ORAU Team NIOSH Dose Reconstruction Project	Document Number: ORAUT-TKBS-0012-5 Effective Date: 06/29/2004
Technical Basis Document for the Oak Ridge National Laboratory Occupational Internal Dose	Revision No.: 00 Controlled Copy No.: Page 1 of 64
Subject Experts: Mike Bollenbacher, Kenny Fleming, Bill Joyce	Supersedes:
Document Owner Approval: Signature on File Pobert E. Burns, Jr., TBD Team Leader Date: 06/18/2004	None
Approval: Signature on File Date: 06/29/2004 Judson L. Kenoyer, Task 3 Manager	
Concurrence: Signature on File Date: 06/28/2004 Richard E. Toohey, Project Director	
Approval: Signature on File Date: 06/29/2004 James W. Neton, OCAS Health Science Administrator	

TABLE OF CONTENTS

<u>Section</u>	raye
Record of Issue/Revisions	5
Acronyms and Abbreviations	6
5.0 Occupational Internal Dose	8
5.1 Introduction	
5.1.2 Solubility Classes	
5.1.3 Route of Intake and Particle Sizes	
5.1.4 Bioassay Programs	
5.1.4.1 <i>In Vitro</i> Monitoring Program	
5.1.4.2 <i>In Vivo</i> Monitoring Program	
5.1.5 Recordkeeping	
5.1.5.1 Division Codes	11
5.1.5.2 Radioanalytical Abbreviations and Codes	13
5.1.5.3 Whole-Body Counting Results Codes	13
5.2 In Vitro Minimum Detectable Activities, Counting Methods, and Reporting Practices	
5.2.1 In Vitro Minimum Detectable Activities	
5.2.1.1 Minimum Detectable Activities between 1947 and 1989	
5.2.1.2 Minimum Detectible Activities after 1989	
5.2.2 Counting Methods for In Vitro Samples	
5.2.2.1 Alpha Spectrometry	
5.2.2.2 Liquid Scintillation	
5.2.2.3 Zinc-Sulfide Scintillation	
5.2.2.4 Gamma Spectrometry	16

5.2.2.5 Gas Flow Proportional Counter (Beta Counting)	17
5.2.3 Notes on Measurements of Alpha Emitters	
5.2.3.1 Trivalent Alpha Actinides	
5.2.3.2 Plutonium	
5.2.3.3 Environmental Uranium	
	4.0
5.3 <i>In Vivo</i> Minimum Detectable Activities, Counting Methods, and Reporting Practices	
5.3.1 Shielded Counting Room	
5.3.2 Detectors, Geometries, and Techniques	
5.3.3 Cesium Counting Artifact	
5.3.4 Minimum Detectable Activity	25
References	28
Attachment 5A Calculation of MDAs from Historical Data	31
5A.1 Recovery of Historical Data	32
5A.1.1 Data Description	32
5A.1.2 Data Classification	32
5A.1.3 Synopsis of Recovered Data	33
5A.2 Calculation Method for Sample MDAs	33
5A.2.1 Standard Deviation of Background Counts	
5A.2.2 Background Count Time	
5A.2.3 Instrument Efficiency	
5A.2.4 <u>Yield</u>	
5A.2.5 Volume of Aliquot Analyzed	
5A.2.6 Volume of 24-Hour Sample	35
5A.3 Calculation Method for MDAs for Various Periods Between 1945 and 1988	35
5A.4 Additional Considerations	26
JA.+ AUUILIVIIAI VUI ISIUGI ALIUI IS	

LIST OF TABLES

<u>Table</u>		<u>Page</u>
5-1	Radioanaytical results between 1947 and 1990	9
5-2	Solubility classifications used by ORNL for re-evaluation of historical bioassay	
	results	
5-3	Routine bioassay monitoring methods and frequencies from 1973 to 1982	11
5-4	Historical division codes	12
5-5	New division codes	12
5-6	EDP urinalysis abbreviations and codes	13
5-7	Fecal analysis codes	13
5-8	Result codes for whole-body counting	13
5-9	Recommended in vitro MDAs for radionuclides from 1943 to 1989	15
5-10	MDAs for in vitro samples after 1989	16
5-11	Construction history of the counting room	19
5-12	1965 selection criteria for whole-body counting	20
5-13	Qualitative information concerning radioactive material detected utilizing the	
	WBC facility from 1966 to 1983	21
5-14	Qualitative information concerning radioactive material detected utilizing the	
	WBC facility through 1978	
5-15	Maximum measured in vivo activity (nCi) from 1961 to 1966	
5-16	Mean body burdens of ¹³⁷ Cs from fallout in United States	25
5-17	MDA values for six-detector HPGe array	
5-18	Current MDA values for ORNL scanning bed counter (Nal/Ge)	26
5-19	Current MDA values for ORNL germanium thyroid counter	26
5-20	Current MDA values for ORNL fixed bed counter	26
5-21	Frequency of in vivo monitoring	
5B-1	Data used to determine historical MDAs for radionuclides in urine and feces	34
5B-2	MDAs (dpm/24-hr sample) calculated from recovered data for radionuclides	37

LIST OF FIGURES

Figure 1 4 1		<u>Page</u>
5-1	Current MDA values for ORNL germanium lung counter versus chest-wall	
	thickness	26
5-2	Current MDA values for ORNL phoswich lung counter versus chest-wall	
	thickness for ²⁴¹ Am and ²³⁸ Pu	26
5B-1	MDA data for americium-241 in urine	38
5B-2	MDA data for curium-244 in urine	39
5B-3	MDA data for Cs-137 in urine	41
5B-4	MDA data for gross alpha in urine	42
5B-5	MDA data for gross beta in urine	44
5B-6	MDA data for H-3 in urine	45
5B-7	MDA data for Pm-147 in urine	47
5B-8	MDA data for Pu-238 in urine	48
5B-9	MDA data for Pu-239 in urine	50
5B-10	MDA data for Pu-241 in urine	51
5B-11	MDA data for rare earths in urine	53
5B-12	MDA data for Sr-90 in urine	54
5B-13	MDA data for U-233 in urine	56
5B-14	MDA data for U-238 in urine	57
5B-15	MDA data for Am-241 in feces	59
5B-16	MDA data for gross alpha in feces	60
5B-17	MDA data for Pu-239 in feces	62
5B-18	MDA data for Th-232 in feces	63

	Ī	Effective Date: 06/29/2004	Revision No. 00	Document No. ORAUT-TKBS-0012-5	Page 5 of 64
--	---	----------------------------	-----------------	--------------------------------	--------------

RECORD OF ISSUE/REVISIONS

ISSUE AUTHORIZATION DATE	EFFECTIVE DATE	REV. NO.	DESCRIPTION
Draft	01/22/2004	00-A	New technical basis document for the Oak Ridge National Laboratory – Occupational Internal Dose. Initiated by Robert E. Burns, Jr.
Draft	03/26/2004	00-B	Incorporates internal review comments. Initiated by Robert E. Burns, Jr.
Draft	05/25/2004	00-C	Incorporates NIOSH review comments. Initiated by Robert E. Burns, Jr.
06/29/2004	06/29/2004	00	First approved issue. Initiated by Robert E. Burns, Jr.

	Document No. ORAUT-TKBS-0012-5	Page 6 of 64
--	--------------------------------	--------------

ACRONYMS AND ABBREVIATIONS

Effective Date: 06/29/2004 | Revision No. 00

AEC U.S. Atomic Energy Commission
AMAD activity median aerodynamic diameter

cm centimeter

cm² square centimeter

cnts counts

cnts/dis counts per disintegration

cnts/min counts per minute

dia diameter

dpm disintegrations per minute

EDP Electronic Data Processing

EEOICPA Energy Employee Occupational Illness Compensation Program Act

ft feet

g gram

g/24-hr grams per 24-hour sample (fecal)

HPGe hyper-pure, intrinsic germanium

hr hour

ID identification

ICRP International Commission on Radiological Protection

in. inch

IVGS in vivo gamma-ray spectrometer

keV kilovolt-electron, 1,000 electron volts

L liter

m meter μm micrometer

MDA minimum detectable activity

ml milliliter

ml/24-hr milliliter per 24-hour sample (urine)

min minute

MMES Martin Marrieta Energy Systems

mo month

MPBB maximum permissible body burden MPOB maximum permissible organ burden

N population size Nal sodium iodide

Nal-Csl sodium iodide – cesium iodide phoswich detector

NaI(TI) thallium drifted sodium iodide NaI/Ge sodium iodide / germanium

nCi nanocurie

Effective Date: 06/29/2004 Revision No. 00 Document No. ORAUT-TKBS-0012-5 Page 7 of 64

NCRP National Council on Radiation Protection and Measurement

NIOSH National Institute for Occupational Safety and Health

ORNL Oak Ridge National Laboratory

pCi picocurie

SBC scanning bed counter

TBD technical basis document

U.S.C. United States Code

WBC Whole-Body Counting (Facility)

wk week

5.0 **OCCUPATIONAL INTERNAL DOSE**

5.1 INTRODUCTION

The Oak Ridge National Laboratory (ORNL) began operations in early 1943. The startup of the Graphite Reactor and plutonium separation activities in late 1943 introduced the potential for personnel exposures from intakes of radioactive material. Laboratory operations involving radioactive materials increased over subsequent years as ORNL expanded its roles in radionuclide production and development of chemical separations processes.

Development of methods and techniques for internal monitoring (bioassay) was one of the many priorities at ORNL in its early years of operation, because such methods simply did not exist. Although ORNL used air sampling and radiological contamination monitoring programs as qualitative indicators of internal exposure, urinalyses for various internal contaminants did not begin at the site until about 1947. (A limited number of in vivo measurements appear to have begun at ORNL in 1959.) ORNL maintained early tolerance levels for airborne contamination based on "product" (i.e., ²³⁹Pu) concentrations in the air (Cox 1944). [These early tolerance levels for alpha and beta-gamma contaminants were 3E-11 and 1E-07 µCi/cc respectively during the mid 1940s.] In addition, the Laboratory later established tolerance levels for materials such as ¹³¹I and noble gases.

As written, this technical basis document (TBD) is applicable for the period 1947 to the present. TBDs and Site Profile Documents are general working documents that provide guidance concerning the preparation of dose reconstructions at particular sites or categories of sites. They will be revised in the event additional relevant information is obtained about the affected site(s). These documents may be used to assist NIOSH in the completion of the individual work required for each dose reconstruction.

In this document the word "facility" is used as a general term for an area, building, or group of buildings that served a specific purpose at a site. It does not necessarily connote an "atomic weapons employer facility" or a "Department of Energy facility" as defined in the Energy Employee Occupational Illness Compensation Program Act (EEOICPA) of 2000 (42 U.S.C. § 7384I (5) and (12)).

5.1.1 **Radionuclides of Concern**

Because of the many diverse processes and experiments that took place there, a complete list of radionuclides encountered at ORNL would be difficult to assemble. Radionuclides likely to produce a measureable internal dose include uranium, activation products, fission products, and transuranics. The earliest urine sample results that were provided by ORNL were for the isotopes ²³⁹Pu and ⁹⁰Sr. [The electronic data that were provided by ORNL for use in estimating isotopic MDAs came from a project performed in the early to mid-1990s to convert hardcopy data over to a dBase IV database. Funding ran out on the conversion project in the mid-1990s and the entire set of site data was never completely converted, but a significant number of results were made available for our use. Table 5-1 lists radionuclides included in *in vitro* bioassay results provided by ORNL for the period from 1947 to 1988. The results were provided for estimating minimum detectable activities (MDAs) for various analyses. The source of these data was an electronic database created by ORNL in the early 1990s from hard-copy bioassay records. The sample size values in Table 5-1 are the numbers of analyses for that nuclide included in the data ORNL provided. These values do not reflect the total number of in vitro bioassays performed by ORNL in this period, because not all hard-copy records are in the database.

Table 5-1. Radioanaytical results between 1947 and 1988.

Table 5 1. Ita	aloanaytical ic
Nuclide	Sample size
Am-241	5,670
Am-243	12
As-74	7
BG	2
Bk-249	14
Br-82	2 2 11
Br-83	2
C-14	11
Ca-45	4
Ce-144	37
Cf-249	3
Cf-252	14
CI-36	1
Cm-242	12
Cm-244	299
Co-60	83
Cs-134	1
Cs-137	3,561
Fe-59	9
Gross alpha	4,875
Gross beta	324
H-3	2,070

Nuclide	Sample size
I-131	41
Mn-54	2
Mo-99	1
Na-24	3
Nb-95	3
Np-237	55
P-32	166
Pa-231	55
Pa-233	16
Pa-234	1
Pb-210	2
Pm-147	80
Po-210	66
Pu-238	65
Pu-239	15,476
Pu-241	112
Pu-242	41
Ra-226	333
Ra-228	1
Rare earths	1,098
Ru-103	1
Ru-106	65

Nuclide	Sample size
S-35	10
Sb-125	1
Sm-151	11
Sr-85	1
Sr-89	37
Sr-90	12,893
Tc-99	20
Th-232	1,125
TI-201	1
TI-204	1
Tm-170	6
U-232	1
U-233	829
U-235	3
U-238	11,434
U-239	11
Y-88	5
Y-90	31
Zn-65	7
Zr-95	20

Isotope-specific analyses for in vitro samples did not become routine until 1989. Prior to that time, chemical methods were used to separate radioelements as well as practicable, and the materials were assayed in terms of total activity. The activity measured would later be assigned to a predominate nuclide. Thus, a result from the early years might indicate ⁹⁰Sr, when in reality it includes ⁸⁹Sr. The same is true for early plutonium results and results for transuranic materials. Thus, "associated" radionuclides are inherently included in such results. Process knowledge of radionuclides present in various work areas was used to assign nuclides to sample results. The present ORNL internal dosimetry program uses a limited number of radionuclides for screening purposes. Positive results are followed up with additional bioassays.

5.1.2 **Solubility Classes**

Internal dosimetrists at ORNL provided a list of assumed intake modes and clearance class information for 73 radionuclides. These assumptions, given in Table 5-2, are those used by ORNL when re-evaluating historical bioassay results. They are provided as a reference for dose reconstructors, with the caveat the assumed solubility classes are not known to be based on any specific studies. In general, they merely reflect conservative choices for dose assessment in terms of committed effective dose equivalent. Dose reconstructors therefore should not assume that these classes, which are in terms of the system promulgated in (ICRP 1966), represent claimant-favorable choices for tissue-specific dose evaluations. Dose reconstructors should instead make a claimantfavorable choice for the radionuclide and tissue(s) of interest using the system of solubility classes described in ICRP Publication 66 (ICRP 1994).

Effective Date: 06/29/2004 Revision No. 00	Document No. ORAUT-TKBS-0012-5	Page 10 of 64
--	--------------------------------	---------------

Table 5-2. Solubility classifications used by ORNL for re-evaluation of historical bioassay results.

Material class	Intake mode	Radionuclides
V (Very soluble)	Ingestion	H-3
L (Labeled organic)	Inhalation	C-14
D (Days)	Inhalation	Na-22, P-32, P-33, S-35, Rb-86, Sr-85, Sr-89, Sr-90, I-125, I-129, I-131, Ba-133, Cs-134, Cs-137, Eu-152, Eu-154, W-188
W (Weeks)	Inhalation	Ca-45, Cr-51, Mn-54, Fe-55, Fe-59, Ni-63, Ge-68, Sc-75, Tc-99, Gd-153, Hg-203, Bi-207, Po-210, Ra-226, Np-237, Am-241, Am-243, Cm-242, Cm-244, Cm-248
Y (Years)	Inhalation	Sc-46, Co-57, Co-58, Co-60, Cu-64, Zn-65, Cu-67, Y-88, Y-90, Pd-103, Ru-106, Cd-109, Ag-110m, Pm-147, Ir-192, Os-191, Th-228, Th-229, Th-230, Th-232, Pa-231, U-232, U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Cf-249, Cf-252

5.1.3 Route of Intake and Particle Sizes

Unless additional information is provided, it should be assumed in all cases that the route of intake for internally deposited radionuclides was via inhalation of 5 μ m Activity Median Aerodynamic Diameter (AMAD)-sized particles.

5.1.4 <u>Bioassay Programs</u>

5.1.4.1 *In Vitro* Monitoring Program

ORNL has collected urine and fecal samples from individuals suspected of potential intakes from 1947 to the present. Urine samples have been and still are the preferred method. While fecal samples can provide good supplementary information to determine when an intake occurred, the chemical solubility of the material, and particle size; there typically is more variation associated with these samples than with urine samples. When fecal samples are obtained with urine samples after a known intake, the results can be used to better understand the intake parameters and provide a more accurate estimate of intake.

Urine samples were collected in the early years of the bioassay program based on the area health physicist's knowledge of field conditions (e.g., known spills/incidents, air and contamination sample results, etc.). This practice of scheduling did not utilize a specified sampling frequency (Auxier 2004; Henley 2004). A 1961 procedure manual (ORNL 1961) references procedures and practices governing the health physics program at that time, including internal and external exposure monitoring. Although referenced, the procedure detailing internal dosimetry was not among the documents available for review.

A similar manual of health physics procedures and practices from 1982 lists a detailed set of requirements for graduated routine sampling, depending on the frequency and extent of a potential exposure (ORNL 1982). Table 5-3 lists ORNL published routine bioassay monitoring methods and frequencies from 1973 through 1982. NOTE: Historical information of the *in vivo* monitoring program (see Section 5.3) indicates that the whole-body counting frequencies listed in Table 5-3 were not consistently followed. Discussions with previous site personnel indicate that no formal counting frequency was used at ORNL until the later 1980s (Berger 2004).

Section 5.2 discusses the *in vitro* monitoring program and the data it produced.

Table 5-3. Routine bioassay monitoring methods and frequencies from 1973 to 1982^a (ORNL 1982)

	Routine sampling categories		
Radioactive material	I	II	III
Pu-241 and alpha emitters	Urine 3-4 wk	Urine 6-13 wk	Urine 6-12 mo
other than uranium	Whole-body 3-4 mo	Whole-body 6-13 mo	Whole-body 6-12 mo
Sr-90 and uranium	Urine 4-6 wk	Urine 4-13 wk	Urine 6-12 wk
H-3	Urine each wk	Urine each mo	Urine each qtr
I-131	Whole-body each wk	Whole-body each qtr	Urine each qtr
Co-60 and Cs-137	Whole-body 3 mo	Whole-body 6 mo	Whole-body each 6 to 12 mo
All others	Consult w/Internal Dose	e Group	

- a. Frequency of sampling should be in accord with employee's potential for exposure as determined by health physics surveyors. The following is a guide:
 - Category I Persons actively involved in operations or processes containing quantities of radioactive material, and when there is some evidence of contamination (i.e., positive results from smear and air samples).
 - Category II Employees working with relatively small quantities of materials that are confined or when there is no evidence of contamination or activity.
 - Category III Employees working with radioactive material or in the vicinity of material when there is no known exposure but some potential for exposure.

5.1.4.2 *In Vivo* Monitoring Program

ORNL has collected whole-body, lung, and wound counting data for employees since 1959. For the most part, *in vivo* counting was used until the late 1980s to confirm potential intakes from known incidents or identified by the *in vitro* monitoring program. Though Morgan et al. (1965) indicated that routine *in vivo* monitoring for all site radiological workers began in 1965, it appears that a formal program did not begin until the mid- to late 1980s. Section 5.3 discusses the *in vivo* monitoring program and the data it produced.

5.1.5 Recordkeeping

ORNL used various formats on paper records to record bioassay results through most of the period of interest. In addition, ORNL has entered much historical *in vitro* monitoring data into a database. These data were used to estimate MDAs as described in this document (see Attachment 5A). Discussions with personnel responsible for radiological records (Dixon 2004) indicated that hard-copy data are maintained at ORNL and that upon formal request these records are made available to the requester. These records will be used by dose reconstructors in estimating intakes.

It is not practical for this document to provide examples of all record formats used in the past six decades; MMES (1995) contains a guide to historical record formats. Most bioassay records share the following information: name, badge or other ID number, division code, health physics area, date, analysis code, results (in disintegrations per minute per 24-hr sample), and a reason for the analysis. A review of ORNL claim files indicated that many bioassay forms had slight revisions throughout their use, but that the information they maintain is similar from one revision to the next and should be easily interpreted.

5.1.5.1 Division Codes

The division code sometimes provides information on individual locations and job assignments. Table 5-4 lists historical division codes, and Table 5-5 lists more recent codes.

Table 5-4. Historical division codes (MMES 1995).

Codes	DIVNUM	Departments	Division name
AC	01	3390	Analytical Chemistry
BI	02	4455	Biology
CH	04		Chemistry
CT	03	3370	Chemical Technology
DI	20	3200	Directors
EC, GE	38	3060	Gen. Engr. and Construc.
ED	06	3480	Education
EL	07	3320	Electronuclear
FM	22		Finance and Materials
HE	23	3090	Health
HP	08	3810, 4193, 3193, 3490	Health Physics
IC	09	3341, 3075	Instrumentation and Controls
IE	24		Inspection Engineering
IS	25	3369, 3650, 4362, 3360	Isotopes
LP	26	3094	Laboratory Protection
MA	10	3166, 3516, 3152	Mathematics
MC	11	3470	Metals and Ceramics
MET			Metallurgy
NP	12	3410	Neutron Physics
OP	28	3639	Operations
PE	21	3016, 3078, 3003, 3004, 3062	Plant and Equipment
PH	13	3405	Physics
PI	30	3173	Public Information
PR	29	3107, 3141	Personnel
RC	14	3430, 4430	Reactor Chemistry
RE	16	4435, 3435	Reactor
RP	17		Research Participation
SS	18	3475	Solid State
TH	19	4460	Thermonuclear
TI	31	3072, 3148	Technical Information

Table 5-5. New division codes (MMES 1995)

Code	DIVNUM	Division
AC	01	Analytical Chemistry
AS	70	Administrative Services
AT	07	Applied Technology
BI	02	Biology
BS	95	Business Systems
CH	04	Chemistry
CM	20	Central Management
CS	63	Computing and Telecom
CT	03	Chemical Technology
EA	93	ESA
EC	35	Environmental Compliance
EH	36	Env. & Health Prot.
EN	15	Energy
EP	12	Eng. Physics & Math
ER	29	Employee Relations
ES	42	Env. Sciences
ET	16	Eng. Technology
EX	90	Executive Offices
FE	19	Fusion Energy
FM	37	Finance and Materials
FR	14	Fuel Recycle
GE	69	ORNL Engineering
GR	71	Graphics
HE	23	Health

Code	DIVNUM	Division
HS	08	Health & Safety RSRH
IC	09	Instrmt & Controls
IF		Isotopes
IR	43	Info. Resource Org.
IS	72	Isotopes Division
LP	26	Lab Prot.
MC	11	Metals and Ceramics
OC	62	Controller Office
OP	27, 32	Operations
OS	22	Operational Safety
PC	64	Procurement
PE	21	Plant & Equipment
PH	13	Physics
PU	73	Publications
QA	24	Quality
RE	87	Env. Restoration
RP	14	Robotics
RR	06	Research Reactors
RU		Rust
SS	18	Solid State
TR	60	Treasurer Office
VI		Visitor
WM	27	Waste Management

Effective Date: 06/29/2004	Revision No. 00	Document No. ORAUT-TKBS-0012-5	Page 13 of 64

5.1.5.2 Radioanalytical Abbreviations and Codes

Paper records contain abbreviation codes for recording analytes. These codes were often based on the initials of the analysis or the isotopic abbreviation of the radionuclide. Tables 5-6 and 5-7 list the codes for radionuclides measured in urine and fecal samples, respectively (Mani 1983) (MMES 1995).

Table 5-6. EDP urinalysis abbreviations and codes.

	Alphanumeric code	Nur	meric code
CM0	²⁴⁴ Cm	000	Other
CO0	⁶⁰ Co	001	³⁵ S
CS0	Cesium B (137Cs)	002	⁶⁰ Co
CS7	¹³⁷ Cs	003	²¹⁰ Pb
EU	¹⁵⁴ Eu	004	²⁴ Na
FP0,FP	Fission products (137Cs)	005	⁹⁵ Zr/ ⁹⁵ Nb
FU0	Total rare earths ()	006	⁹⁹ Tc
GA0,GA	Gross alpha (²³⁹ Pu)	007	⁷⁴ As
GB0,GB	Gross beta (90Sr)	800	82Br/83Br
GD0	¹⁵³ Gd	009	⁵⁹ Fe
GG0	Gross gamma (137Cs)	010	⁵⁴ Mn
GU0	Gross alpha (²³⁹ Pu)	011	¹³¹
HY3	³ H	012	¹³² Cs
125	125	013	Gross beta
I31	¹³¹	014	¹⁴⁰ Ba
NP0	²³⁷ Np	015	¹²⁵ Sb
PA0	²³⁰ Pa alpha	016	²⁰⁴ TI

	Alphanumeric code	Nui	meric code
PA3	²³³ Pa beta	017	²³⁷ Np
PH2	³² P	018	^{110m} Ag
PM7	¹⁴⁷ Pm		
PO0	²¹⁰ Po		
PU0,PU	²³⁹ Pu alpha		
PU1	l ²⁴¹ Pu		
PU9	²³⁹ Pu		
RA0	²²⁶ Ra		
RU6	¹⁰⁶ Ru		
SR0	⁹⁰ Sr		
SR5	⁸⁵ Sr		
SR9	⁸⁹ Sr		
TA0	¹⁸⁰ Ta		
TH	²³² Th		
TP0	Trans plutonium alpha (241Am)		
TRE	Total rare earths ()		
URO	²³⁴ U alpha		

Table 5-7. Fecal analysis codes.

Alphanumeric code		
GF0	²³⁹ Pu gross alpha (includes Th)	
PF0	²³⁹ Pu	
RF0	Rare earths ()	
SF0	⁹⁰ Sr	
SF9	⁸⁹ Sr	
TF0	Trans plutonium (241Am)	
UF0	²³⁴ U	
OF0	Other	

5.1.5.3 Whole-Body Counting Results Codes

Table 5-8 lists codes used on some older cards and forms for documenting whole-body counting results. Many hardcopy records have been consolidated into individual personal records folders. However, this compilation is incomplete, with records for only employees with last names beginning with A through G.

Table 5-8. Result codes for whole-body counting.

Before 1971		1971-1978		
Code	Description*	Code	Description*	
1	Normal human spectrum	0	= <15% MPOB	
2	Less than 10% MPBB	2	= <25% MPOB	
3	Less than 25% MPBB	4	= <50% MPOB	
4	Less than 50% MPBB	6	= <100% MPOB	
5	Greater than 50% MPBB	8	>100% MPOB	
		N	Insignificant & indeterminate	
		S	Significant & indeterminate	

^{*}MPBB = maximum permissible body burden; MPOB = maximum permissible organ burden.

5.2 IN VITRO MINIMUM DETECTABLE ACTIVITIES, COUNTING METHODS, AND REPORTING PRACTICES

5.2.1 In Vitro Minimum Detectable Activities

5.2.1.1 Minimum Detectable Activities between 1947 and 1989

Table 5-9 lists historical MDAs for radionuclides of concern in urine and feces. These MDAs were calculated from analytical records recovered from the in vitro sample databases supporting the ORNL historic workforce dose assessment project (MMES 1995). Attachment 5A contains details of data recovery and additional information on specific radionuclides. Blank MDA entries in the early years in Table 5-9 indicate that no analytical results for that radionuclide were recovered from that year. This could be because the records have not been located, or because the analysis was not performed.

Recovered data show that analytical MDAs tend to remain fairly consistent for a number of years. Abrupt changes in MDAs can be identified for groups of radionuclides during specific years. Following these changes, the MDAs remain generally consistent in subsequent years. This "step-wise" pattern allowed MDAs from several years to be grouped to obtain a single, representative MDA. Table 5A-2 in Attachment 5A provides annual averages for periods of time where bioassay data were available.

The ORNL database contains values for isotopic activities during times when isotope-specific analyses were not possible or routinely performed. In earlier years, the element of concern was extracted chemically from the biological sample and the total radioactivity of the element in the extract was measured. At some point after the extraction and sample count, the total sample activity was attributed to a specific radionuclide. Many of the isotopic assignments were based on process knowledge.

To reflect the performance of the instrumentation and analytical methods more accurately during the period prior to 1990, Table 5-9 assigns MDAs for some isotopes to their corresponding radioelement rather than the specific radionuclide. For example, routine separation of the alpha emitters ²³⁸Pu and ²³⁹Pu did not occur until alpha spectrometric analyses became routine in 1989, but the recovered database reports both separately. They have been combined in this document as "Plutonium." NOTE: ²⁴¹Pu is reported separately because it is a beta emitter that can be assayed separately from the alpha-emitting isotopes of plutonium.

5.2.1.2 **Minimum Detectible Activities after 1989**

MDA values for present (since 1989) samples are available with each sample. Table 5-10 lists typical, current MDAs for radionuclides of concern in urine and feces.

5.2.2 Counting Methods for In Vitro Samples

Several counting methods have historically been available at ORNL for determining radioactivity in in vitro samples. The following sections discuss alpha spectrometry, liquid scintillation, zinc sulfide scintillation, gamma spectrometry, and beta counting using a gas flow proportional counter.

5.2.2.1 **Alpha Spectrometry**

ORNL uses alpha spectrometry in the analysis of nuclides that decay primarily by alpha emission. with only very low-energy photons or none at all. A tracer is added to the bioassay sample before analysis begins to determine the chemical yield of the process. The radioelements are chemically

Table 5-9. Recommended in vitro MDAs (dpm	/24-hr sample) for radionuclides from 1947 to 1989.
---	---

	Urine MDAs (dpm/24h sample)								Fecal MDAs (dpm/24h sample)													
	Gross	Gross	Am-	Cm-	Cs-		I-	Np-	Pm-			Pu-	Ra-	Rare	Ru-	Sr-89 +		Gross	Am-	Cm-		Th-
Year	alpha	beta	241	244	137	H-3	131	237	147	Plutonium	Polonium	241	226	earths	106	Sr-90	Uranium	alpha	241	244	Plutonium	232
1943																						
1944																						├──
1945 1946																					-	
1947										0.20												
1947										0.38							4.4					├──
1948										0.38							1.4 1.4					├──
1950					33	1				0.38						34	1.4					0.52
1950			0.33		33					0.21				129	0.30	34	6.3					0.53
	0.00					.							0.4	_								
1952	0.26		0.33		33	.				0.21	50		31	129	0.30	34	6.3					0.53
1953	0.26	4.405	0.33		33					0.21	58		31	129	0.30	34	6.3					0.53
1954	0.26	1,135	0.33		33	1				0.21	58		1.3	129	0.30	34	6.3					0.53
1955	0.26	1,135	0.33		197					0.21	58		1.3	129	0.30	34	6.3					0.53
1956	0.26	1,135	0.33		197					0.21	58		1.3	129	0.30	34	6.3	0.64				0.53
1957	0.26	1,135	0.33		197			1.1		0.21	58		1.3	129	0.30	34	6.3	0.64			0.34	0.53
1958	0.26	1,135	0.33		197			1.1		0.21	58		1.3	129	0.30	34	6.3	0.64			0.34	0.53
1959	0.26	1,135	0.33		197			1.1	396	0.21	58		1.3	129	0.30	34	6.3	0.64			0.34	0.53
1960	0.26	1,135	0.33		197			1.1	396	0.21	58		1.3	129	53	34	6.3	0.64			0.34	0.53
1961	0.26	288	0.33		197	320,282		1.1	396	0.21	17		1.3	129	53	6.3	6.3	0.64			0.34	0.53
1962	0.26	288	0.33		197	320,282		1.1	396	0.21	17		1.3	129	53	6.3	6.3	0.64			0.34	0.53
1963	0.26	288	0.33		197	320,282		1.1	396	0.21	17		1.3	129	53	6.3	6.3	0.64			0.34	0.53
1964	0.26	288	0.33	0.22	197	320,282		0.09	396	0.21	17		1.3	129	53	6.3	1.1	0.64			0.34	0.53
1965	0.26	288	0.33	0.22	197	320,282	10,358	0.09	396	0.21	17		1.3	129	53	6.3	1.1	0.64	0.46	1.05	0.34	0.53
1966	0.26	288	0.33	0.22	197	320,282	10,358	0.09	396	0.21	17		1.3	129	53	6.3	1.1	0.64	0.46	1.05	0.34	0.53
1967	0.26	288	0.33	0.22	197	320,282	10,358	0.09	396	0.21	17		1.3	129	53	6.3	1.1	0.64	0.46	1.05	0.34	0.53
1968	0.09	39.8	0.08	0.10	51	55,681	10,358	0.09	396	0.06	17	9.2	1.3	129	53	6.3	0.09	0.64	0.46	1.05	0.34	0.53
1969 1970	0.09	39.8 39.8	0.08 0.08	0.10	51 51	55,681 55,681	10,358 10,358	0.09	396 396	0.06 0.06	17 17	9.2	1.3 1.3	129 129	53 53	6.3 6.3	0.09	0.64	0.46	1.05	0.34 0.34	0.53
																					*	
1971	0.09	39.8	0.08	0.10	51	55,681	10,358	0.09	396	0.06	17 17	9.2	0.07	5.4	53	4.0	0.09	0.64	0.46	1.05	0.34	0.53
1972	0.09	39.8	0.08	0.10	51	55,681	10,358	0.09	396	0.06		_	0.07	5.4	53		0.09	0.64	0.46	1.05	0.34	0.53
1973 1974	0.09	39.8 39.8	0.05	0.10	51 51	55,681	10,358 10,358	0.09	396 396	0.04 0.04	17 17	9.2	0.07	5.4 5.4	53 53	4.0	0.06 0.06	0.64 0.64	0.46	1.05	0.34 0.34	0.53
						55,681															*	
1975 1976	0.09	39.8 39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04 0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34 0.34	0.53
1977	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52 0.52	9.2		5.4 5.4	53	4.0		0.64 0.64	0.46	1.05	*	0.53
					51	55,681	10,358	0.09	396				0.07		53		0.06			1.05	0.34	
1978	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1979	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1980	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1981	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1982	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1983	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1984	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1985	0.09 0.09	39.8	0.05	0.10	51 51	55,681 55,681	10,358	0.09	396	0.04 0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1986 1987	0.09	39.8 39.8	0.05	0.10	51 51	55,681 55.681	10,358 10,358	0.09	396 396	0.04	0.52 0.52	9.2 9.2	0.07	5.4 5.4	53 53	4.0	0.06 0.06	0.64 0.64	0.46 0.46	1.05 1.05	0.34 0.34	0.53 0.53
1988	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53
1989	0.09	39.8	0.05	0.10	51	55,681	10,358	0.09	396	0.04	0.52	9.2	0.07	5.4	53	4.0	0.06	0.64	0.46	1.05	0.34	0.53

Table 5-10. MDAs for *in vitro* samples after 1989 (McLaughlin 2002).

,	MDA
Isotope	(dpm/24-hr sample)
H-3	9,100
C-14	4,480
P-32	1
Sr-90	3
Tc-99	200
I-131	20
Np-237	0.02
Th-232	0.02
U-232	0.02
U-233	0.02
U-234	0.02
U-235	0.02
U-238	0.02
Pu-238	0.02
Pu-239	0.02
Am-241	0.02
Cm-244	0.02
Cf-252	0.02
Bk-249	26

separated from the sample and electrodeposited on stainless-steel disks. Plutonium and the other transuranics can be analyzed sequentially; uranium analysis requires a separate sample.

5.2.2.2 **Liquid Scintillation**

Liquid scintillation is used for the analysis of low-energy, pure beta emitters, specifically ³H and ¹⁴C. One milliliter of a urine sample is mixed with a scintillation cocktail for analysis.

5.2.2.3 **Zinc-Sulfide Scintillation**

ORNL used zinc-sulfide scintillation counting to count alpha emitters like the trivalent alpha actinides (see Sections 5.2.3.1 and 5.2.3.2).

5.2.2.4 **Gamma Spectrometry**

ORNL uses gamma spectrometry to identify and quantify radionuclides that emit photons with energies greater than 60 keV. A high-resolution, hyper-pure, intrinsic germanium (HPGe) detector with a beryllium end-window is used. Urine samples are placed in a 1-L Marinelli beaker, which is placed over the detector for counting. If the total sample volume is less than 1 L, distilled or deionized water is added to bring the volume up to 1 L. Fecal samples were counted directly in the sample counter for screening purposes, and they might have been ashed and placed into a 2-in. Petri dish for quantitative results.

5.2.2.5 Gas Flow Proportional Counter (Beta Counting)

ORNL uses the gas flow proportional counter system for the analysis of strontium. Strontium is chemically separated from the sample and filtered onto a glass fiber filter. The filter is placed on a planchet for insertion into the counter. The counting system does not distinguish between beta energies, so the reported result is total strontium (89 Sr plus 90 Sr).

5.2.3 Notes on Measurements of Alpha Emitters

5.2.3.1 Trivalent Alpha Actinides

Before 1989, ORNL did not perform radionuclide-specific analyses for americium, curium, and other high atomic number elements beyond plutonium. [These radionuclides were typically recorded on the HP Body Fluids Analysis Request cards as transplutonium (TPO or TPL).] Rather, the Laboratory separated trivalent alpha actinides as a group and analyzed by zinc-sulfide scintillation counting. Therefore, monitoring of transplutonium elements was unable to differentiate between such nuclides as ²⁴¹Am and ²⁴⁴Cm. The default radionuclide to use with measurements involving trivalent alpha actinides would be ²⁴¹Am. The detection sensitivity of the transplutonium analysis technique is not well documented for samples processed before 1985. However, laboratory records suggest that the transplutonium detection level was about 0.2 dpm through 1985.

For analyses performed after 1985, an estimate of the sample-specific MDA is generally reported. Alpha spectroscopy analysis for transuranics in bioassay samples began in the early- to mid-1980s. Differentiation, by alpha energy separation, for isotopes such as ²³⁴U, ²³⁵U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴¹Am, and ²⁴⁴Cm became possible.

5.2.3.2 Plutonium

Before 1989, ORNL did not routinely perform isotope-specific analyses for plutonium. Rather, the Laboratory separated plutonium as an element and analyzed it by zinc-sulfide scintillation counting. Therefore, the historic plutonium analysis technique was unable to differentiate between the alpha emitting isotopes ²³⁸Pu, ²³⁹Pu, and ²⁴⁰Pu. Site analytical personnel assert that in the early 1980s, positive total Pu measurements were recounted on the limited number of alpha spectrometers that were available at the site. Though many HP Body Fluids Analysis Request cards in the claims files gave results for the isotopes ²³⁸Pu and ²³⁹Pu, this was not consistently observed. The default isotope for positive, total Pu measurements should be ²³⁹Pu.

5.2.3.3 Environmental Uranium

The following paragraphs were taken entirely from the Oak Ridge National Laboratory Internal Dosimetry Program Technical Basis Document (McLaughlin 2002). They are included as an aid to dose reconstructors in the interpretation of uranium bioassay results for ORNL workers.

Environmental levels of naturally-occurring uranium are found throughout eastern Tennessee. The environmental activity levels in the immediate area surrounding Oak Ridge are sufficiently high such that dietary intake of uranium is detectable with 24-hour urine samples. A urinary uranium background study was conducted in the mid 1990's using non-occupationally exposed employees to quantify the range of typical background uranium excretion. Based upon the results of that study, a discrimination level (set at the 99th percentile level) of 0.14 dpm/day was established for both U-234 and U-238 to differentiate between environmental and occupational exposure to

uranium. A value of 0.25 dpm/day is applied to total uranium results. Plots of the observered uranium excretion distributions for U-234, U-238, and total uranium are provided below.

An activity ratio of U-234 to U-238 of approximately 2 to 1 has been observed within the analyzed local potable water samples. Activity ratios in this range have been reported for various aquifers (Osmond). Though U-234 and U-238 should be in secular equilibrium within nature, the observed enrichment of the isotope U-234 is believed to be caused by several factors which include the direct transfer of U-238 decay products across a solid/liquid phase boundary by alpha recoil and differences in solubility between uranium decay chain members. Recognizing this trend, uranium bioassay results that are less than 0.2 dpm/day that do not exhibit a U-234 to U-238 activity ratio of 2:1 should be considered suspect and investigated.

5.3 IN VIVO MINIMUM DETECTABLE ACTIVITIES, COUNTING METHODS, AND REPORTING PRACTICES

5.3.1 **Shielded Counting Room**

The ORNL Whole-Body Counting (WBC) facility, sometimes referred to as the In Vivo Gamma-Ray Spectrometer or IVGS), is in Building 2008 in the northwest corner of the Main Plant area. Several Health Physics Division annual progress reports (Morgan et al. 1961, 1963, and 1966) indicate that the WBC facility began operation in June 1960 and another report (Brown 1971) indicates a May 1960 date; a more recent document (Watts et al. 1995) indicates several counts occurred earlier. Thus, it is likely that the WBC facility began limited operations in 1959.

The main counting room has inner dimensions of 10 ft by 10 ft by 10 ft. Its walls consist of four layers of pre-World War II steel with a total thickness of 14 in. Some documents called it the iron or big room. The first recorded count in the WBC facility occurred on July 13, 1959, and, "was a background count [conducted] in the corner of the steel room with the door not in place and the roof incomplete" (Watts et al. 1995). The room was completed on July 24, 1959 (with the exception of a 0.125-in. layer of "special low-radioactivity lead" added to all inner surfaces in 1960 to reduce background radiation levels) and was used for a time to conduct background studies of paint and interior samples and to count biological samples such as milk, grass, and cow thyroids. The first recorded lung count of an employee occurred on May 19, 1960. Almost immediately after (May 19 to 20, 1960), it was used to conduct lung counts of three employees involved in an onsite contamination incident. The original counting facility utilized a 4- by 4-in. Nal (TI) crystal, but it is not clear what the counting geometry was. There is a photograph of an individual laying on a nylon-strapped, aluminum beach chair, but it was not clear whether that was the geometry initially employed in the facility. The Argonne Chair counting geometry was set up for whole-body counting on February 27, 1961 (Morgan et al. 1961). The tubular steel chair was tilted so the individual's body was in a V position with the detector placed approximately 50 cm directly over the hips (Morgan et al. 1961, p. 223).

Before construction of the WBC facility, health physicists realized that there could be problems with siting a low-level radiation counting facility in the plant environment, with radioactive effluents from operations being generated immediately adjacent to the facility. Thus, ORNL designed and installed a recirculating air treatment system that pumped air from inside the counting room through charcoal traps, cooling coils, and heaters to remove radon, odors, and excess moisture (Brown 1971; Morgan et al. 1961). A slight positive pressure was maintained in the counting room by using cylinders of "aged" breathing air to make up for leakage from the system.

Effective Date: 06/29/2004 | Revision No. 00

To improve the detection sensitivity, additional layers of material were applied to the floor in the WBC facility counting room over the years. Morgan et al. (1963) indicates that 0.04-in.-thick layers of tin and cadmium were laid over the interior surface of the lead, only on the floor, with a 0.01-in.-thick layer of copper over the tin and cadmium. The original vinyl tile was placed over the copper. These materials were installed to reduce background radiation emitted from the lead shield as a graduating shield to minimize the contribution of low-energy X-rays. In the mid-1990s, the vinyl tile surface was removed and a 0.03-in.-thick layer of stainless steel was placed directly over the other metal layers. Site personnel indicated that the stainless-steel layer was primarily for aesthetic purposes to cover the oxidized copper layer. With the addition of frictional surfaces for slip reduction, this was the latest form of the floor. Table 5-11 lists the construction history of the counting room.

Table 5-11. Construction history of the counting room.

Installation date	Material	Thickness (in.)
1959 (entire facility)	Pre-WW II steel	14
1960 (entire facility)	Special low-radioactivity lead	0.125
1963 (floor only)	Tin	0.04
1963 (floor only)	Cadmium	0.04
1963 (floor only)	Copper	0.01
Mid-1990s	Stainless steel	0.03

Subsequent improvements to the shielded counting room, detectors, and counting geometries are described below. The shielded room was used to conduct all *in vivo* measurements at ORNL until 1992, when a Canberra scanning bed counter (SBC) was installed in Room 16 of Building 2008.

A discussion with Berger (Berger 2003), who was responsible for the facility from the mid-1970s until the early 1980s, indicated that although the facility was in operation, a formal *in vivo* monitoring program was not in place until the late 1980s. Prior to that time, the WBC facility was used almost exclusively to either confirm known or suspected intakes of radioisotopes or for research purposes. Selection of individuals for counting was performed by field health physics personnel based on expected contaminants of concern and the probability of exposure until the early 1990s, when the selection of individuals for *in vivo* monitoring became the responsibility of the Internal Dosimetry staff.

5.3.2 <u>Detectors, Geometries, and Techniques</u>

As described above, the initial *in vivo* counter at ORNL utilized a 4- by 4-in. Nal (TI) crystal and a tilted chair counting arrangement (Morgan et al. 1961). In July 1961, counting activities in the WBC facility were suspended to modify the detector arrangement with the installation of an 8- by 4-in. Nal (TI) crystal to replace the smaller detector to increase efficiency and reduce counting times. In 1962, several thin (5-in.-diameter by 0.0625-in.) Nal (TI) crystals were installed in the facility to quantify low-energy photons (e.g., mainly isotopes of plutonium). Also in that year, calibration studies were conducted using an arc-shaped geometry. This geometry was expected to result in less variation in counting efficiency than the chair geometry. (The arc geometry placed an individual laying in an arced position with the anterior portion of the body facing the detector at a distance of about 1 m, so each portion of the body was approximately the same distance from the detector (Mani 1983).

Morgan et al. (1963) indicated that the thin crystal detectors could see approximately 40 nCi of ²³⁸Pu, if there was a preexposure chest count. If there was no preexposure count, the detection capability was approximately 80 nCi. In 1963, a SBC replaced the chair geometry using the 8- by 4-in. Nal (TI) crystal for whole-body counting. The bed and individual were moved under the stationary detector. This geometry was used to determine roughly the part of the body in which the gamma-emitting radioisotopes were located. The detection efficiency was approximately equivalent to that of the chair

geometry (Morgan et al. 1963). Morgan et al. (1963) noted that the computer output provided a "gross" spectrum as well as having the ability to "strip the ⁴⁰K and ¹³⁷Cs background counts." Several spectra observed during that period indicated a large portion of the "net" spectra with negative values. Morgan et al. (1964) noted that in March 1963 "written weekly reports of in vivo counting activities and results was begun." (The research to generate this document did not find any of these reports).

Morgan et al. (1965) reported that "Baseline counts on essentially every person with a potential for future exposure was completed in May 1965." By the third week of May 1965, a prioritizing system for selecting individuals for whole-body counting was initiated. Table 5-12 describes this system. Although several located documents stated that baseline and specified monitoring frequencies were utilized to make in vivo measurements, Berger (2003) and McLaughlin (2004) indicated that a full in vivo monitoring program did not exist at ORNL until approximately 1994, when site internal dosimetrists became responsible for identifying personnel for counting. Prior to that time, the area health physicists selected individuals for in vivo monitoring. The area health physicists were responsible for determining radioisotopes to which the worker could have been exposed and counting frequencies. This led to inconsistent approaches to the selection of individuals for monitoring.

Table 5-12. 1965 selection criteria for whole-body counting.

Priority	Selection criteria					
1	Persons suspected of having sustained exposure					
2	Persons being recounted as follow-up to initial elevated in vivo results					
3	Persons who work directly with radioactive material (once every 3 mo)					
4	Persons who work in areas where radioactive materials are handled, but do not work directly with the material (once every 6 mo)					
5	New hires or other persons requiring a baseline count and a limited number of persons prior to termination					

Morgan et al. (1966) indicated that the "job of determining which employees should be counted, the frequency with which they should be recounted, and preparing the necessary schedule cards and lists is requiring more time than had been anticipated." For this reason, the WBC facility was still being used to verify if intakes had taken place rather than for routine monitoring of site personnel. A new Health Physics Division Report (Morgan et al. 1967) begun in 1966 included data on numbers of in vivo counts and basic statistics for in vivo monitoring. They included numbers of individuals whose results exceeded the U.S. Atomic Energy Commission (AEC) reporting level (50% of the permissible body burden averaged over the year) or some other specified amount. Table 5-13 summarizes this information. NOTE: The use of annual averages could be misleading in cases involving short-lived or rapidly cleared materials. Mani (1983, Table 15) provided similar data, but he reported all in vivo counts that exceeded specified levels rather than annual averages. Table 5-14 lists this information.

Table 5-15 summarizes the maximum activity measured through in vivo monitoring for various nuclides for the period from 1961 to 1966.

The results for a given in vivo analysis contained the following information: name, badge number (or equivalent), division code, HP area, date, analysis code, and results code. Table 5-8 lists result codes for the period prior to 1978. The reason for the analysis was given. The ORNL Division codes are the same as those listed in Tables 5-4 and 5-5. [NOTE: The ICRP 2 methodology of reporting percentages of body or lung burdens was used at ORNL through 1983. AEC Manual Chapter 0502 required "an evaluation of the radiation exposure status of an employee when monitoring techniques indicated that a body burden equaled or exceeded 50% of a maximum permissible limit." A phone discussion with the current internal dosimetry staff (McLaughlin 2004) indicate that the staff that was in place in the 1960s through 1980s probably conducted dose assessments when necessary and that

Table 5-13. Qualitative information concerning radioactive material detected utilizing the WBC facility from 1966 to 1983.

material	detected utilizing the WBC facility from 1900 to 1905.
	Number of persons exceeding the permissible body
Year	burden (based upon <i>in vivo</i> measurements)
1966 ^a	0 persons exceeded 50% of permissible body burden
1967 ^a	0 persons exceeded 50% of permissible body burden
1968 ^a	0 persons exceeded 50% of permissible body burden
1969 ^a	0 persons exceeded 50% of permissible body burden
1970 ^b	0 persons exceeded 25% of permissible body burden
1971 ^b	0 persons exceeded 25% of permissible body burden
1972 ^b	0 persons exceeded 25% of permissible body burden
1973 ^b	0 persons exceeded 25% of permissible body burden
1974 ^b	2 (employees inhaled Cm-244 believed to range from 20
	(15 pCi) to 40% (30 pCi) of organ (lung) burden)
1975 ^b	4 (1 - Cm-244 of ~50%, 1 – U-238 of <15%, 1 – Zn-65
	and Co-57 of <15%, and 1 – Co-60 of <15% of lung
	burden)
1976 ^b	6 (all six appear to have had detectable amounts of Cm-
	244 of <15% of the lung burden)
1977 ^b	244 of <15% of the lung burden) 20 (8 – ²³⁹ Pu and ²⁴¹ Am of <25%, 8 – ¹³⁷ Cs, ⁶⁰ Co, ¹⁵³ Gd,
	and 10°Cd of <15%, and 4 – 12°I and 12°Te <25% of the
	lung burden)
1978 ^b	6 (1 - Pu-241 and Am-241 of ~70% (lung), 1 – ¹³¹ I-131
	minor amount that could not be quantified (thyroid), and
-	4 – Co-60 of <25% (lung)
1979 ^b	0 persons exceeded 25% of permissible lung burden
1980 ^b	0 persons exceeded 10% of permissible lung burden
1981 ^b	0 persons exceeded 10% of permissible lung burden
1982 ^b	0 persons exceeded 10% of permissible lung burden
1983 ^b	0 persons exceeded 10% of permissible lung burden

a. The AEC permissible level was 50% of the permissible body burden from 1966 through 1969.

documentation would exist for these assessments. Since 1989, each *in vivo* measurement showing a positive result has been assessed, including making estimates of intake and dose. The ORNL Internal Dosimetry Program TBD (McLaughlin 2002) states that dose estimates of less than 1 mrem are reported as zero. The overwhelming number of *in vivo* measurements obtained at the facility indicate no elevated activity (McLaughlin 2004).]

Mani (1983) indicated that a Nal-CsI phoswich detector was installed and operational in 1967, though Brown (1971) states "The several detectors used for measuring gamma radiation from the human body are all Nal (TI) crystals." The 1974 annual report of the Health Physics Division (Auxier et al. 1975) stated that a phoswich detector was in place and apparently was installed between 1971 and 1974, but no other information was located stating when the detector was placed in the WBC facility. A 9- by 9-in. Nal (TI) crystal was installed in the WBC facility in 1974 (Auxier et al. 1975) and placed under the chest area of the counting bed. This detector was used for stationary chest counts. (A statement in Brown (1971) indicated that a distortion of the spectrum occurred if the large detector was used with the bed moving. Thus, it was not used for whole-body scans.) The whole-body scans performed during this period used the 8- by 4-in. detector at a distance of 12 in. from the bed surface and an elapsed counting time of 20 minutes. (If transuranic isotopes were suspected, the thin crystal assembly was used.) Stationary chest counts used either the 8- by 4-in. or thin crystal assembly in

b. From 1970, ORNL indicated in reports that in vivo measurements did not exceed specified amounts.

	Table 5-14. Qualitative information	n concerning radioactive ma	terial detected utilizing the W	BC facility through 1978	(Mani 1983).
--	-------------------------------------	-----------------------------	---------------------------------	--------------------------	--------------

	Insignificant	Significant						•		,	•
Count	and	and	<15%	Normal	<10/25%	<25%	<50%	>50%	<100%	>100%	Total
year	indeterminate	indeterminate	of MPOB	spectrum	of MPOB ^a	of MPOB	counts				
1962				59	9	3					71
1963				906	15						921
1964				1,485	6	20	13	31			1,555
1965				1,111	16	8	23	11			1,169
1966				632	11	12	28	13			696
1967				918	13	6	25	4			966
1968				815	135	12	6				968
1969				905	126	8	18				1,057
1970				499	14	2	1	2			518
1971	310	4	9					1			324
1972	255		4								259
1973	321	1	3								325
1974	246	2	8		3		6		7	6	278
1975	297	23	5		4		1				330
1976	215	6	29				3			1	254
1977	256	14	15		5		1				291
1978	257	12	30		3		3		1		306
Total	2,157	62	103	7,330	360	71	128	62	8	7	10,288

a. 10% before 1971 and 25% from 1971 to 1978.

Table 5-15. Maximum measured *in vivo activity* (nCi) from 1961 to 1966.

Solve 1961 1962 1963 1964 1965 1966

Isotope	1961	1962	1963	1964	1965	1966
²⁴ Na			140			
⁴⁶ Sc						4
⁵¹ Cr		320		42	Trace ^a	
⁵⁶ Co					15	
⁵⁷ Co						65
⁵⁸ Co		20		38	Trace	
⁵⁹ Fe		40		15		
⁶⁰ Co	80	13	2	220	5	12
⁶⁴ Co				<5		
⁶⁵ Zn		40	3	16	Trace	
⁷⁵ Se				250		
⁹⁰ Sr			40	4,500	800	626
⁹⁵ Zr/ ⁹⁵ Nb	30	11	14	47	18	39
¹⁰⁶ Ru/ ¹⁰⁶ Rh		131		47	200	30
¹²⁵ Sb		162	6	18		
¹³¹	12	200	28 ^b	73	54	6
¹³⁷ Cs	440	360	570	310	104	92
¹⁴⁴ Ce/ ¹⁴⁴ Pr		30		<7	75	50
¹⁵⁵ Eu				Trace		
¹⁹⁸ Au						
²⁰³ Hg	800	0.0005			169	22
²²⁶ Ra				<5		<0.5°
²³³ Pa	2,800					
U (enriched)				Trace		Trace

a. *Trace* is not defined within any of the annual reports, but is provided here to give a qualitative "feel" for the amount present.

contact with the chest depending on what contaminants were expected. When the 9- by 9-in. Nal (TI) crystal was used the individual was positioned either face-up or –down on the bed and the bed was lowered just shy of contact with the face of the large detector. The time to conduct stationary chest counts typically ranged from 10 to 40 minutes and sometimes longer to ensure "better counting statistics" (Brown 1971). The arc counting geometry was described in (Brown 1971) with the 8- by 4-in. detector positioned 6 ft above the center point of the counting bed. This geometry differs from that described in Mani's assessment of ORNL internal dosimetry data (Mani 1983). The counting bed was placed on the floor with the ends supported to give the proper curvature. This geometry was intended for use only when the count rate was too high for the scanning or stationary chest counting methods. (No evidence of the arc counting geometry actually being used was noted in the references reviewed in the generation of this document.)

In addition to the NaI (TI) detectors described above, Brown (1971) indicated that three other detectors were in use within the counting room in 1971. A 3- by 3-in. NaI crystal was used to measure radiation emanated from specific organs (e.g., mainly for the thyroid, kidneys, liver, and spleen). Because of its smaller size, it could be placed directly over the organ of interest. Two other NaI crystals were employed in the WBC facility as wound probes: 2- by 2-in. and 1- by 0.03125 in., with the latter used to measure low-energy photons less than about 200 keV.

The next bulk source of information describing instruments and procedures in the WBC facility was provided by Berger and Goans (1981), Berger and Lane (1981, 1982, 1984), and Berger (2004).

b. Thyroid.

c. micrograms.

Berger (2004) indicated that use of the phoswich detector began in late 1976 to early 1977. Until that time, the three thin NaI(TI) crystal detector assembly was in use for detection of low-energy photons. The phoswich detector had the following dimensions: 5.25- by 0.0625-in. Nal - 2-in. Csl. Mani (1983) indicates that in 1978, an 80-cm² HPGe counting array was in the WBC facility, but it was not fully operational until May 1980 (Berger and Lane 1981). The array consisted of six separate detectors in an aluminum block in a close-packed rectangular array (e.g., a six-die pattern) designed to cover one lung (Berger and Lane 1981). The phoswich and HPGe detectors were used together from the early 1980s to obtain lung count data; they were positioned over the right and left lungs, respectively. Berger and Lane (1984) indicated that there were problems with getting all the HPGe detectors positioned close to the chest surface due to the construction of the aluminum block. Detectors on the chest surface were almost a factor of 3 more sensitive than those farther away from the chest. This lung count geometry was used until approximately 1987, when problems developed with the HPGe/liquid nitrogen feed system (Hembree 2004). At that time, the HPGe detector array was taken out of service, and the phoswich detector was the only device used for routine chest counts until 1994.

In 1992, a Nuclear Data SBC was put in service, primarily to measure mixed fission/activation products ranging in energy between 100 and 2000 keV, and is in use today. This counter is in Room 16 of Building 2008, and is the only *in vivo* monitoring device outside the shielded counting room (Watts et al. 1995). It has three germanium detectors facing downward and two NaI detectors on the sides of the bed. As described below, it can also be used as a backup chest counter, if necessary, due to its 3-to-50% efficient germanium detectors (Watts et al. 1995). The detectors are in a solid center shield. The shield is designed so there is a minimum of 4 in. of lead around each detector.

During this time, the 5.25- by 0.0625-in. Nal - 2-in. Csl phoswich detector was used to conduct chest counts. Some time between 1977 and 1994, another phoswich detector with similar dimensions was procured and used until three 70% efficient germanium detectors were installed in the counting room in 1994 (Hembree 2004; McLaughlin 2004). A chair counting geometry was reinitiated at that time, with the individual positioned with their back reclined 45 degrees from the vertical. The three germanium detectors are positioned with two detectors over the right lung (one over the upper portion and the other over the lower portion) and one over the left lung. The third detector is over the upper portion of the left lung.

In addition to the above, there are three other detector arrangements in the WBC facility. A germanium thyroid counter can be set up using one of the detectors used for lung counting. The individual is in the same chair used for lung counting, but the chair is inclined at a 25-degree angle. Other organ-specific geometries can be used as necessary (skull, liver, hand, etc.). The 5.25- by 0.0625-in. Nal - 2-in. Csl phoswich and the SBC (in a fixed-bed position) are backup systems that could be used for lung counts if needed.

Until 1994, field health physicists selected individuals for in vivo monitoring. At that time, the internal dosimetry group became responsible for the selection of personnel for in vivo monitoring with quidance from field health physicists. Berger (2003) indicated that the *in vivo* monitoring program may not have been effective for monitoring ORNL personnel until the late 1980s because of reliance on field health physicists to determine the individuals to be monitored.

Cesium Counting Artifact 5.3.3

Many ORNL workers had measured body burdens from intakes of ¹³⁷Cs from nonoccupational sources (e.g., fallout and consumption of local venison). At present, ORNL uses a value of 20 nCi ¹³⁷Cs in a whole-body count for consumers of venison as the decision level to follow up or conduct a dose assessment (ORNL 2002). However, the Laboratory has never used it to negate an individual's occupational dose that was received on the site (McLaughlin 2004).

Fallout affects everyone in North America, and body burdens of ¹³⁷Cs measurable in whole-body counters were common in the 1960s and 1970s. NCRP Report 94 (NCRP 1988) provides mean body burdens of ¹³⁷Cs for the United States for the years most likely to produce interference with occupational whole-body count results. Table 5-16 lists these values.

Table 5-16. Mean body burdens of ¹³⁷Cs from fallout in the United States

Offica	Olaics.
Year	Body burden (nCi)
1953	0.27
1954	1.1
1955	2.2
1956	4.3
1957	5.1
1958	6.5
1959	8.1
1960	6.8
1961	4.6
1962	6
1963	11
1964	19
1965	16

Year	Body burden (nCi)
1966	9.7
1967	5.6
1968	3.5
1969	2.7
1970	2.7
1971	2.7
1972	2.7
1973	2.7
1974	1.6
1975	1.1
1976	1.6
1977	1.1

5.3.4 **Minimum Detectable Activity**

As stated above, the thin (5-in.-diameter by 0.0625 in.) Nal (TI) crystal array used in 1963 to detect low-energy photons emitted primarily from transuranics could detect approximately 40 nCi of ²³⁸Pu, if there had been a preexposure chest count. If there was no preexposure count, the detection capability was approximately 80 nCi (Morgan et al. 1963).

Table 5-17 lists MDAs for the HPGe array of six individual detectors in the aluminum block (used around early- to mid-1980s).

Tables 5-18, 5-19, and 5-20 list MDA values for the ORNL SBC, germanium thyroid counter, and fixed bed counter, respectively (Watts et al. 1995). MDA values are calculated for each individual measurement made using the germanium lung counter, SBC, and fixed bed counter. Figure 5-1 is a plot of MDA values for different nuclides for the ORNL germanium lung counter as a function of chest wall thickness. Figure 5-2 shows MDA values for ²³⁸Pu and ²⁴¹Am for the ORNL phoswich lung counter as a function of chest wall thickness. Table 5-21 lists the frequencies of in vivo counting since 1960 and, for the various detectors, a summary of the best estimates of the applicable periods of use.

Table 5-17. MDA values for six-detector HPGe array (Berger and Lane 1981).

	<u> </u>	
Nuclide	Organ	MDA (nCi)
²³⁹ Pu	Lung	21.5
²⁴¹ Am	Lung	1.1
¹²⁵	Thyroid	0.04
¹³⁷ Cs	Lung	16.4
¹⁵³ Gd	Lung	0.87
¹⁵² Eu	Lung	0.71
²³³ U	Lung	1.42
⁵⁷ Co	Lung	0.94

Table 5-18. MDA values for ORNL scanning bed counter (Nal/Ge) (W	(Watts 1995).
--	---------------

MDA (nCi)		
24/30		
3.9/4.5		
12/15		
3.7/4.1		
21/30		
2.2/3.1		
2.7/2.9		
4.3/4.6		
7.7/8.4		
21/21		
5.8/9.8		

Isotope	MDA (nCi)
⁵⁴ Mn	2.1/2.4
⁶⁰ Co	2.2/1.9
⁸⁸ Y	1.8/1.9
^{99m} Tc	4.4/5.3
¹⁰⁹ Cd	NG/224*
¹³¹	2.7/3.1
¹³⁴ Cs	2.2/3.0
¹⁴⁰ Ba	9.2/9.1
¹⁴⁴ Ce	36/43
¹⁵⁴ Eu	6.1/7.2
²³⁵ U	5.9/6.1

Isotope	MDA (nCi)
⁵⁷ Co	4.9/5.9
⁶⁵ Zn	4.3/6.0
⁹⁵ Nb	2.1/2.7
¹⁰³ Ru	2.6/2.9
¹¹³ Sn	3.4/4.0
¹³³ Ba	3.7/4.5
¹³⁷ Cs	2.4/2.8
¹⁴⁰ La	2.3/2.4
¹⁵² Eu	8.5/9.7
²¹² Pb	6.3/7.6

*NG = not given

Table 5-19. Current MDA values for ORNL germanium thyroid counter.

Isotope	MDA (nCi)
¹²⁵	0.06
¹³¹	0.12

Table 5-20. Current MDA values for ORNL fixed bed counter.

Isotope	MDA (nCi)
⁶⁰ Co	0.31
¹⁴⁴ Ce	6.28

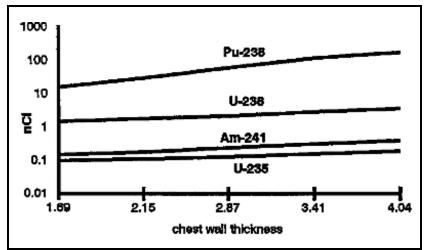


Figure 5-1. Current MDA values (nCi) for ORNL germanium lung counter versus chest-wall thickness (cm). (Watts et al. 1995)

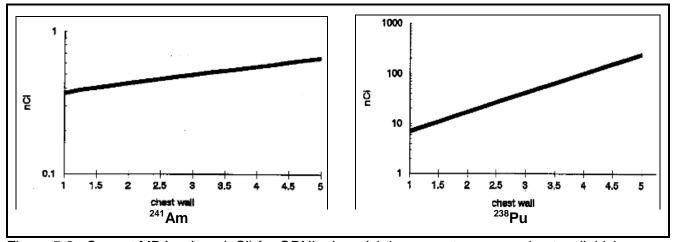


Figure 5-2. Current MDA values (nCi) for ORNL phoswich lung counter versus chest-wall thickness (cm) for ²⁴¹Am and ²³⁸Pu (Watts et al. 1995).

Effective Date: 06/29/2004	Revision No. 00	Document No. ORAUT-TKBS-0012-5	Page 27 of 64	
----------------------------	-----------------	--------------------------------	---------------	--

Table 5-21. Frequency of in vivo monitoring.

Monitoring type	Applicable period	Frequency
	1960 – 1961	No set frequency. (Period of facility development –limited routine human
	4- x 4-in. Nal (TI)	counting, typically of incidents)
	1961 – 1962	No set frequency. (Development activities to change over to larger
	8- x 4-in. Nal (TI)	detector – typically incidents)
	1962 – 1967-71	No set frequency. (Period spent obtaining baseline counts onsite
	8- x 4-in. Nal (TI)	employees and incident counts)
	1965 - ??	Frequency stated in Annual Report (see Table 5-12), but discussions with
	8- x 4-in. Nal (TI)	site personnel indicate that it was not consistently implemented.
	ca 1967-71 to 1976	Large detector was added below counting table and used when
	8- x 4-in. Nal (Tl) and 9- x 9-in. Nal	conducting stationary lung counts only.
	(TI)	
	1962 – 1976	No set frequency. (Thin Nal crystals used to quantify low energy photons.)
Lung counting	5-in. dia. x 1/16-in. Nal (Tl)	
Lung counting	1976 – 1994	Monitoring frequency was not effectively implemented. This phoswich
	5.25- x 1/16-in. Nal - 2- Csl	detector was used to monitor for low energy photons.
	phoswich	
	1980 – 1987	Monitoring frequency was not effectively implemented. Detectors used
	Germanium array and phoswich	together.
	1992 – present	Fixed Bed Counter is SBC in fixed position. Used only to measure fission
	combination germanium and Nal	and activation products (e.g., ⁶⁰ Co and ¹⁴⁴ Ce) immediately after
		assimilation.
	1994 – present	Varies from annual to semiannual depending on exposure potential set by
	Germanium system	Internal Dosimetrist.
	1994 – present	Phoswich detector can be used, but germanium detection system noted
	5.25- x 1/16-in. Nal - 2- Csl	above is routinely used.
	phoswich	
	1960 – 1961	No set frequency. (Period of facility development –limited routine human
	4- x 4-in. Nal (TI)	counting, typically incidents)
	1961 – 1962	No set frequency (Development activities to change to larger detector –
	8- x 4-in. Nal (TI)	typically incidents)
Whole-body counting	1963 – 1976	Table 5-12 Selection criteria used in 1965 for WBC
	8- x 4-in. Nal (TI)	
	1992 – present	SBC. Monitoring frequency implemented in 1994 to include annual and
	combination germanium and Nal	semiannual counts depending on exposure potential set by Internal
		Dosimetrist.
	1963 - ??	Incident counting and research. May have been used for frequent
	3- x 3-in. Nal (TI)	monitoring of workers potentially exposed to iodine, but this information
Thyroid counter (and		was not located.
Thyroid counter (and	1994 – present	Typically, site research personnel would be placed on this program and
other organs)	germanium (uses one of three	monitored on semiannual frequency, as well as persons involved in known
	germanium detectors used for lung	or potential iodine intake.

REFERENCES

- Auxier, J. A., D. M. Davis, and J. E. Turner, 1975, Applied Health Physics and Safety Annual Report for 1974, ORNL-5055, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Auxier, J. A., 2003. Personal communications with Mike Bollenbacher, Knoxville, Tennessee, October 15.
- Berger, C. D., and R. E. Goans, 1981, "A Comparison of the Nal-Csl Phoswich and a Hyperpure Germanium Array for the In Vivo Detection of the Actinides," Health Physics Journal, volume 40, pp. 535-542.
- Berger, C. D., and B. H. Lane, 1981, Performance of a Large Hyperpure Germanium Detector Array for In Vivo Detection of Low-Energy Photon and X-ray Emitters: Analytical Procedure and Current Capabilities, ORNL/TM-7925, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Berger, C. D. and B. H. Lane 1982, The Oak Ridge National Laboratory Whole Body Counter: Internal Operation Procedure Manual, ORNL/TM-8423, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Berger, C. D., and B. H. Lane, 1984, Calibration of a Large Hyperpure Germanium Detector Array for Actinide Lung Counting with a Tissue-Equivalent Torso Phantom, ORNL/TM-8723, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Berger, C. D., 2003, personal conversation discussing the operation of the WBC facility during the late 1970s and early 1980s, November.
- Berger, C. D., 2004, personal conversation discussing the operation of the WBC facility during the late 1970s and early 1980s, January.
- Brodsky, A., 1992, "Exact calculation of probabilities of false positives and false negatives for low background counting," Health Physics, volume 63, number 2, pp.198-204.
- Brown, P. E., G. R. Patterson, and H. H. Abee, 1971, The ORNL Whole Body Counter, CF-71-1-71, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Cox, A. C., 1944, Progress Report First Nine Months Operation of the Pilot Plant, CN-1879, October
- Dixon, E., 2003, "Historical Internal Monitoring", electronic mail from E. Dixon to W. E. Joyce (ATL International), Oak Ridge National Laboratory, Oak Ridge, Tennessee, September 26.
- Dixon, E., 2004, personal conversation discussing the historical records and their retention, April 2004.
- Evans, R.D., 1955, *The Atomic Nucleus*. McGraw-Hill, New York, New York.
- Hembree, W. R., 2004, personal conversation discussing the operation of the WBC facility during the late 1980s to present, January 2004.
- Henley, L., 2003. Personal communications with Mike Bollenbacher, Knoxville TN, October 15.

- ICRP (International Commission on Radiological Protection), 1959, Report of Committee II on Permissible Dose for Internal Radiation, ICRP Publication 2, Pergamon Press, London, England.
- ICRP (International Commission on Radiological Protection), 1966, "Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract," ICRP Committee II, Task Group on Lung Dynamics, Health Physics, Volume 12.
- ICRP (International Commission on Radiological Protection), 1975, Report of the Task Group on Reference Man, Publication 23, Pergamon Press, Oxford, England.
- ICRP (International Commission on Radiological Protection), 1994, Human Respiratory Tract Model for Radiological Protection, Publication 66, Pergamon Press, Oxford, England.
- Mani, K. V., 1983, Assessment of Oak Ridge National Laboratory Internal Dosimetry Data for DOE Health and Mortality Study, master's thesis, 1983.
- McLaughlin, D. A., 2002, Oak Ridge National Laboratory Internal Dosimetry Program Technical Basis Document, Revision 4, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- McLaughlin, D. A., 2004, personal conversation discussing the operation of the WBC facility, January 2004.
- MMES (Martin Marietta Energy Systems, Inc.), 1995, Documentation of the dBase IV In vitro Sample Databases Supporting the ORNL Historic Work Force Dose Assessment Project.
- Morgan, K. Z., 1961, Health Physics Division Annual Progress Report for Period Ending July 31, 1961, ORNL-3189, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Morgan, K. Z., W. S. Snyder, and E. G. Struxness, 1963, Health Physics Division Annual Progress Report for Period Ending July 31, 1963, ORNL-3492, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Morgan, K. Z., W. S. Snyder, and E. G. Struxness, 1964, Health Physics Division Annual Progress Report for Period Ending July 31, 1964, ORNL-3697, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Morgan, K. Z., W. S. Snyder, and E. G. Struxness, 1965, Health Physics Division Annual Progress Report for Period Ending July 31, 1965, ORNL-3849, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Morgan, K. Z., W. S. Snyder, and E. G. Struxness, 1966, Health Physics Division Annual Progress Report for Period Ending July 31, 1966, ORNL-4007, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Morgan, K. Z., W. S, Snyder, and D. M. Davis, 1967, Health Physics and Safety Annual Report for 1966, ORNL-4146, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- NCRP (National Committee on Radiological Protection and Measurements), 1988, Exposure of the Population in the United States and Canada from Natural Background Radiation, Report 94, Bethesda, Maryland.

- ORNL (Oak Ridge National Laboratory), 1961, Procedures and Practices for Radiation Protection, Health Physics Manual, Oak Ridge, Tennessee.
- ORNL (Oak Ridge National Laboratory), 1982, Guides for Internal Exposure Monitoring, Procedure A-12, in Procedures and Practices for Radiation Protection, Health Physics Manual, revised May 15, Oak Ridge, Tennessee.
- ORNL (Oak Ridge National Laboratory), 2002, Oak Ridge National Laboratory Internal Dosimetry Program Technical Basis Document, Revision 4, Oak Ridge, Tennessee.
- Watts, J. R., J. M. Barber, J. A. Biggerstaff, and G. R. Rao, 1995, Oak Ridge National Laboratory Internal Dosimetry Group In Vivo Monitoring Technical Basis Document, TB/IDG/WBCL-95-R0, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

ATTACHMENT 5A CALCULATION OF MDAS FROM HISTORICAL DATA

TABLE OF CONTENTS

Section	<u>n</u>	<u>Page</u>
5A 5A	Recovery of Historical Data	32
5A 5A 5A 5A	Calculation Method for Sample MDAs	34 35 35 35
5A.3 C	Calculation Method for MDAs for Various Periods Between 1945 and 1988	35
5A.4 A	Additional Considerations	36
<u>Table</u> 5B-1 5B-2	LIST OF TABLES Data used to determine historical MDAs for radionuclides in urine and feces MDAs (dpm/24-hr sample) calculated from recovered data for radionuclides	
	LIST OF FIGURES	
Figure 5B-1 5B-2 5B-3	MDA data for americium-241 in urine	39
5B-4 5B-5 5B-6 5B-7 5B-8	MDA data for gross alpha in urine	44 45 47
5B-9 5B-10 5B-11	MDA data for Pu-239 in urine	50 51
5B-13 5B-14 5B-15 5B-16	MDA data for U-233 in urine	56 57 59
	MDA data for Pu-239 in feces MDA data for Th-232 in feces	

5A.1 RECOVERY OF HISTORICAL DATA

A large amount of raw bioassay data exists at the ORNL complex. A portion of these data was transcribed into an electronic database hosted on ORNL equipment and maintained by ORNL personnel.

As part of this dose reconstruction effort, this database was queried for historical urinalysis records on October 30, 2003. A supplemental guery was performed on December 12, 2003. These gueries requested information on the samples and the instrumentation used in the analysis. No personal information or individual dose results were requested or received.

These database gueries generated 66,204 records from the period between 1945 and 1988. These records were compiled into a single database. A data validation and comment field was added to each record. Then the records were examined and classified according to usability.

5A.1.1 **Data Description**

The database queries retrieved 17 parameters from the ORNL internal dosimetry database:

- NUCLIDE A unique abbreviated identifier for specific nuclides
- SAMPLEID A unique identifier for individual samples
- SAMPLETYPE A one-character identifier designating the type of sample (urine, fecal, etc.)
- ALIQUOTVOL The volume or mass of the sample analyzed
- SAMPLEVOL The sample volume or mass collected
- COUNTDATE The date the aliquot was counted
- STARTEDATE The date sample processing began
- STOPDATE The date sample processing ended
- RECOVERY The chemical yield, in percent
- EFFICIENCY The detector's counting efficiency, in percent
- EFF_FACTOR The reciprocal of the detector's counting efficiency
- COUNTMIN The sample count time, in minutes
- T BKG RATE The total background count rate, in counts per minute
- BKG_MIN The background count time, in minutes
- BKG_RGNT_R The count rate of any reagent used
- BKG_COUNTS The number of background counts
- MDA The minimum detectable activity

5A.1.2 **Data Classification**

The 66,204 individual records in the database were classified into one of four categories:

- Duplicate Records 272 duplicate records were found. These were marked with a "D" in the record's validation field.
- Usable without Modification 58,972 of the records collected (89%) were usable without qualification.
- Usable with Modification Some of the records collected contained input errors that were easily identified. Examples include a nuclide entry of C-137, instrument efficiencies listed in fractions instead of percent, and dates from the turn of the century. Other information in the

database enabled correction of some of these records. Such modifications were designated by placing an "M" in the records validation field and entering the reason for the change in the comment field. These records comprise 3% (2,193) of the database.

Unusable Records - 4,767 of the records recovered (7%) were determined to be unusable in their present form. Most of these records are incomplete or contain gross errors. These were marked with an R in the validation field. An explanation for a record's rejection was entered in the comment field.

The resulting database provided all the raw data used to determine the MDAs of radionuclides in urinalysis calculated in this attachment.

5A.1.3 **Synopsis of Recovered Data**

The database queries recovered 61,165 usable records. Of these, 59,288 are clearly records of urinalyses and 1,859 are records of fecal analyses. Special analyses made up the remaining 18 records. Seventy-five different analyte labels are listed, although some are clearly different names for the same analyte (e.g. GA, GAO, and G_ALPHA are all gross alpha measurements). Table 5A-1 lists the recorded analyses performed by radionuclide.

5A.2 CALCULATION METHOD FOR SAMPLE MDAS

Equations 5A-1 and 5A-2 show the derivation of the estimated MDA, which was calculated from 61,165 analytical records. MDAs were calculated using the method in Brodsky (1992):

$$MDA = \frac{3 + 4.65 \times SD_{b}(cnts)}{T_{b}(min) \times k \left(\frac{cnts \times 24 h sample}{dis}\right)}$$
(Eq. 5A-1)

where

MDA = Minimum Detectable Activity (dpm/24 h sample)

= Standard deviation of the total background counts (cnts/min) SDh

= Duration of the background count (min) = Calibration factor (cnts•24 h sample/dis)

$$k\left(\frac{\text{cnts} \times 24 \text{ h sample}}{\text{dis}}\right) = \text{InstrEff}\left(\frac{\text{cnts}}{\text{dis}}\right) \times \text{Yield} \times \frac{V_a \text{ (mL)}}{V_r \left(\frac{\text{mL}}{24 \text{ h sample}}\right)}$$
(Eq. 5A-2)

where:

InstrEff = Instrument efficiency (cnts/dis) Yieldi = Fractional chemical recovery

= Volume of the aliquot analyzed (ml for urine, g for feces) Va

Vr = Volume of the sample submitted, or the volume of a standard 24-hr sample from reference man (1,400 ml/24-hr sample for urine, 135 g/24-hr sample for feces) (ICRP Publication 23 [ICRP Year] default values for 24-hr voids), whichever is larger

To use this equation one must know, or be able to calculate, the standard deviation of background counts, the duration of the count, the yield of any chemical extractions used, the efficiency of the

Table 5A-1. Data used to determine historical MDAs for radionuclides in urine and feces.

Nuclide	Fecal	Urinalysis	Row totals
Totals	1,859	59,288	61,147
Alpha	1	3	4
Am-241	130	5,540	5,670
Am-243	6	6	12
As-74		7	7
BG		2	2
Bk-249	2	12	14
Br-82		2	2
Br-83		2	2
C-14		11	11
Ca-45		4	4
Ce-144	4	33	37
Cf-249	3	1	3
Cf-252	3	11	14
CI-36		1	1
Cm-242	1	11	12
Cm-244	26	273	299
Co-60	2	81	83
Cs-134		1	1
Cs-137	4	3,557	3,561
Fe-59	1	8	9
GA	69	1,875	1,944
G-alpha		6	6
GAO	154	2,771	2,925
GB		278	278
GBO		46	46
H-3		2,070	2,070
I-131		41	41
Mn-54		2	2
Mo-99		1	1
Na-24		3	3
Nb-95		3	3
Np-237	1	54	55
P-32		166	166
Pa-231	1	54	55
Pa-233	3	13	16
Pa-234		1	1

Nuclide	Fecal	Urinalysis	Row totals
Pb-210		2	2
Pm-147	16	64	80
Po-210	9	57	66
Pu-238	4	61	65
Pu-239	124	15,352	15,476
Pu-241	1	111	112
Pu-242		41	41
Ra-226	1	332	333
Ra-228		1	1
RE	39	698	737
Ru-103		1	1
Ru-106		65	65
S-35		10	10
Sb-125		1	1
Sm-151		11	11
Sr-85		1	1
Sr-89		37	37
Sr-90	142	12,751	12,893
T	1		1
Tc-99		19	19
Th-232	1,079	46	1,125
TI-201	1		1
TI-204		1	1
Tm-170	1	5	6
TPU		1	1
TRE	2	197	199
TRE B		1	1
TRE-B		4	4
U-232		1	1
U-233	3	826	829
U-235		3	3
U-238	25	11,409	11,434
U-239		11	11
Y+RE		157	157
Y-88		5	5
Y-90		31	31
Zn-65		7	7
Zr-95	1	19	20

detector used, and the amount of the sample analyzed. The method of recovering this information from the historical database is discussed in the following sections.

5A.2.1 **Standard Deviation of Background Counts**

The data field BKG_COUNTS contained recorded background counts for a sample and was the preferred source of background count information. When a record's BKG_COUNTS field was blank, the background count information was calculated as the product of the T_BKG_RATE and BKG_MIN fields. If the BKG_MIN field was blank, but the T_BKG_RATE field contained a value, the background count information was calculated as the product of the T_BKG_RATE and COUNTMIN fields.

The variability in repeat counts, such as background counts, follows the Poisson distribution (Evans 1955, Chapter 26). It is a property of the Poisson distribution that its standard deviation is the square root of its mean value. Therefore, in this analysis, the standard deviation of the total background counts was calculated as the square root of the total background counts.

5A.2.2 **Background Count Time**

The data field BKG MIN contained the recorded background count time for a sample and was the preferred source of background count time information. If the BKG_MIN field was blank, the time in the COUNTMIN field was used. This last method of estimating the background count time is likely to be claimant-favorable because in almost all cases where there is paired data, the COUNTMIN value is less than the BKG MIN value. This produces a higher MDA when substituted into Equation 1.

5A.2.3 **Instrument Efficiency**

Information on instrument efficiencies was contained in two fields. The EFFICIENCY field contained the percent of disintegrations detected by the instrument. The EFF FACTOR field contained the reciprocal of the EFFICIENCY field.

5A.2.4 Yield

The chemical yield for a given radiochemical analysis was contained in the RECOVERY data field. This value was given in percent recovery.

Many of the records had blank recovery fields. However, due to the repetitive nature of the chemical extractions used, application of an average, radionuclide-specific, chemical recovery to records with no recovery value was judged to be acceptable. This approach is supported further by the lack of variability observed in daily runs on known standards recorded in laboratory logbooks recovered from the late-1950s through the mid-1970s.

5A.2.5 **Volume of Aliquot Analyzed**

The ALIQUOTVOL field usually contained a value for the amount of material subjected to radioanalysis. When this field was blank, it was assumed that the entire sample provided was used in the analysis. The amount of the sample was recorded in the SAMPLEVOL field.

5A.2.6 **Volume of 24-Hour Sample**

Excretion rates and concentrations vary greatly within a 24-hr period and between individuals. The models developed for calculating intakes from in vitro analyses are based on 24-hr samples. The daily urine excretion rate is 1,400 ml/24-hr sample; for feces, this value is 135 g/24-hr sample.

Often, the volume analyzed (V_a) was less than the reference excretion rate from standard man. When this was observed, the calculated activity in the sample was normalized to the reference man volume to compensate. This adjustment increased the MDA and, therefore, would be claimant-favorable.

5A.3 CALCULATION METHOD FOR MDAS FOR VARIOUS PERIODS BETWEEN 1945 AND 1988

Once the MDAs were calculated for individual samples, they were segregated by radionuclide and imported into Excel spreadsheets. Using Excel, the values were plotted for visual inspection. Figures 5A-1 through 5A-18 at the end of this attachment show plots of data the was obtained and calculated for the following radioisotopes: (urine) ²⁴¹Am, ²⁴⁴Cu, ¹³⁷Cs, gross alpha, gross beta, ³H, ¹⁴⁷Pm, ²³⁸Pu, ²³⁹Pu, ²⁴¹Pu, rare earths, ⁹⁰Sr, ²³³U, ²³⁸U, and (feces) ²⁴¹Am, gross alpha, ²³⁹Pu, ²³²Th. In the first plot, the MDA values were plotted against the date of their analysis. This provided a visual representation of individual MDAs over time. The density of the available data and a gross approximation of typical sample MDAs for a given period were quickly observed using this format.

Two bar charts were created for each radionuclide. One shows the annual average MDAs between 1945 and 1988. The other shows the number of analytical results recovered for each year in the same period. These two charts provide additional information on gross trends exhibited by sample MDAs, and on the temporal distribution of the data.

These visual aids were used to establish general periods during which sample MDAs were similar. The sample MDAs in these periods were grouped as similar populations. Using Excel's statistical functions, the following statistical parameters for each group of samples were determined:

- The population size (N)
- The 50th percentile value of the population.
- The population's arithmetic mean
- The arithmetic standard deviation of the population
- The 95% confidence level on the mean

The 95% confidence levels on the mean for each radionuclide are the recommended MDAs for that radionuclide during the period evaluated.

5A.4 ADDITIONAL CONSIDERATIONS

The recovered data indicate the analytical MDAs tended to remain fairly consistent for years. Abrupt changes in the MDAs were identified for groups of radionuclides during specific years. Following the change, the MDAs remained generally consistent in the several succeeding years. This "step-wise" pattern allowed MDAs from several years to be grouped as one MDA for a specified period. Table 5-9 highlights these groupings by enclosing similar MDAs in a box.

Some MDAs changed frequently, creating a pattern of similar MDAs in short adjacent periods. When this occurred, the largest estimated MDA from that period was selected to be the representative MDA for the entire period. The tritium (3H) MDA listed between 1968 and 1981 in Table 5-9 is an example of this adjustment.

Most recovered data contained isotope-specific entries in the NUCLIDE field. However, the ability to differentiate routinely between isotopes of the same radioelement did not always exist before 1989. Many of the isotopic assignments were based on process knowledge. Therefore, during the period prior to 1989, the MDA for some isotopes are reported as the MDA for the radioelement instead of the radionuclide. For example, the alpha emitters ²³⁸Pu and ²³⁹Pu are reported separately in the database. They have been combined in this TBD as plutonium. NOTE: ²⁴¹Pu is reported separately because it is a beta emitter that can be measured separately from the alpha emitting isotopes of plutonium. If the recovered data did not extend to 1989, the MDA calculated from the last known data was extrapolated forward (see Table 5-9).

		Urine MDAs (dpm/24h sample) Gross Gross Am. Cm. Cs.														Fecal MDAs (dpm/24h sample)						
Year	Gross alpha	Gross beta	Am- 241	Cm- 244	Cs- 137	H-3	I- 131	Np- 237	Pm- 147	Plutonium	Polonium	Pu- 241	Ra- 226	Rare earths	Ru- 106	Sr-89 + Sr-90	Uranium	Gross alpha	Am- 241	Cm- 244	Plutonium	Th- 232
1943																						
1944																						ļ
1945																						
1946																						
1947										0.33												
1948										0.40							0.965					
1949										0.34							0.998					
1950					24.34					0.19						53.95	1.401					0.176
1951					29.54					0.18					0.036	22.34	3.600					
1952		74.44	0.27		34.93					0.23			25.44	31.41		27.50	5.988					
1953	0.17				29.49					0.19	2.98			30.45		27.01	6.196					
1954	0.25	351.14			32.90					0.17	9.42		0.32	41.97		29.00	6.296					
1955	0.22	960.93			26.52					0.19	33.32		0.87		0.142	26.76	6.810					
1956	0.23	889.95	0.25		32.05					0.22	57.11		0.16		0.238	32.75	7.651					
1957	0.69	998.73	0.44		30.61			1.07		0.39			0.80		0.272	28.08	5.257	0.055			0.072	0.226
1958	0.35	1385.09	0.42		38.61			0.26		0.19			0.34		0.255	47.99	7.423	0.728				0.537
1959	0.31	1321.55	0.35		312.8			0.10	587	0.23			0.29		0.359	36.83	5.636	0.647				0.303
1960	0.19	938.01	0.11		147.3			0.27	196	0.18	10.67		0.17	167.87	61.85	19.60	5.740	0.568				0.573
1961	0.21	290.98			42.62					0.18	12.74		0.29	50.04		5.86	5.686	0.512				0.424
1962	0.32	252.50				641672				0.14				54.69		8.88	8.687					0.422
1963	0.45	146.59			72.18	393539		0.49	25.81	0.10				87.30		14.79	7.747	1.075			0.789	0.633
1964	0.24	198.28		0.57	62.09	214873				0.19					78.91	12.26	2.561				0.118	1.052
1965	0.46	140.95	0.21	0.17	55.66	124229	353.2	0.08		0.14				63.41		13.78	0.992	0.848	0.208	0.172	0.163	0.112
1966			0.12	0.16	52.71	153077				0.08						6.58	0.128	0.447		0.268		
1967			0.082		75.55		35718			0.08						7.30	0.405				0.769	
1968	0.056	36.17	0.073	0.080	55.59	54872	1131	0.07		0.07	2.55	25.76	15.70		49.40	6.68	0.112		0.079	1.059	0.349	
1969	0.066	38.82	0.099	0.082	50.80	53036	1281	0.09	23.10	0.07	31.75	7.66		56.96	46.95	4.73	0.094		0.768	0.306	0.536	
1970	0.038	32.31	0.074	0.096	44.32	48763	1140	0.05		0.05		5.67				4.05	0.071		0.097	0.271	0.097	
1971		37.06	0.072			49037		0.06	677	0.06		6.00			2.82	4.33	0.076		0.230		0.351	
1972	0.18		0.046		75.05	45882		0.04	24.06	0.05		9.18		5.00		3.95	0.061	0.093	0.035		0.033	
1973	0.10		0.039			50535			6.44	0.04		6.94		5.44		4.14	0.071		0.105		0.060	
1974			0.093			46154			5.72	0.04		4.53		4.86		4.80	0.054		0.543		1.073	1.040
1975			0.040	0.032		44192				0.04	0.46			1.49		3.26	0.054		0.047	0.129	0.073	0.046
1976			0.050	0.080	46.12	45554				0.04		1.84	0.014	2.24		3.58	0.057		0.173		0.053	
1977			0.037			36984			2.82	0.04		9.65	0.049			3.62	0.053		0.121		0.100	
1978			0.032	0.016		31838		0.14		0.03		8.16		3.39		3.30						
1979			0.030	0.046		35406		0.03		0.03	0.23	12.40				3.06			0.029		0.032	
1980			0.032	0.036		48449		1	1	1		1	1	1		3.05		1	1		1	
1981			0.015																			
1982								1	1	İ		1	1	1				1	1		İ	
1983										İ											İ	
1984			0.026					<u> </u>														
1985			3.020					†														
1986			0.07																			
1987			0.07																			
1988		-	0.028				-	 	-			 					-		 		<u> </u>	

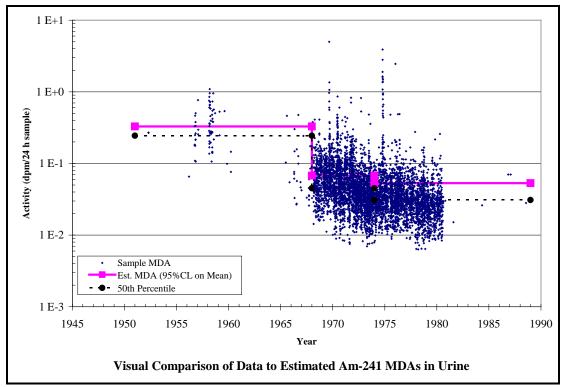


Figure 5A-1. MDA data for americium-241 in urine (part 1 of 3).

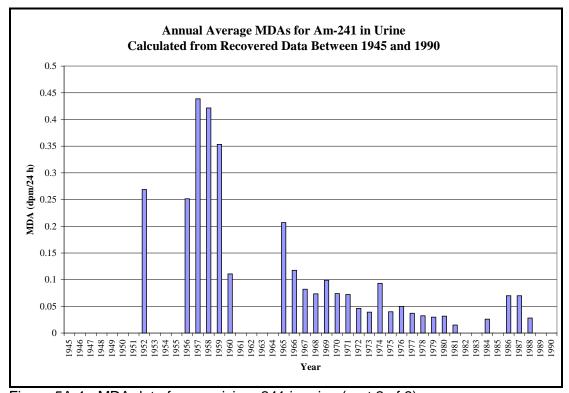


Figure 5A-1. MDA data for americium-241 in urine (part 2 of 3).

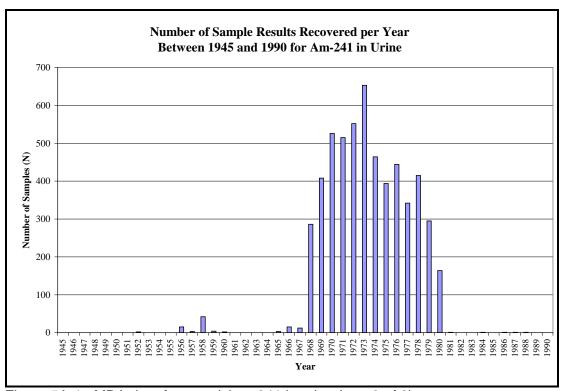


Figure 5A-1. MDA data for americium-241 in urine (part 3 of 3).

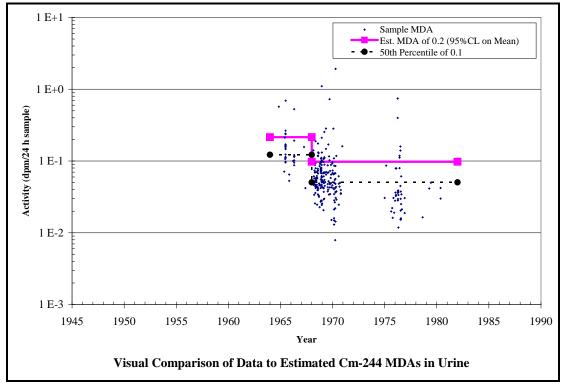


Figure 5A-2. MDA data for curium-244 in urine (part 1 of 3) (some later tables are "in feces").

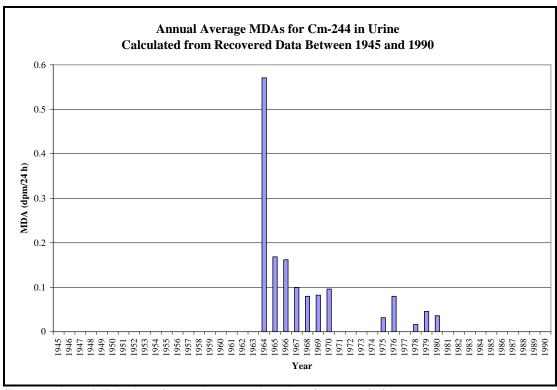


Figure 5A-2. MDA data for curium-244 in urine (part 2 of 3).

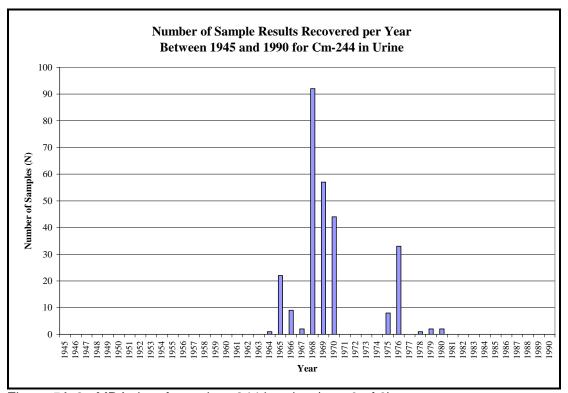


Figure 5A-2. MDA data for curium-244 in urine (part 3 of 3).

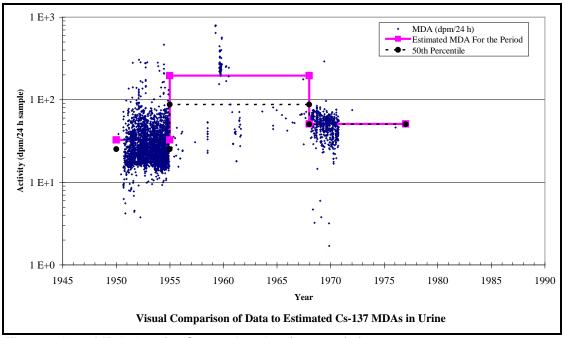


Figure 5A-3. MDA data for Cs-137 in urine (part 1 of 3).

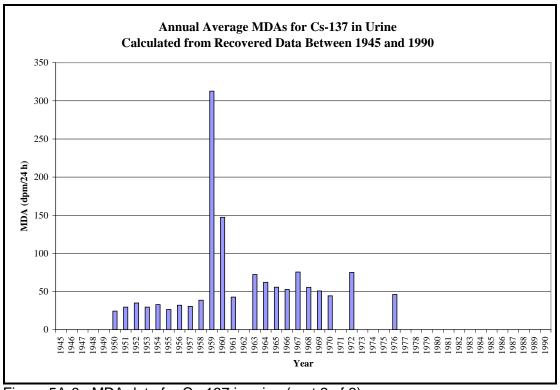


Figure 5A-3. MDA data for Cs-137 in urine (part 2 of 3).

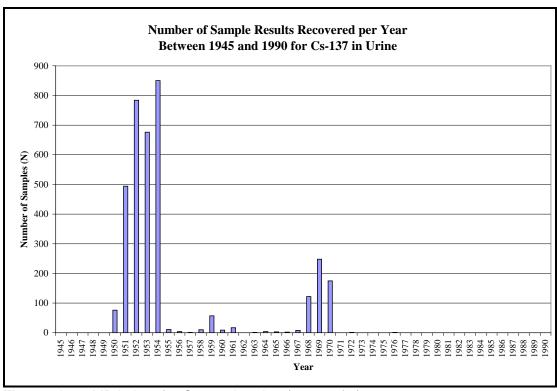


Figure 5A-3. MDA data for Cs-137 in urine (part 3 of 3).

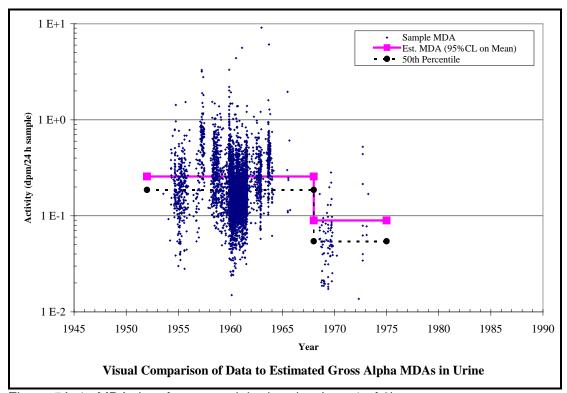


Figure 5A-4. MDA data for gross alpha in urine (part 1 of 3).

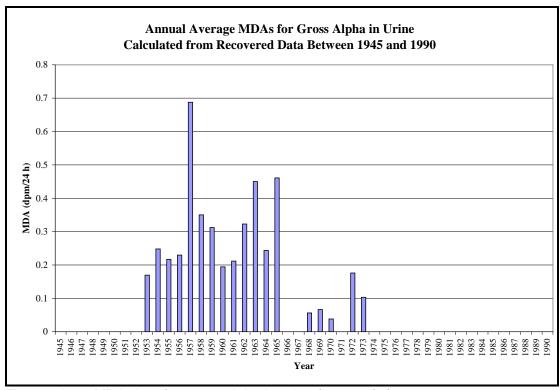


Figure 5A-4. MDA data for gross alpha in urine (part 2 of 3).

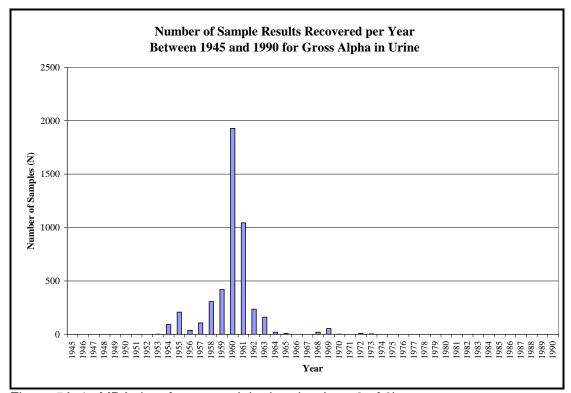


Figure 5A-4. MDA data for gross alpha in urine (part 3 of 3).

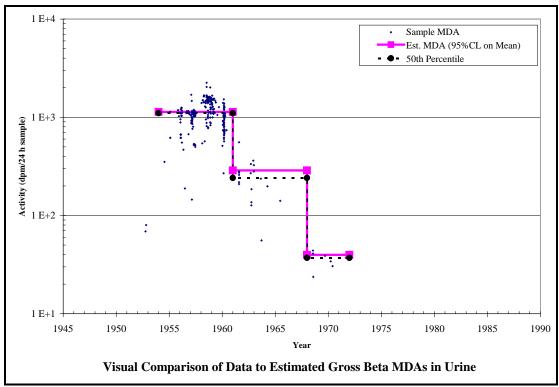


Figure 5A-5. MDA data for gross beta in urine (part 1 of 3).

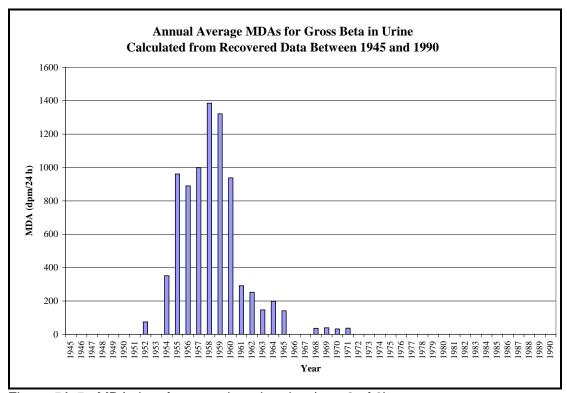


Figure 5A-5. MDA data for gross beta in urine (part 2 of 3).

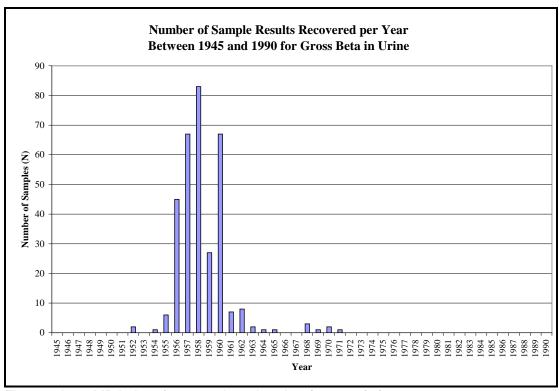


Figure 5A-5. MDA data for gross beta in urine (part 3 of 3).

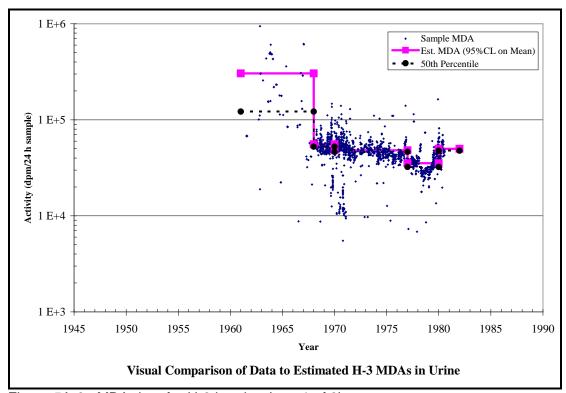


Figure 5A-6. MDA data for H-3 in urine (part 1 of 3).

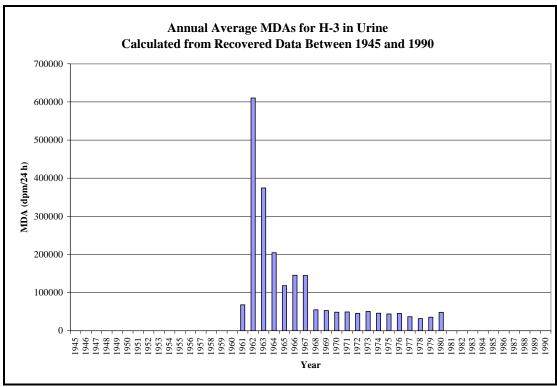


Figure 5A-6. MDA data for H-3 in urine (part 2 of 3).

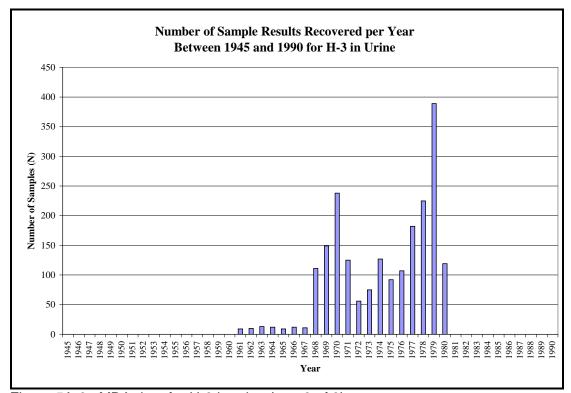


Figure 5A-6. MDA data for H-3 in urine (part 3 of 3).

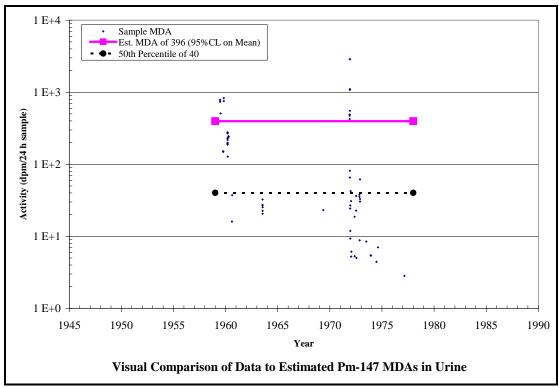


Figure 5A-7. MDA data for Pm-147 in urine (part 1 of 3).

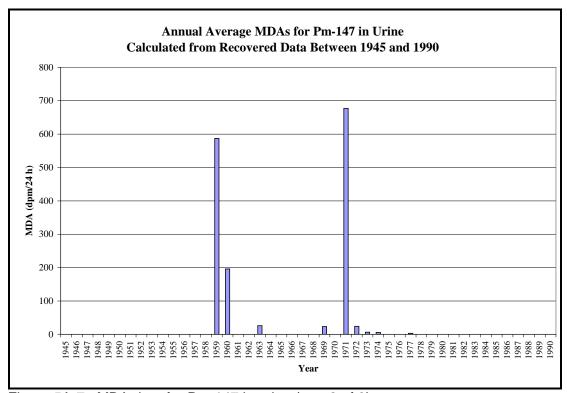


Figure 5A-7. MDA data for Pm-147 in urine (part 2 of 3).

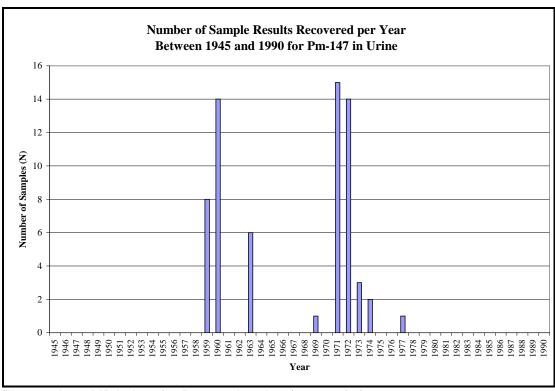


Figure 5A-7. MDA data for Pm-147 in urine (part 3 of 3).

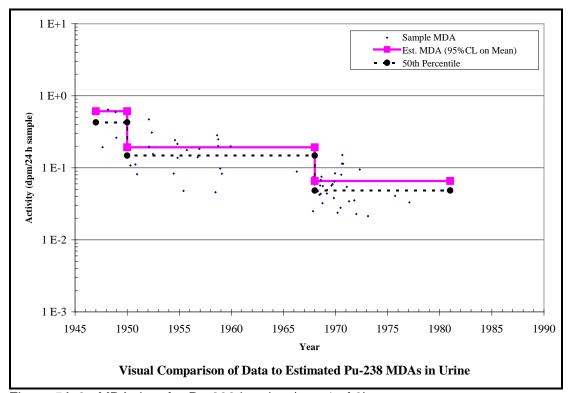


Figure 5A-8. MDA data for Pu-238 in urine (part 1 of 3).

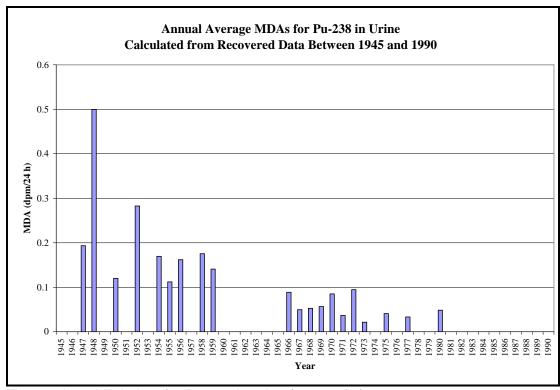


Figure 5A-8. MDA data for Pu-238 in urine (part 2 of 3).

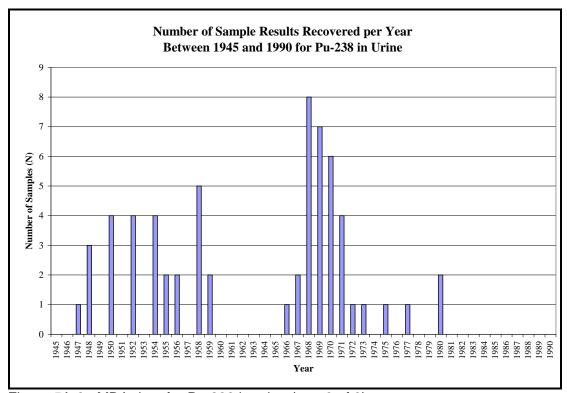


Figure 5A-8. MDA data for Pu-238 in urine (part 3 of 3).

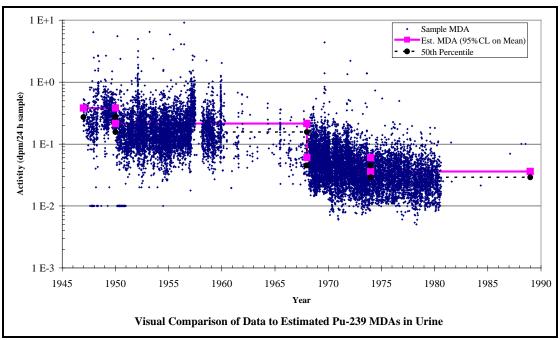


Figure 5A-9. MDA data for Pu-239 in urine (part 1 of 3).

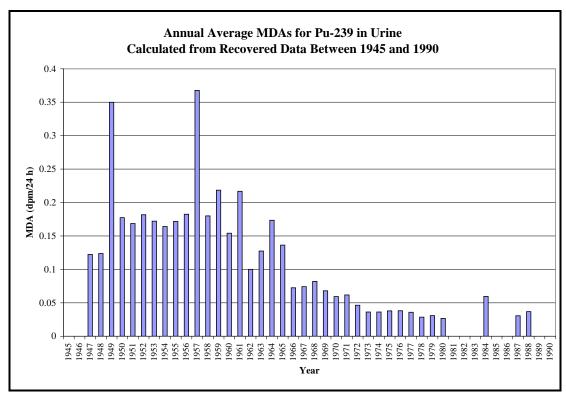


Figure 5A-9. MDA data for Pu-239 in urine (part 2 of 3).

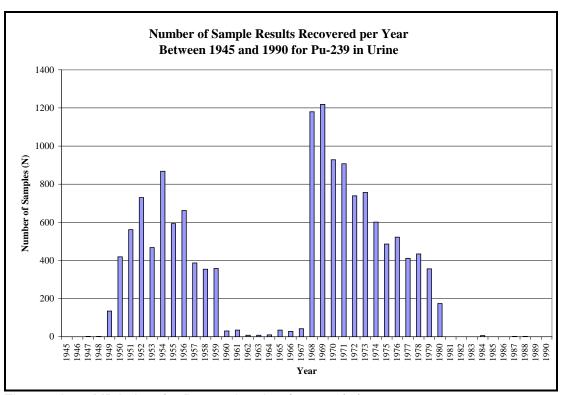


Figure 5A-9. MDA data for Pu-239 in urine (part 3 of 3).

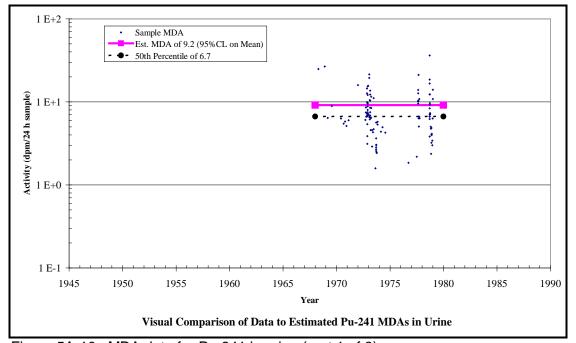


Figure 5A-10. MDA data for Pu-241 in urine (part 1 of 3).

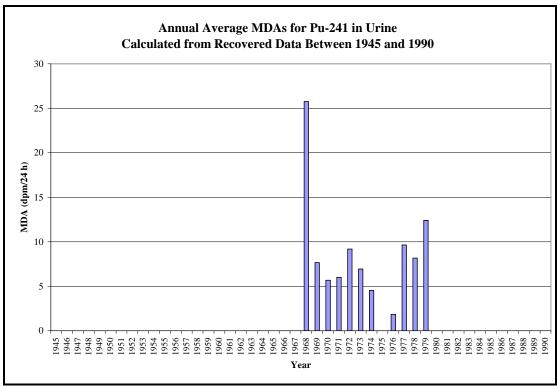


Figure 5A-10. MDA data for Pu-241 in urine (part 2 of 3).



Figure 5A-10. MDA data for Pu-241 in urine (part 3 of 3).

Figure 5A-11. MDA data for rare earths in urine (part 1 of 3).

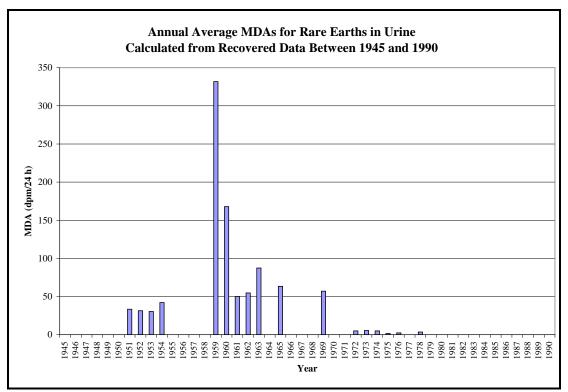


Figure 5A-11. MDA data for rare earths in urine (part 2 of 3).

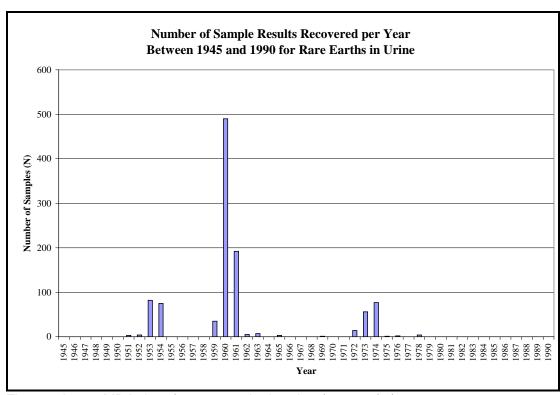


Figure 5A-11. MDA data for rare earths in urine (part 3 of 3).

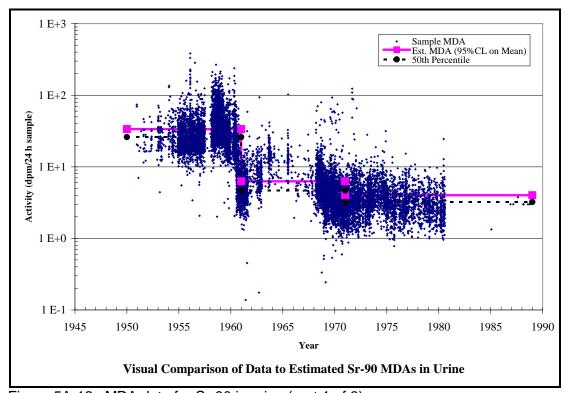


Figure 5A-12. MDA data for Sr-90 in urine (part 1 of 3).

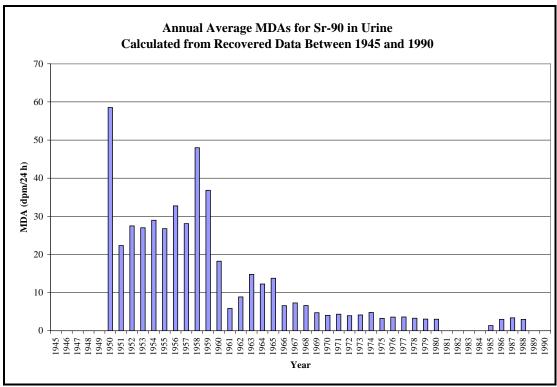


Figure 5A-12. MDA data for Sr-90 in urine (part 2 of 3).

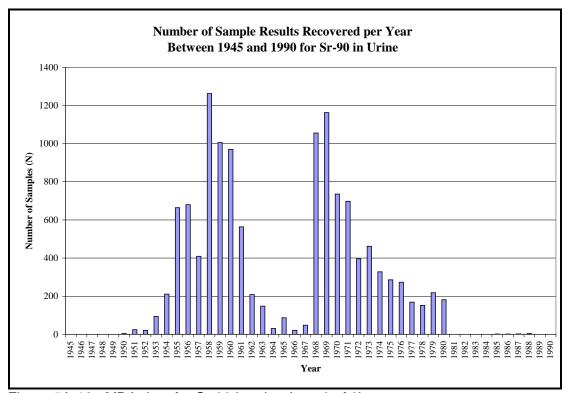


Figure 5A-12. MDA data for Sr-90 in urine (part 3 of 3).

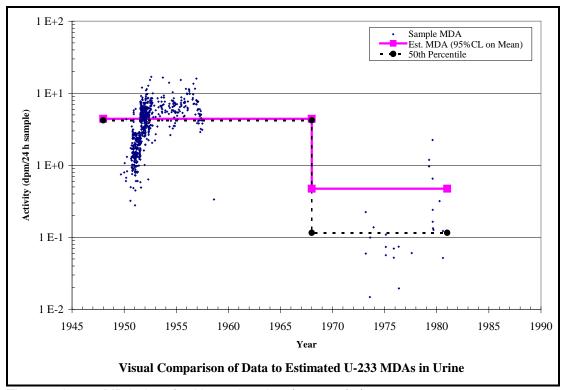


Figure 5A-13. MDA data for U-233 in urine (part 1 of 3).

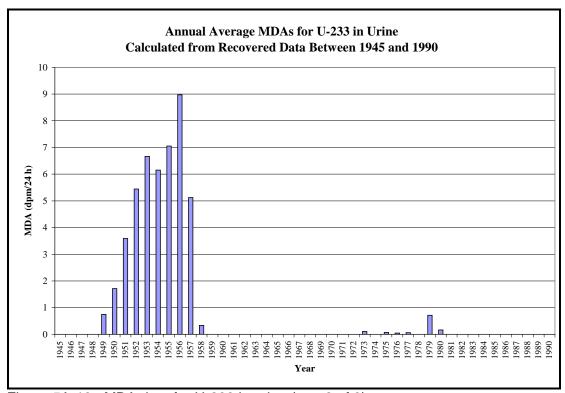


Figure 5A-13. MDA data for U-233 in urine (part 2 of 3).

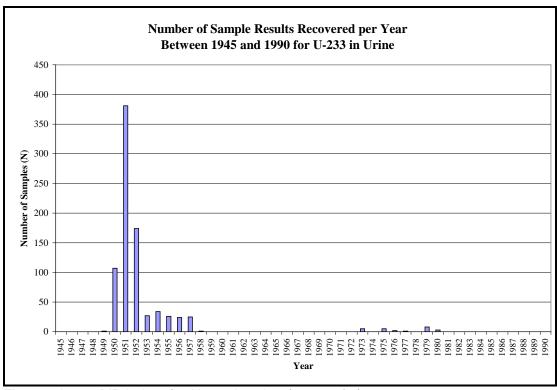


Figure 5A-13. MDA data for U-233 in urine (part 3 of 3).

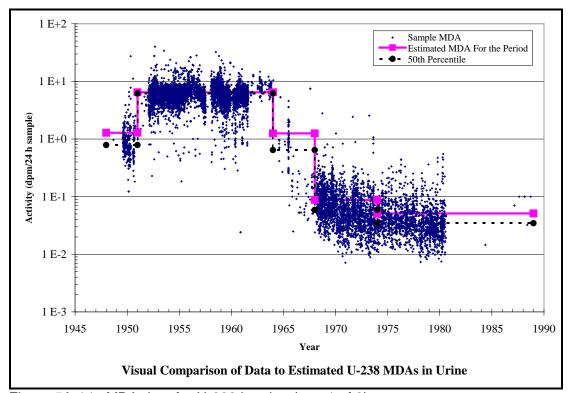


Figure 5A-14. MDA data for U-238 in urine (part 1 of 3).

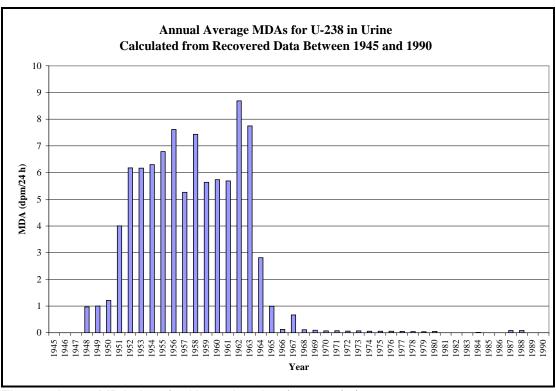


Figure 5A-14. MDA data for U-238 in urine (part 2 of 3).

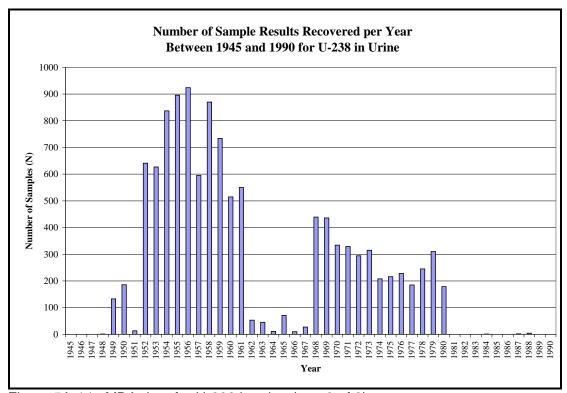


Figure 5A-14. MDA data for U-238 in urine (part 3 of 3).

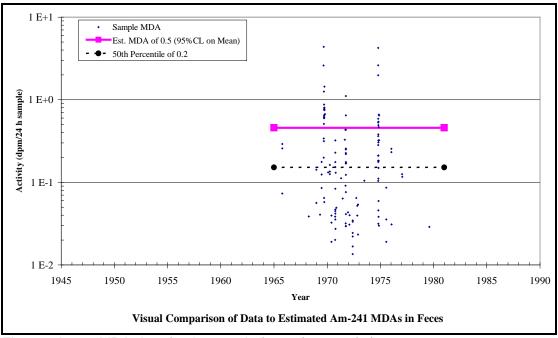


Figure 5A-15. MDA data for Am-241 in feces (part 1 of 3).

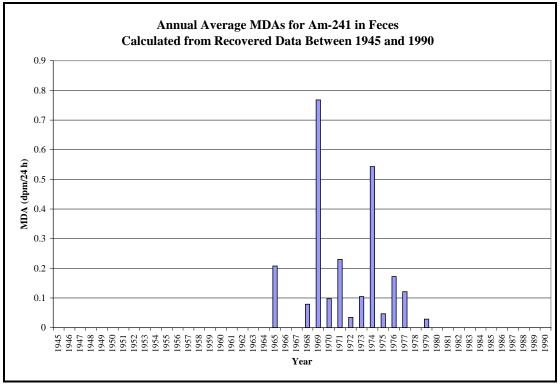


Figure 5A-15. MDA data for Am-241 in feces (part 2 of 3).

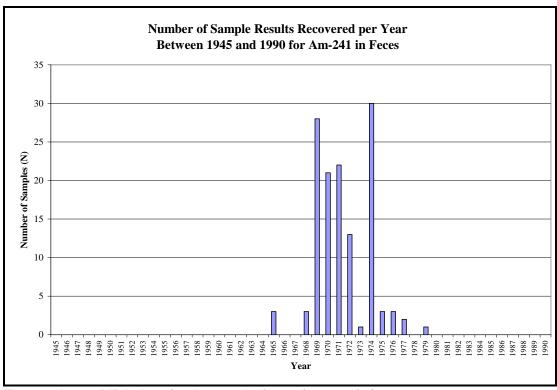


Figure 5A-15. MDA data for Am-241 in feces (part 3 of 3).

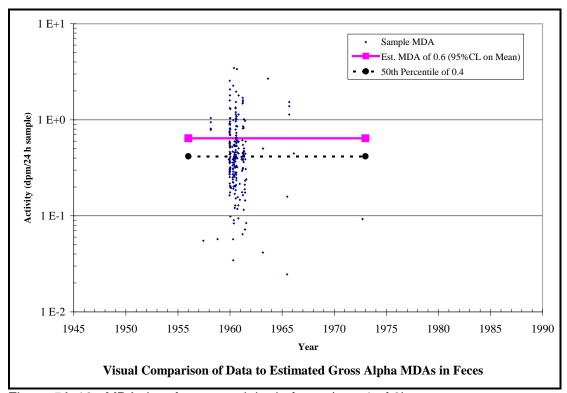


Figure 5A-16. MDA data for gross alpha in feces (part 1 of 3).

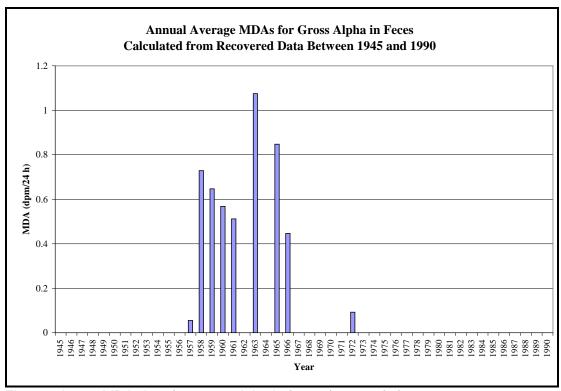


Figure 5A-16. MDA data for gross alpha in feces (part 2 of 3).

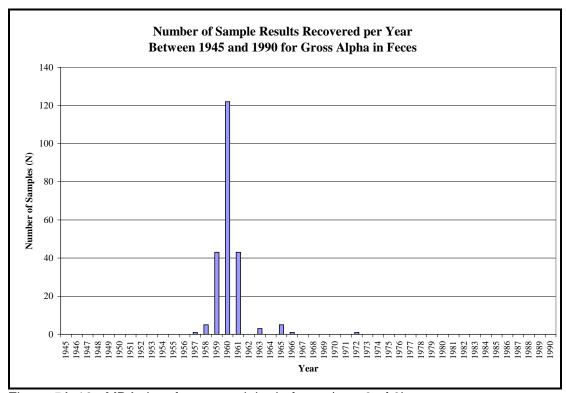


Figure 5A-16. MDA data for gross alpha in feces (part 3 of 3).

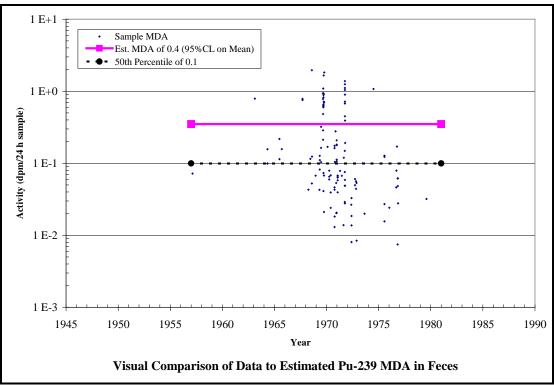


Figure 5A-17. MDA data for Pu-239 in feces (part 1 of 3).

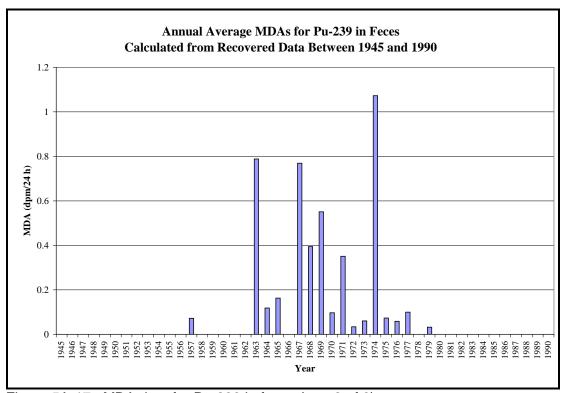


Figure 5A-17. MDA data for Pu-239 in feces (part 2 of 3).

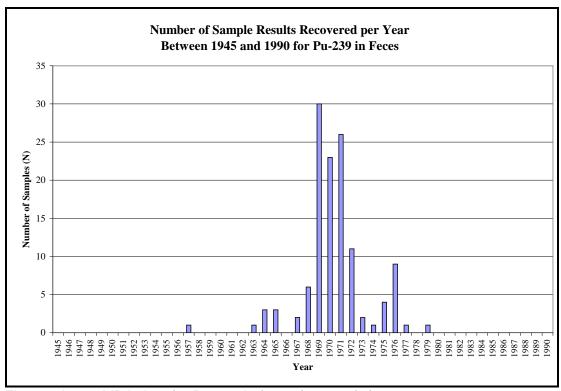


Figure 5A-17. MDA data for Pu-239 in feces (part 3 of 3).

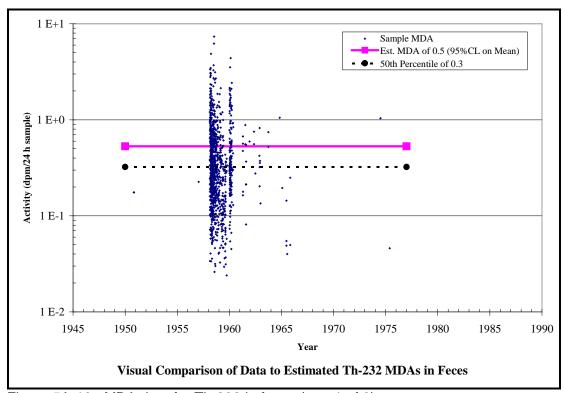


Figure 5A-18. MDA data for Th-232 in feces (part 1 of 3).

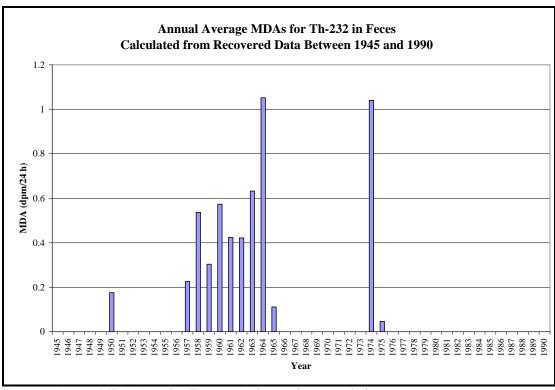


Figure 5A-18. MDA data for Th-232 in feces (part 2 of 3).

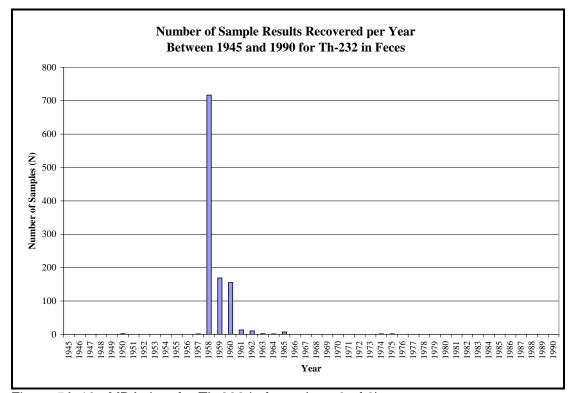


Figure 5A-18. MDA data for Th-232 in feces (part 3 of 3).