Dean for Academic Affairs; Director, Center
36	for Public Health Practice; Interim Chair & Associate Professor, Division of Environmental Health
37	Science, College of Public Health, Ohio State University
38	Mary A Fox Dh D. Assistant Drofessory Co Director Dick Sciences and Dublic Delicy Institutes
39 40	Mary A. Fox, Ph.D., Assistant Professor; Co-Director, Risk Sciences and Public Policy Institute; Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins
40	University

1 1.0 Introduction

3

4 5

2 1.1 Overview of the IDLH Value for 1,3-Butadiene

IDLH Value: 1,400 ppm (>10% LEL)

Basis for IDLH Value: Despite the availability of toxicity data capable of being used to calculate health-based
estimates for 1,3-butadiene (see Tables 4 and 5), these estimates are all are greater than 10% of the lower
explosive limit (>10% LEL). NIOSH has adopted a threshold of 10% LEL as a default basis for the IDLH values
based on explosivity concerns [NIOSH 2014]. Safety considerations related to the potential hazard of explosion
must be taken into account and the IDLH value is set at the 10% LEL for 1,3-butadiene of 1,400 ppm.

11 1.2 Purpose

- 1213 This *IDLH Value Profile* presents (1) a brief summary of technical data associated with acute inhalation
- 14 exposures to 1,3-butadiene and (2) the rationale behind the Immediately Dangerous to Life or Health (IDLH)
- 15 value for 1,3-butadiene. IDLH values are developed based on the scientific rationale and logic outlined in the
- 16 Current Intelligence Bulletin (CIB) 66: Derivation of Immediately Dangerous to Life or Health (IDLH) values
- 17 [NIOSH 2013]. As described in CIB 66, NIOSH performs in-depth literature searches to ensure that all relevant
- 18 data from human and animal studies with acute exposures to the substance are identified. Information included in
- 19 CIB 66 on the literature search includes pertinent databases, key terms, and guides for evaluating data quality and
- 20 relevance for the establishment of an IDLH value. The information that is identified in the in-depth literature
- 21 search is evaluated with general considerations that include description of studies (i.e., species, study protocol,
- 22 exposure concentration and duration), health endpoint evaluated, and critical effect levels (e.g., NOAELs,
- 23 LOAELs, LC₅₀ values). For 1,3-butadiene, the in-depth literature search was conducted through February 2014.
- 24

26

25 **1.3 General Substance Information**

- 27 Chemical: 1,3-Butadiene
- 28 CAS No: 106-99-0
- 29 Synonyms: Butadiene; Divinyl; Biethylene; Erythrene^{*}
- 30 **Chemical category:** Unsaturated, aliphatic hydrocarbons; Organic gases[†]
- 31

Structural formula:	
	сн ₂
	H ₂ C ==/
	1120
Table 1 highlights selected pl	hysiochemical properties of 1,3-butadiene relevant to IDLH conditions. Table 2
00	guidelines for 1,3-butadiene. Table 3 summarizes the Acute Exposure Guideline
• • •	
Level (AEGL) values for 1,3-	-butadiene.
Table 1: Physiochemical Pr	operties of 1,3-Butadiene
·	
Property	Value
Molecular weight	54.09 [*]
Chemical formula	C_4H_6
Description	Colorless gas
Odor	Mild aromatic or gasoline-like
	0.45 ppm*
Odor Threshold	
UEL	16.3% [†]
UEL LEL	16.3% [†] 1.4% [†]
UEL LEL Vapor pressure	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡]
UEL LEL Vapor pressure Flash point	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡]
UEL LEL Vapor pressure Flash point Ignition temperature	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F –	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989]	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F –	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] * IFA [2013]	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] * IFA [2013]	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] [†] IFA [2013] * HSDB [2013]	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†]
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] [†] IFA [2013] * HSDB [2013]	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†] Fahrenheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive limit
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] [†] IFA [2013] * HSDB [2013]	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†] Fahrenheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive limit
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] † IFA [2013] † HSDB [2013] Table 2: Alternative Expose	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†] Fahrenheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive limit
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] † IFA [2013] * HSDB [2013] Table 2: Alternative Expose Organization Revised (1994) IDLH value NIOSH REL	16.3% [†] 1.4% [†] 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†] Fabrenheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive limit ure Guidelines for 1,3-Butadiene Value
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] † IFA [2013] * HSDB [2013] Table 2: Alternative Expose Organization Revised (1994) IDLH value NIOSH REL OSHA PEL [2014]	$\frac{16.3\%^{\dagger}}{1.4\%^{\dagger}}$ 2110 mmHg at 25°C (77°F) [‡] -76.11°C (-105°F) [‡] 414.44°C (788°F) [‡] Slightly soluble in water [†] Fahrenheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive limit ure Guidelines for 1,3-Butadiene $\frac{Value}{2000 \text{ ppm [LEL]}}$
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – * AIHA [1989] [†] IFA [2013] [†] HSDB [2013] Table 2: Alternative Expose Organization Revised (1994) IDLH value NIOSH REL OSHA PEL [2014] ACGIH TLV [2014]	$16.3\%^{\frac{1}{2}}$ $1.4\%^{\frac{1}{2}}$ $2110 mmHg at 25°C (77°F)^{\ddagger}$ $-76.11°C (-105°F)^{\ddagger}$ $414.44°C (788°F)^{\ddagger}$ Slightly soluble in water [†] Fabrenheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive limit Transformed to the second sec
UEL LEL Vapor pressure Flash point Ignition temperature Solubility Abbreviation: °C – Celsius; °F – 1 * AIHA [1989] † IFA [2013] * HSDB [2013] Table 2: Alternative Expose Organization Revised (1994) IDLH value NIOSH REL OSHA PEL [2014]	$16.3\%^{\dagger}$ $1.4\%^{\dagger}$ $2110 \text{ mmHg at 25°C } (77°F)^{\ddagger}$ $-76.11°C (-105°F)^{\ddagger}$ $414.44°C (788°F)^{\ddagger}$ Slightly soluble in water [†] Fabrenheit; mmHg – millimeter mercury; LEL – lower explosive limit; UEL – upper explosive limit ure Guidelines for 1,3-Butadiene $\frac{Value}{2000 \text{ ppm [LEL]}}$ Not available $1 \text{ ppm TWA}; 5 \text{ ppm STEL}$

Association; ERPG - Emergency Response Preparedness Guidelines; IDLH - immediately dangerous to life or health; NIOSH - National 24 Institute for Occupational Safety and Health; OSHA - Occupational Safety and Health Administration; PEL - permissible exposure limit; REL - recommended exposure limit; SCP - Standards Completion Program; TWA - time-weighted average; WEEL - workplace

25 26 environmental exposure level

1 Table 3: AEGL Values for 1,3-Butadiene

•	

Classification	10-min	30-min	1-hour	4-hour	8-hour	Endpoint [reference]
AEGL-1	670 ppm	670 ppm	670 ppm	670 ppm	670 ppm	Difficulty in focusing in
	$1,500 \text{ mg/m}^3$	$1,500 \text{ mg/m}^3$	$1,500 \text{ mg/m}^3$	$1,500 \text{ mg/m}^3$	$1,500 \text{ mg/m}^3$	humans [Carpenter et al. 1944]
AEGL-2	$6,700 \mathrm{ppm}^*$	$6,700 \mathrm{ppm}^*$	5,300 ppm [*]	3,400 ppm [*]	2,700 ppm*	No effects in humans
	$15,000 \text{ mg/m}^3$	$15,000 \text{ mg/m}^3$	$12,000 \text{ mg/m}^3$	$7,500 \text{ mg/m}^3$	$6,000 \text{ mg/m}^3$	[Carpenter et al. 1944]
AEGL-3	$27,000~{ m ppm}^\dagger$	$27,000 \text{ ppm}^{\dagger}$	22,000 ppm^\dagger	14,000 ppm^{\ddagger}	6,800 ppm*	Lethality in rats
	$60,000 \text{ mg/m}^3$	$60,000 \text{ mg/m}^3$	$49,000 \text{ mg/m}^3$	$31,000 \text{ mg/m}^3$	$15,000 \text{ mg/m}^3$	[Shugaev 1969]

Abbreviation: AEGL – acute exposure guideline levels; mg/m^3 – milligrams per cubic meter; min – minute; NR – not recommended due to insufficient data; ppm – parts per million

4 **References**: NAS [2008]

5 * Safety considerations against the hazard(s) of explosion(s) must be taken into account.

6 [†] Extreme safety considerations against the hazard(s) of explosion(s) must be taken into account.

7 [‡] Extreme safety considerations against the hazard(s) of explosion(s) must be taken into account.

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

3

2.0 Animal Toxicity Data

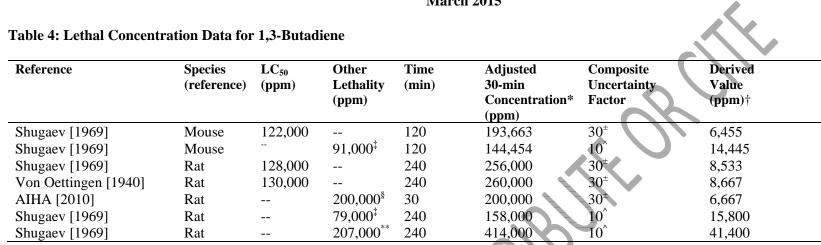
Several lethality studies in animals were available. The lowest LC₅₀ value of 122,000 ppm was reported by
Shugaev [1969]. In this study, mice were exposed to varying concentrations of 1,3-butadiene for 2 hours. Prior to
death, deep narcosis was seen. The authors also reported a LC₁₆ value of 91,000 ppm and a LC₈₄ value of 169,000
ppm.

7

1 2

8 In a carcinogenicity study, Bucher et al. [1993] exposed mice to 0, 1,000, 5,000, or 10,000 ppm of 1,3-butadiene
9 for a single 2-hour period and held the animals for 2 years prior to microscopic examination of tissues. Even at
10 the highest concentration, there was no mortality. No effects were reported.

11


Although metabolism is qualitatively similar across species, there are substantial quantitative differences, with the toxic epoxide metabolite formed at much higher levels in mice than in rats. The higher susceptibility of mice compared to rats is attributed to this difference, together with the higher ventilation rate in mice. Based on the lower ventilation rate in humans and the limited in vitro metabolism data, humans are considered to be more similar to rats than mice.

17

1,3-butadiene is carcinogenic to rats and mice, with mice being more susceptible than rats [IARC 1999; EC 2002; 18 USEPA 2002]. EC [2002] and USEPA [2002] concluded that 1,3-butadiene is carcinogenic to humans, while 19 IARC [1999] concluded that there is limited evidence for the carcinogenicity of 1,3-butadiene. No increase in 20 tumor incidence was observed in the study by Bucher et al. [1993], in which mice were exposed to concentrations 21 up to 10,000 ppm for a single 2-hour period and held for 2 years prior to microscopic examination of tissues. 22 Based on this acute study, no additional factor was added to account for 1,3-butadiene carcinogenicity, even 23 though extrapolation from the chronic data indicates a risk greater than 1×10^{-3} for a 30-minute exposure at the 24 25 level of the IDLH value.

26

Table 4 summarizes the LC data identified in animal studies and provides 30-minute equivalent derived values for
1,3-butadiene. Table 5 provides non-lethal data reported in animal studies with 30-minute equivalent derived
values. Information in these tables includes species of test animals, toxicological metrics (i.e., LC, BMCL,
NOAEL, LOAEL), adjusted 30-minute concentration, and the justification for the composite uncertainty factors
applied to calculate the derived values.

3 4 5

6

7

8

1 2

Abbreviation: LC – lethal concentration; LC_{50} – median lethal concentration; LC_{Lo} – lowest concentration of a chemical that caused death in humans or animals; min – minute; ppm – parts per million

* For exposures other than 30 minutes the ten Berge et al. [1986] relationship is used for duration adjustment ($C^n \ge k$); no empirically estimated n values were

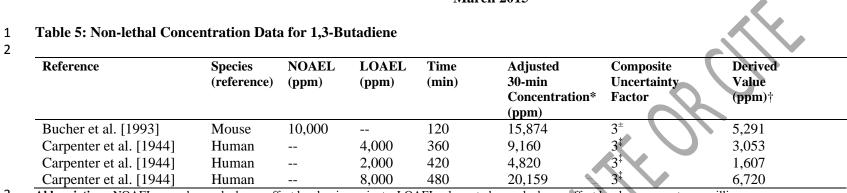
available, therefore the default values were used, n = 3 for exposures greater than 30 minutes and n = 1 for exposures less than 30 minutes.

9 [†]The derived value is the result of the adjusted 30-minute concentration divided by the composite uncertainty factor.

[±]Composite uncertainty factor to account for adjustment of LC_{50} values to LC_{01} values, use of lethal concentration threshold in animals, interspecies differences and human variability.

11 human variability. 12 ‡ Reported as LC₁₆

13 [^]Composite uncertainty factor to account for use of lethal concentration threshold in animals, interspecies differences and human variability.


14 [§] Deaths in 2/5 rats

15 ** Reported as LC_{84}

16 17

This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy.

5

Abbreviation: NOAEL - no observed adverse effect level; min - minute; LOAEL - lowest observed adverse effect level; ppm - parts per million 3 4

* For exposures other than 30 minutes the ten Berge et al. [1986] relationship is used for duration adjustment ($C^n \ge k$); no empirically estimated n values were 5

available, therefore the default values were used, n = 3 for exposures greater than 30 minutes and n = 1 for exposures less than 30 minutes. 6

7 [†]The derived value is the result of the adjusted 30-minute concentration divided by the composite uncertainty factor.

8 [±] Composite uncertainty factor to account for interspecies differences and human variability.

1

9 [‡]Composite uncertainty factor to account for adjustment from a severe effect threshold in humans and human variability.

1 3.0 Human Data

No information was located on concentrations lethal to humans. Information regarding human exposure to 1,3butadiene is available from several clinical and epidemiological studies. Larionov et al. [1934] exposed volunteers to 10,000 ppm of 1,3-butadiene for 5 minutes. Blood pressure and respiration were monitored, but only nose and throat irritation were reported. Exposure to 10,000 ppm for 5 minutes resulted in slight irritation and dryness of the nose and mouth with some increase in pulse rate but no effect on blood pressure or respiration [Shugaev 1968].

9

2

10 Carpenter et al. [1944] exposed two males to 2,000 ppm 1,3-butadiene for 7 hours, 4,000 ppm for 6 hours, or 11 8,000 ppm for 8 hours, with a 1-hour lunch break in the middle of the exposure period; exposure concentrations 12 were monitored regularly. Effects reported included slight smarting of the eyes and difficulty in focusing. There 13 was no effect on a tapping test or steadiness test.

14 **4.0** Summary

Despite the availability of toxicity data capable of being used to calculate health-based estimates for 1,3-butadiene
(see Tables 4 and 5), these estimates are all greater than 10% of the lower explosive limit (>10% LEL). NIOSH
has adopted a threshold of 10% LEL as a default basis for the IDLH values based on explosivity concerns
[NIOSH 2014]. Safety considerations related to the potential hazard of explosion must be taken into account and
the IDLH value is set at the 10% LEL for 1,3-butadiene of 1,400 ppm.

21

15

If the explosive hazards of 1,3-butadiene are controlled or toxicity issues are the primary concern, a health-based 22 IDLH value could be derived from numerous datasets. Based on effects seen in humans, a NOAEL for escape-23 24 impairing effects was identified at 8,000 ppm for a 6-hour exposure [Carpenter et al. 1944]. The exposure 25 concentration adjusted for a 30-minute exposure is 20,159 ppm. A composite uncertainty factor of 3 was applied to account for extrapolation from a severe effect threshold in humans, taking into account uncertainties with 26 27 regard to the quality of the study. This results in an IDLH value of 6,720 ppm. This value is supported by lethality studies. Shugaev [1969] reported a rat 4-hour LC_{50} value of 128,000 ppm, while Bucher et al. [1993] 28 29 reported a mouse 2-hour LC₅₀ value of 122,000 ppm. Extrapolating to a 30-minute duration and applying a 30 composite uncertainty factor of 30 to account for extrapolation from a concentration that is lethal to animals,

- 1 animal to human differences and human variability results in potential IDLH values of 8,533 ppm and 6,455 ppm,
- 2 respectively. Based on the overall data, and taking into account that the rat is a better model for humans than the
- 3 mouse, this would result in a health-based IDLH value of 6,720 ppm.

1 5.0 References

2

5

12

15

18

22

34

40

ACGIH (American Conference of Governmental Industrial Hygienists) [2014]. Annual TLVs® (Threshold Limit
 Values) and BEIs® (Biological Exposure Indices) booklet. Cincinnati, OH: ACGIH Signature Publications.

AIHA (American Industrial Hygiene Association) [2009]. AIHA Emergency Response Planning (ERP)
 Committee procedures and responsibilities. Fairfax, VA: American Industrial Hygiene Association.

AIHA (American Industrial Hygiene Association) [2010]. Emergency response planning guidelines (ERPG) and
 workplace environmental exposure levels (WEEL) handbook. Fairfax, VA: American Industrial Hygiene
 Association Press.

AIHA (American Industrial Hygiene Association) [1989]. Odor thresholds for chemicals with established
 occupational health standards. Fairfax, VA: American Industrial Hygiene Association, p. 13.

Bucher JR, Melnick RL, Hildebrandt PK [1993]. Lack of carcinogenicity in mice exposed once to high
concentrations of 1,3-butadiene. J Nat Cancer Inst 85:1866–1867.

Carpenter CP, Shaffer CB, Weil CS, Smyth HF Jr [1944]. Studies on the inhalation of 1,3-butadiene; with a
comparison of its narcotic effect with benzol, toluol, and styrene, and a note on the elimination of styrene by the
human. J Ind Hyg Toxicol 26(3):69–78.

EC (European Commission) [2002]. European Union risk assessment report: 1,3-butadiene. 1st Priority List.
 Volume 20. EUR 20420 EN. [http://echa.europa.eu/documents/10162/1f512549-5bf8-49a8-ba51-1cf67dc07b72].
 Date accessed: August 1, 2014.

26
27 HSDB [2014]. Hazardous Substances Data Bank [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB] CAS No.
28 100-47-0. Date accessed: August 1, 2012

IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) [2014]. GESTIS: database on
hazardous substances.

32 [http://gestis-en.itrust.de/nxt/gateway.dll?f=templates&fn=default.htm&vid=gestiseng:sdbeng]. Date accessed:
 33 March 17, 2014.

IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung) [2013]. GESTIS: database on
 hazardous substances [http://www.dguv.de/ifa/en/gestis/stoffdb/index.jsp]. Date accessed: March 25, 2013.

Larionov LF, Shtessel' TA, Nusel'man EI [1934]. The physiological action of butadiene, butene-2 and isoprene.
Kazanskii Meditsinkii Zhurnal *30*:440–445 (HSE translation no. 10855).

41 NAS (National Academy of Sciences) [2008]. Interim Acute Exposure Guideline Levels (AEGLs) for 1,3-

42 butadiene (CAS No. 106-99-0). NAS, National Research Council (NRC), Committee on Toxicology,

43 Subcommittee on Acute Exposure Guideline Levels. National Academy Press: Washington, DC.

44 [http://www.epa.gov/oppt/aegl/pubs/butadiene_interim_dec_2008.pdf]. Date accessed: March 17, 2014.

45

46 NIOSH (National Institute for Occupational Safety and Health) [1994]. Documentation for immediately

47 dangerous to life or health concentrations (IDLHs) - methyl isocyanate. Cincinnati, OH: U.S. Department of

1 Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational 2 Safety and Health. [http://www.cdc.gov/niosh/idlh/106990.HTML]. Date accessed: March 17, 2014. 3 4 NIOSH [2004]. NIOSH respirator selection logic. Cincinnati, OH: U.S. Department of Health and Human 5 Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2005-100. [http://www.cdc.gov/niosh/docs/2005-100/pdfs/2005-100.pdf]. Date 6 7 accessed: March 17, 2014. 8 NIOSH [2013]. NIOSH Current Intelligence Bulletin 66: Derivation of Immediately Dangerous to Life or Health 9 10 (IDLH) values, Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014-100. 11 [http://www.cdc.gov/niosh/docs/2014-100/pdfs/2014-100.pdf]. Date accessed: March 17, 2014. 12 13 NIOSH [2014]. NIOSH pocket guide to chemical hazards. Cincinnati, OH: U.S. Department of Health and 14 Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and 15 Health, DHHS (NIOSH) Publication No. 2005-149. [http://www.cdc.gov/niosh/npg/]. Date accessed: March 17, 16 17 2014. 18 OSHA (Occupational Safety and Health Administration) [2014]. Occupational Safety and Health Standards. 29 19 CFR 1910. Subpart Z -- Toxic and Hazardous Substances. OSHA: Washington, DC 20 [http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9992]. Date accessed: 21 22 August 1, 2014. 23 Shugaev BB [1968]. Distribution in the organism and toxicity of aliphatic hydrocarbons. Farmakol Toxsikol 24 *31*:162–165. 25 26 27 Shugaev BB [1969]. Concentrations of hydrocarbons in tissues as a measure of toxicity. Arch Environ 28 Health 18:878-882. 29 ten Berge WF, Zwart A, Appelman LM [1986]. Concentration-time mortality response relationship of irritant and 30 systematically acting vapors and gases. J Haz Mat 13:301–309. 31 32 USEPA (U.S. Environmental Protection Agency [2002]. Health assessment of 1,3-butadiene. EPA/600/P-10 33 98/001F. [http://www.epa.gov/iris/supdocs/butasup.pdf]. Date accessed: August 1, 2014. 34 35 USEPA [2014]. Integrated Risk Information System (IRIS). [http://www.epa.gov/iris/]. Date accessed: March 36 17, 2014. 37 38 von Oettingen WR [1940]. Toxicity and potential dangers of aliphatic and aromatic hydrocarbons. A critical 39 review of the literature. Public Health Bulletin 255:25-26. 40