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Abstract The porosity and permeability of the caved zone (gob) in a longwall operation 
impact many ventilation and methane control related issues, such as air leakage into the gob, 
the onset of spontaneous combustion, methane and air flow patterns in the gob, and the inter
action of gob gas ventholes with the mining environment. Despite its importance, the gob is 
typically inaccessible for performing direct measurements of porosity and permeability. Thus, 
there has always been debate on the likely values of porosity and permeability of the caved 
zone and how these values can be predicted. This study demonstrates a predictive approach 
that combines fractal scaling in porous medium with principles of fluid flow. The approach 
allows the calculation of porosity and permeability from the size distribution of broken rock 
material in the gob, which can be determined from image analyzes of gob material using the 
theories on a completely fragmented porous medium. The virtual fragmented fractal porous 
medium so generated is exposed to various uniaxial stresses to simulate gob compaction 
and porosity and permeability changes during this process. The results suggest that the gob 
porosity and permeability values can be predicted by this approach and the presented models 
are capable to produce values close to values documented by other researchers. 

List of Symbols 
AG Area of grains, L2
 

A Area of pores, L2
 
P 

AT Total area, L2
 

DF Fragmentation fractal dimension (fractal dimension)
 
DP Pore-area fractal dimension (fractal dimension)
 
DT Tortuosity fractal dimension (fractal dimension)
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f Fracturing probability term (dimensionless) 
h Thickness of the analysis location, L 
k Permeability, L2 

L t Tortuous length, L 
Lo Representative length, L 
s Number of virtual pore-size fractions, number, N 
Ni Number of particles in the ith size class, number, N 
IP Differential pressure, P 
r Similarity coefficient (dimensionless) 
m Weibull modulus (dimensionless) 
Q Total flow rate, L3/t 
V Volume of porous medium, L3 

α Shape factor in H–P equation 
η Pore diameter, L 
ηi Pore diameter of the i th size class, L 

 Porosity of fragmented porous medium, L3φ L−3
p b 

φi Porosity in partial volume in fractal porous media, L3L−3
p b 

L−3φT Total porosity, L3p b , dimensionless 
r Pore coefficient, dimensionless 
μ Viscosity, ML−1t−1 

Qi Particle diameter of the i th size class, L 
Q̄ Average particle diameter, L 
I Hydraulic resistance, L−2 

' Arbitrary cross-sectional area, L2 

A Plastic compressibility index (dimensionless) 
ν(x, y) Fluid velocity perpendicular to x–y-plane, L/t 
ε Surface energy in linear-elastic fracture mechanics, E 
σ0 Tensile strength of the grains, P 
σ̄ Applied macroscopic stress, P 

Permeability conversion factor 1 Darcy = 10−12m2 = 10−8cm2

1 Introduction 

Longwall mining is an underground mining method that can maximize coal production in 
coal beds, which contain few geological discontinuities. In these operations, a mechanical 
shearer progressively mines a large block of coal, called a panel, which is outlined with devel
opment entries or gate roads. As the coal is extracted, the supports automatically advance and 
the roof strata allowed to cave behind the supports (Karacan et al. 2007) creating large-scale 
disturbances of the surrounding rock mass due to fracturing and caving of mine roof behind 
the shields. The caved zone (gob) created by longwall mining could reach 4–11 times the 
thickness of the mining height where overburden rocks are weak and porous. The gob mate
rial is highly fragmented and is broken into irregular shapes of various sizes. The gob can 
contain high void ratios due to fragmented rock pieces and may provide high permeability 
flow paths for any fluid within the zone or flowing from surrounding formations into the 
mining environment. Figure 1 shows example pictures from the caved zones of two Eastern 
Kentucky coal mines. 



Fig. 1 Gob materials photographed in two Eastern Kentucky coal mines (from Pappas and Mark 1993) 

As mining progresses, the gob gradually consolidates sufficiently to support large loads 
resulting from the overburden weight (Pappas and Mark 1993). Consolidation results in a 
reduction in the void ratio (porosity) and the associated permeability. Although reduced to 
some degree due to compaction, prevailing high permeability pathways in the gob still affect 
the leakage of ventilation airflow from the face into the gob, the flow of methane from sur
rounding sources into the gob and into the mine, and the performance of methane extraction 
gob gas ventholes. Thus, an understanding of compaction phenomena and the resultant res
ervoir properties of gob material is very important for developing adequate methane control 
strategies. 
Accuracy of models for predicting methane flow in the vicinity of the longwall face 

and methane control in longwall mines depends on an accurate representation of the gob 
porosity and permeability. Despite the importance of these two reservoir properties, their 
predictions are difficult have been conducted by only a few studies (Brunner 1985; Ren 
et al. 1997; Wendt and Balusu 2002; Esterhuizen and Karacan 2005, 2007; Whittles et al. 
2006; Karacan et al. 2007). This may be due to challenges and unknowns related to the 
gob environment. These challenges are even more difficult due to the inaccessibility of the 
gob environment for conducting direct measurements of porosity and permeability using 
conventional tests. 
This work presents a fractal porous medium model to predict gob porosity and permeabil

ity for controlling methane flow and to predict air leakage into the gob. For this approach, 
the particle size data for simulated gob material given by Pappas and Mark (1993) were used  
to calculate fragmentation fractal dimensions and particle size distributions before and after 
controlled loading tests. The size distributions were scaled up to real dimensions to describe 
the geometry and size of flow channels. Fractal geometry concepts were used to construct 
porosity and flow equations for a completely fragmented porous medium through fragmen
tation, tortuosity, and area fractal dimensions (Karacan and Halleck 2003). The fragmented 
fractal porous medium model was exposed to various uniaxial compressive stresses to simu
late gob compaction and to predict porosity–permeability changes in the gob due to loading. 

2 Experimental Methods to Obtain Gob Material Size Distribution 

In this paper, rock fragment size distribution data were taken from Pappas and Mark (1993). 
They conducted a laboratory study to estimate the gradation of actual gob material, to 
evaluate the stress–strain behavior of simulated gob material using load deformation tests. In 
this paper, the particle size gradation data were further analyzed with the developed models 



to predict porosity and permeability. This section gives a brief description of the laboratory 
tests conducted by Pappas and Mark (1993). 

2.1 Obtaining Rock Particle Gradation Curves for Tests 

Pappas and Mark (1993) conducted laboratory tests on rock materials with properties similar 
to those of actual gob material. The characteristics considered were the tensile and compres
sive rock strengths, rock density, surface roughness, rock shape, rock size, and size gradation. 
Most of these characteristics would be simulated by broken rock obtained from fresh roof 
falls. They reduced the rock size and gradation to a laboratory scale by proportionally shifting 
the particle size distribution curve of the actual gob material determined from pictures taken 
from the headgate entries (Fig. 1) where portions of the gob could be viewed. This shift was 
performed parallel to the horizontal axis of the particle-size curve until the desired maximum 
particle size of the laboratory sample was reached. The detailed procedure for this can be 
found in Pappas and Mark (1993). 

2.2 Load Deformation Tests on Fragmented Rocks 

For load deformation tests on fragmented rock material, a test chamber was built in which 
the simulated gob material was subjected to different loads. The weight of the rock in the test 
chamber was determined by subtracting the weight of the chamber from the total weight. This 
value was used to calculate initial void volume, or porosity, of the simulated gob material. 
Then, the loading on the rock material was increased at a specified rate and load and displace
ment were monitored. The maximum load applied to the simulated gob material increased 
as the test series progressed. 
Pappas and Mark (1993) conducted 20 tests by varying the maximum particle size in the 

simulated gob material and the maximum applied stress. In this paper, the size distributions 
obtained with maximum particle sizes of 5.1 cm (2 inches) for shale and weak sandstone 
were used for modeling and comparison purposes. These tests will be referred to as Test-A 
(shale-maximum size 5.1 cm), Test-B (shale-maximum size 8.9 cm), Test-C (weak sand
stone-maximum size 5.1 cm), and Test-D (weak sandstone-maximum size 8.9 cm). Table 1 
gives the test summary of each simulated gob material. Figures 2 and 3 show particle size 
distributions of shale and weak sandstone before and after loading tests. 

Table 1 Summary of simulated materials (from Pappas and Mark 1993) analyzed in this paper and their 
loading tests 

Test Rock type Maximum size Maximum Initial Porosity @ Porosity @ 
(cm) stress (MPa) porosity 5.4 MPa max. stress 

A Shale 5.1 19.0 0.802 0.365 0.160 

B Shale 8.9 21.3 0.679 0.269 0.078 

C Weak sst 5.1 19.3 0.790 0.313 0.152 

D Weak sst 8.9 21.1 0.719 0.337 0.162 

“sst” in tests C and D stands for “sandstone” 

The data are for four 
tests conducted on two different initial size distributions with different initial maximum sizes. 
Figure 4 shows the stress–strain data obtained during the loading tests. The data 

showed that the stress–strain behavior of simulated materials was non-linear, indicating a 



strain-hardening process during compression. Again, it was observed that the stress–strain 
behavior was not dramatically affected by the rock type. However, it was observed that as 
the maximum size of initial material increased from 5.1 cm to 8.9 cm, the granular medium 
experienced somewhat less compaction at higher stresses. 
In the following sections, particle size distribution data of simulated gob material before 

and after loading tests (Figs. 2 and 3), as well as stress–strain data (Fig. 4), will be used to 
calculate various fractal dimensions of flow channels and rock skeleton. These techniques 
will develop a method for predicting porosity and permeability of a “fractal” gob during 
compaction from overburden stress. 
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Fig. 2 Particle size distribution of shale before and after compressing the simulated gob material in the loading 
chamber 
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Fig. 3 Particle size distribution of weak sandstone before and after compressing the simulated gob material 
in the loading chamber 
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Fig. 4 Stress–strain curves for shale and weak sandstone of different initial particle distributions (Figs. 2 
and 3) subjected to various vertical loadings in the test chamber 

3 Theory and Model Development 

3.1 Fractal Fragmentation 

Fragmentation is a structural failure of a brittle material caused by multiple fractures of 
different lengths (Perfect 1997). The disordered nature of pores and grains in fragmented 
porous medium suggests that the structure created by the fragmentation process shows scal
ing properties (Weiss 2001). Fractal models not only can describe the scaling of mass and 
surface roughness of individual fragments but also the fragment size distributions. 
Fragment size distribution and fragment density may influence the mechanics of fluids 

in the fragmented medium. However, an explicit formulation of the relationship between 
pore texture and the hydraulic properties of the porous media remains a challenge due to the 
complex pore-particle geometry. Yu and Liu (2004) presented fractal analyzes of permeabil
ities for both saturated and unsaturated porous media based on the fractal nature of pores. 
Schlueter et al. (1997) defined the pores of sedimentary rocks from thin sections and scan
ning electron microscope (SEM) images using a perimeter–area relationship. They discussed 
how the pore-area fractal dimensions and the grid sizes used to measure fractal dimensions 
can affect permeability predictions. Hydraulic properties in a fragmented porous medium 
can also be determined either from simple sieve analyzes or from a laser-diffraction anal
ysis of the particles (Karacan and Halleck 2003). Bitelli et al. (1999) and Perfect and Kay 
(1995) used particle size data to calculate the fractal dimensions of different soil samples 
exposed to various operational and weathering conditions using the power law scaling of the 
number–particle size relation given by Turcotte (1986): 

N D(ω > Q) = B F
F Q

− , (1) 

where N is the cumulative number of particles of size ω greater than a characteristic size 
Q, the exponent DF is referred to as the fragmentation fractal dimension and includes the 
information about the scale dependence of the number–size distribution of aggregates, and 
BF is a coefficient related to number of particles of unit diameter. 
The first attempt to directly relate the particle size distribution to a soil water character

istic was made by Arya and Paris (1981). In their model, pore lengths (based on spherical 
particles) were scaled to natural pore lengths using a scaling parameter α with an average 



value of 1.38. This fitting parameter α was derived from least squares regression of the pre
dicted water content to the measured water content and its use was justified by accounting 
for the non-spherical nature of the particles. Tyler and Wheatcraft (1989) interpreted α as the 
fractal dimension of a tortuous pore. Since, then, there has been growing interest in the use 
of fractals to predict hydraulic properties from particle size distributions (Rieu and Sposito 
1991; Tyler and Wheatcraft 1992; Comegna et al. 1988). 

3.2 Model Development for Predicting Permeability in a Fragmented Porous Medium 
Under Successive Compaction 

3.2.1 Flow in Fractal Porous Media 

In this study, the porous medium forming the gob was assumed to have pore sizes that can be 
considered as bundles of capillary tubes of different diameters as suggested by Yu and Cheng 
(2002). If the diameter of a capillary is assumed to be η and its tortuous length along the 
flow direction is Lt (η), then the tortuous length will be longer than its representative length 
Lo, which runs the shortest distance between two points. For a straight capillary, the tortuous 
length equals the representative length. Following Wheatcraft and Tyler (1988) expression 
and scaling approach for flow in a heterogeneous medium, there is a fractal scaling between 
the diameter and length of the capillaries (Yu and Cheng 2002): 

L 1
t (η) = D Dη − T L T

o . (2)

In this equation, DT is the tortuosity fractal dimension, which can take values between 1 
and 2. DT represents the convolutedness of flow channels. When DT is 1, the flow channels 
are straight. The tortuosity increases with increasing values of DT . In the limiting case of 
DT = 2, we have a highly tortuous line that fills a plane (Wheatcraft and Tyler 1988). How
ever, Wheatcraft and Tyler (1988) reported that DT values more than 1.5 do not have any 
physical significance. 
For the bundle of capillaries or flow channels, the number of channels with size η is also 

important. Since channels in a porous medium are analogous to the islands in a sea or spots 
on surfaces, the cumulative size distribution of pores can be written as: 

  D
η P
maxN (L ≥ η) = . (3)
η

In this equation, N is the number of pores whose sizes (η) are greater than a characteristic 
size L and ηmax is the maximum pore size. Equation 3 can be differentiated to give: 

− dN = D DP −(Dη η P 1)
P max

+ d(η). (4)

In Eq. 4, DP is the pore-area fractal dimension (1 < DP < 2). A DP -value of 2 represents 
a regular pore area (circle, square etc.) and the irregularity increases for DP <2. These 
equations describe the scaling relationship of cumulative pore populations. The total number 
of pores from the smallest diameter ηmin to the largest diameter ηmax, thus, can be obtained 
from the Eqs. 3 and 4 as: 



= max 

 D

≥
 

η P

Nt (L ηmin)  . (5)
ηmin 

Dividing Eq. 4 by Eq. 5 obtains an expression for the probability density function: 

dN− 
Nt 

= DD η P −(DP +1)
P η d(η) = f (η)d(η),min  (6)

where 

f (η) = DD P −(DP 
P η ηmin

+1). (7)

The equations above can be used as a model of a capillary tube bundle of any shape. 
In order to characterize a pressure-driven, steady-state flow of a fluid through long, 

straight, and rigid channels of any constant cross-sectional shape, with no-slip boundary con
ditions, the Hagen–Poiseuille (H–P) flow equation can be used. For these flow conditions, the 
Navier-Stokes equation takes the form: 

I2 2 P
(∂x + ∂y )ν(x, y) = . (8)

μL 

H–P flow is often characterized by the hydraulic resistance,Ihyd = IP/Q, in which  IPis 
the pressure drop along the channel and Q is the flow rate. By including the drag and the 
effect of surface area, hydraulic resistance can alternatively be given as I hyd

∗
 = 2μL/A .

In this equation, μ is the dynamic viscosity of the fluid and L is the channel length. For an 
irregular shape on the x–y plane, the cross-sectional area “A” is defined as dxdy. Using 

' 
the same approach,

  
dl is the perimeter of the object. Then, the hydraulic radius can be 

' p 

defined as:  
dxdy

R '
H = (9)

dl
' p 

Figure 5 shows an arbitrary cross section ' with

 
 perimeter ' p in the x- and  y-plane for a 

straight channel placed along the z-axis. In H–P flow, there is a no-slip boundary condition 
at the walls of ' p , and thus the actual hydraulic resistance will depend on the perimeter 
as well as the cross-sectional area. This dependence can therefore be characterized by a 
dimensionless correction factor α for shape: 

Ihyd
α = . (10) 

I∗  
hyd 

The relation between the pressure drop IP , the velocity ν(x, y), and the geometrical cor
rection factor becomes: 

IP = Ihyd Q = αI∗
hyd Q =  αI ν( ,∗

hyd

'

 
dxdy x  y). (11) 

 

If this equation is solved for a circular area (circular pipe) of ', we obtain: 

πIP c η
Qi = , (12)

16αμLt 

where η is the hydraulic diameter and Lt is the total length of the channel. In circular pipes, 
α = 8 and the exponent “c” of the equivalent channel diameter is 4. For some known shapes, 



such as ellipse, rectangle, and triangle, the shape correction factor (α) is given b y Mortensen  
et al. (2005): 

For ellipse:α = 4π 

 
a b + 

 
, (13)

b a 

where a is the half-length of the major axis and b is the half-length of the minor axis. ⎛ −1 
3π γ 2 ∞ γ 2 nπγ  

For rectangular cross sections:α =
 
⎝

n4 − tanh , (14)
8 5n5π π

3

(
2 

n=1, ,5... 

⎞)

where γ is the width-to-height (w/h) ratio of the rectangular channel (Mortensen et

⎠
 al. 2005). 

tanh(x) can be approximated to 1 if x is very large, which can be satisfied if γ is very large 
(slit shaped channels for example). In this case, Eq. 14 becomes: 

12 5π γ 2 

α = , (15)
5π γ − 186ζ(5) 

where ξ (5) results from truncating the summation after fifth iteration in Eq. 14. 
For a triangular cross section: α 

√= 20 3, if it is an equilateral triangle. If the cross section 
is another triangular shape, then: 

√ 
25 40 3 

α = C + , (16)
17 17 

where C = 8(a 
1 

+b+c 2 ) . In this equation, a, b, and c are the side lengths of the J
b 2(a2+ 2+c2 4 4 4) −(a2 +b +c ) 

triangular channel. 
Arya et al. (1999) attempted to determine shape factor “α” and exponent “c” empirically 

using experimental flow data in different soils. As a result of their analysis performed on 
different soil textures and materials (clays, sands, and sandy loams), they found that the 
exponent of diameter “c”, in Eq.12, varied between 2.808 and 4.714. The average of all 
tests indicated that this number is 3.531. For the shape correction factor α, however, they 
determined that the logarithm of α for different textures changed from 2.759 to 6.742, with 
an average of 5.507 (Arya et al. 1999). In this paper, the average diameter exponent, from 
Arya et al.’s study (3.531), will be used in the H–P equation (Eq. 12) to describe flow in 
single channels. The variable “α”, will be retained in the equation to run parametric analyzes 
related to channel shape. 
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Fig. 5 An arbitrary cross section of a pore with cross sectional area ' and perimeter ' p 



 

  

  

 

  

η3.531π IP 
Qi (η) = (17)

16 Lt (η)α μ 

If the total flow rate is calculated for each channel between the minimum and maximum sizes 
over the entire range of pore sizes, Eqs. 4 and 17 can be integrated to give the total flow rate: 

ηmax 

QT = −  Qi (η)dN (η) 

ηmin   
L−DT 2.531+DT −DPπ IP o DP 2.531−DT 

ηmin = η 1 − . (18)max16 μ α 2.531 + DT − DP ηmax 

Equation 18 honor the properties of H–P equation, where the streamlines are formed by indi
vidual particle sizes that create tortuous pores of a particular dimension and shape and those 
they do not really mix. Combining Eq. 18 with Darcy’s Law: 

k AT IP 
QT = , (19)

μLo 

where k is the permeability and AT is the total area to flow, yields the definition of per
meability for a porous medium composed of tortuous channels of varying diameters and 
shapes:   

L1−DT 2.531+DT −Dpπ o DP 2.531+DT 
ηmink = η 1 − . (20) max16AT α 2.531 + DT − DP ηmax 

Although Eq. 20 is a description of permeability in a general porous medium, the structural 
parameters embedded in AT , for example, need to be defined. 

3.2.2 Establishing Total Area “AT ” for Flow and Porosity for Completely Fragmented 
Porous Media 

Total area of flow is the combination of areas for both pores and the rock surface exposed 
to the flow. This area gives the superficial velocity in the porous medium. If only the areas 
of pores are taken account, this will be the interstitial velocity, which is the average velocity 
in the actual pores or channels of the medium. Since, the gob material in the caved zone is 
highly fragmented and the total channel area is the same as the effective porosity where the 
flow occurs, total channel area (AP ) is used for AT . In order to determine the value of AP , the  
areas of individual flow channels can be summed mathematically as (Rieu and Sposito 1991): 

N 

AT = AP = APi . (21) 
i=1 

In Eq. 21, APi is the pore area fractions. 
Tyler and Wheatcraft (1989) conceptualized the flow channels as tubes in a close-packed 

arrangement of grains and expressed the pore-size/grain-size relation with the following equa
tion by replacing the scaling term α, in the Arya and Paris model (1981), by the tortuosity 
fractal dimension: 

1/22 
φi N 1−DTηi = Qi i . (22)
3 



In this equation, Ni is the number of particles of a certain size (Qi ) lining up to create the 
tortuous channel with diameter ηi and tortuosity fractal dimension DT . In Eq.22 , φi is the 
partial porosity in each particle size class. The summation of partial porosities gives the total 
(or effective) porosity of the fragmented porous medium φT (Rieu and Sposito 1991). 
When Eq. 22 is inserted into Eq. 21, the total area is obtained in terms of particle size and 

partial porosities: 

s 
 

2  πQ 1 DA = A = i φ T 
T p i Ni

−
 

. (23)
6 

i=1
Rieu and Sposito (1991) defined the virtual pore-size fraction concept for porosity. If a fractal 
porous medium, whose porosity results from a broad range of pore sizes, decreasing in mean 
diameter from ηo to ηs 1(s ≥ 1), is divided into “s” virtual pore-size fractions, then the total −
porosity is the summation of all partial porosities. Since the pores are assumed to be formed 
in a packing arrangement of the grains and the relation of ηi (mean pore diameter in the ith 
virtual pore-size fraction) with Qi is given by Eq. 22, then the number of pore-size classes 
can assumed to be equal to the number of particle size classes. 
By using the virtual pore-size fraction concept and introducing the pore coefficient r, the 

ratio of successive increments of pore volume to the corresponding partial volumes, partial 
porosity can be written as (Rieu and Sposito 1991): 

φi = 1 − (1 − sr) −i (24) 

Pore coefficient r is closely related to the fractal dimension DF as: 

3−Dr = 1 − r F (r < 1, r < 1), (25) 

where “r” is a similarity ratio that scales the pore sizes in a fractal porous medium. Using 
these relations, the porosity of a completely fragmented porous medium is given as: 

φ = 1 − 3−DF s(r ) . (26) 

This equation, in terms of particle sizes, gives total porosity as: 

φT = 1 − 

 3
Q

 −DF
min 

, (27)
Qmax 

where DF is the fragmentation fractal dimension that can be determined from the slope of 
the best linear fit to the number–size relation given in Eq. 1. 

3.2.3 Plastic Reduction in Porosity with Applied Stress Increment in Uniaxial Compression 

In the caved zone of longwall gobs, the degree of compaction is a function of initial porosity 
and strength of the rock fragments. The initial porosity varies with the shape of rock frag
ments, their sizes, and size distribution (Yavuz 2004). As compression increases, the broken 
material will stiffen due to the densely compacted material and a reduction in porosity in 
the caved zone will result by further crushing or fragmentation of the initial rock pieces. 
Crushing is accompanied by changes in particle size distribution, which can be measured by 
various methods, such as sieving or laser-light scattering (McDowell et al. 1996). 
Using the principles of grain crushing and a particle size distribution modeled as a self-sim

ilar pattern, the plastic reduction in porosity with a one-dimensional applied stress increment 
is given by (McDowell et al. 1996): 



m( 	 (1−D1−D F )F ) ε m(DF −1)
d 2φT = − 1β f 2 (2 DF )mσ σ 2 

0
− dσ (28)

(1 − κ)σQ¯	 max 
− ¯ ¯

In this equation, DF is the fragmentation fractal dimension defined by Eq. 1, ε is the surface 
energy in linear-elastic fracture mechanics (Griffith 1920), m is the Weibull modulus based 
on the observations that particle-survival probability follows a Weibull distribution, σ0 is 
the tensile strength of the grains, σ̄ is the applied macroscopic stress, and f is fracturing 
probability term (McDowell et al. 1996). This equation can be written in a more compact 
form by separating it into the plastic compressibility index (A) and stress increment (d σ̄ ) 
terms: 

m(D 1= − ¯ F − )

d 2φT Aσ 2 − d σ ,¯ 	  (29) 

where A is defined as: 

− ε m(1 D(1 D −  )F ) F

A = β f 2 2 (2 DF )mσ . (30) 
(1 max

−− κ)σQ¯	 0
 

Equation 29 can be integrated, assuming A is constant at each stress level, between two 
successive stress increments (i to i + 1) to obtain: 

	  ⎡
m(D 1F − ) − m(D1 F 

2 2 
−1)

1

¯ 1 
	 σ

−
 − ⎢ i

φTi φTi = −A  m
+ σ1 

)

¯  

⎤
 

 − i
(

⎥
 .(D 1 m D 1)  (31)+ F − −1 F − −12 2 

In order to solve Eqs. 28–31, the plastic

⎣
 compressibility index (A) should

⎦
 be defined by using 

either substituting typical values of physical parameters in Eq. 30 or a typical value of 0.1 for 
sands and clays (McDowell et al. 1996). 

4 Results and Discussion 

4.1 Description of Fractal Model Parameters and their Calculations 

In order to predict gob porosity and permeability under increasing compressive stresses, 
Eqs. 20, 23 and 27 (Eqs. 28–31 for porosity change under compression) should be evaluated. 
In effect, Eqs. 28–31 evaluate the change in porosity as a function of increasing vertical 
stress and fragmentation fractal dimension. The new porosity replaces the porosity term (φi ) 
in Eq. 23 to modify the flow area (AT ). Finally, the updated flow area is inserted into Eq. 20 
to estimate the permeability at a particular stress and fragmentation level. 
The general solution procedure stated above requires determination of these parameters: 

•	 Representative length (Lo) 
•	 Maximum and minimum particle dimensions, Qmin and Qmax , in the range(s) that shows 

fractal behavior. 
•	 Weibull modulus (m) 
•	 Pore, tortuosity, and fragmentation fractal dimensions, DP , DT , and DF , respectively. 
•	 Virtual pore-size classes (s) 
•	 Pore coefficient (r) and similarity ratio (r). 
•	 Minimum and maximum pore (channel) diameters, ηmin and ηmax . 

Weibull modulus (m) is a measure of the variability in strength of the material. It increases 
with decreasing the variability in strength in the particle. For chalk, brick, stone, and cement, 



m is between 1 and 5 (McDowell et al. 1996). Similar values would be expected for carbon
ates. As “m” decreases, the impurities or structural variabilities in the grains increase and 
the strength of the material decreases. Thus, a low m-value around 2 should be expected for 
natural materials. 
Most flow occurs in the horizontal directions within the gob due to the pressure differ

entials between points in the gob and the nearest gateroad or longwall face. Representative 
length (Lo) thus is defined as the shortest distance between two points, where there is a 
pressure differential that drives the flow. These two points may be on either side of the mea
surement interval within the gob or from a point in the gob to the gateroads. According to 
Eq. 2, when there is no convoluteness (DT = 1), the length of a straight channel is equal to 
the representative length in any flow direction. Therefore, the representative lengths change 
based on the location of the evaluation points in the gob. In this paper, Lo was taken as 10 m. 
The porosity and permeability values are representative of 10 m long segments in the flow 
direction, experiencing an average macroscopic stress of σ̄ . 
Fragmentation fractal dimension (DF ) must be <3  (Kozak et al. 1996) in order for 

the probability of grain fragmentation to be <1 (Comegna et al. 1988). A fractal dimen
sion between 0 and 3 reflects a population dominated by relatively larger particles and by 
a distribution dominated by smaller particles (Turcotte 1986) as the value approaches 3. 
It has also been reported that confinement under compression impacts fractal dimension 
with lower fractal dimensions caused by relatively unconfined conditions and higher frac
tal dimensions approaching 3 resulting from extensive grinding caused by high confine
ment. 
In the study of Pappas and Mark (1993), the particle-size data was reported as a dis

tribution of mass percent of total particles passing through a certain sieve size (Figs. 2 
and 3), rather than the actual number of particles. Therefore, initial mass was calculated 
using volume of the test chamber and assuming a constant rock density of 2.3 g/cc for 
shale and 2.5 g/cc for sandstone. From this data, the number of particles in each size 
class (sieve size) was calculated by assuming that the particles are spherical in shape. 
Example linear fits to the number–size data are given in Fig. 6 (for tests A and B, before 
loading and after loading). These data show that fragmentation fractal dimensions have 
increased after the loading tests indicating the presence of a finer particle size produced during 
crushing. 
The cumulative number versus particle size relation (Fig. 6), which is used to determine 

DF can also be used to find the maximum and minimum particle size (Hunt and Gee 2001). 
Maximum and minimum particle diameters (Qmin and Qmax) are approximately the limits of 
the linearity in the number–size relation. However, it should be noted that there is a deviation 
from linearity in Fig. 6 (minimally in A and more in B before loading). This may be related 
due to multi-fractal distribution of rock particle size classes before loading. In this case, 
a piecewise analysis of the data is a possibility. However, toward larger particle diameters 
where a large portion of porosity may reside, the slope becomes >3, which physically is not 
possible. Thus, in order not to exclude that porosity in the initial material, it was assumed 
that linearity in the log–log behavior in Fig. 6 is maintained for all cases through the entire 
range of particle sizes. 
The fragmentation fractal dimensions and maximum and minimum particle sizes before 

and after loading tests are listed in Table 2. This table shows that after loading, fragmenta
tion fractal dimensions of the initial particle size distributions have increased indicating the 
shift in maximum and minimum particles sizes created during crushing, as shown in Figs. 2 
and 3. 



The number of virtual pore-size classes “s” is equal to the number of different particle size 
fractions that are within the data set where fractal scaling is observed. Since a linear trend 
is accepted between all particle size classes (Fig. 6), the number of particle size classes used 
will be the same as the virtual pore-size fractions (Table 2). 

Fig. 6 Log–log plots for 
number–particle size data (Eq. 1) 
for Tests A and B before and after 
loading. DF’s for Test A—before 
compaction and after compaction 
are 2.19 and 2.89, respectively. 
DF’s for Test B—before 
compaction and after compaction 
is 2.25 and 2.91, respectively 
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Table 2 Results of DF and maximum (Qmax) and minimum (Qmin) particle sizes determined before and 
after loading tests using number–size relationship 

Test Before loading After loading 
s DF Qmin(cm) Qmax (cm) s DF Qmin (cm) Qmax (cm) 

A 9 2.19 1.5 5.1 10 2.89 0.5 5.1 

B 10 2.25 1.7 8.9 10 2.91 0.6 8.9 

C 9 2.19 1.5 5.1 10 2.81 0.4 5.1 

D 10 2.25 1.7 8.9 10 2.87 0.8 8.9 

The pore coefficient r, which is 
the ratio of successive increments of pore volume to the corresponding partial volumes and 
the similarity ratio r that scales the pore sizes in a fractal porous medium can be calculated 
using Eqs. 25 and 26. 
Fractal dimension of the one-dimensional trace of pore channel (DT ), or tortuosity fractal 

dimension, describes how the pores are convoluted in relation to Lo. However, it is not always 
easy to determine the tortuosity of a channel to find its fractal dimension. In this study, the 
“slit-island” theorem of Mandelbrot et al. (1994) was used to determine DT , since there is 



really no practical means of measuring this parameter. Mandelbrot et al. (1994) proposed 
that “the difference between an object’s fractal dimension and its topological (or Euclidean) 
dimension could be described as the fractal increment or FI.” They further suggested that this 
fractal increment could be used to estimate the fractal dimension of lower-order topological 
units. For example, a line drawn on a fractal surface will have the same FI as the surface. If 
the fractal dimension of the surface is 2.5 and its FI is 0.5 (2.5 − 2.0 = 0.5), then the fractal 
dimension of a line drawn across this surface will be 1.5 (1.0 + 0.5 = 1.5). This approach 
has been used in the literature (Sammis and Steacy 1995) to estimate the fractal dimension 
of lower-order geometries. 
In order to apply the slit-island theorem to estimate the tortuosity fractal dimension (DT ) 

in the crushed material, the fractal increment values reported by various researchers on dif
ferent type of soil and porous rocks were evaluated. Jacquin and Adler (1988) observed 
fractal increments of 0.23 in pore structures of dolomitic limestone. Tyler and Wheatcraft 
(1989) reported fractal increments between 0.14 and 0.43, with an average of 0.23, when 
obtained from soil particle size data. Karacan and Halleck (2003) determined that an average 
DT increment of 0.29 for incompletely fragmented porous media by shock waves. These 
increments can be used to calculate DT values of 1.23 and 1.29 from these references for 
highly compacted and incompletely fragmented porous media, respectively. The average of 
these two values (1.26) will be taken as the representative value for the compacted gob. For 
the initial gob material, 1.10 will be used as the average of DT . This value is based on the 
averages calculated by Wheatcraft and Tyler (1988) as 1.08 using Monte-Carlo simulations, 
values reported by Yu and Cheng (2002), and Yu and Liu (2004) for pores in 52% poros
ity medium between 1.10 and 1.12. These values have physical sense, since compaction or 
incomplete fragmentation compared to complete fragmentation increases the tortuosity of 
pore channels. 
If the pore area represents a smooth object (circle, square, triangle etc.) covering the whole 

area, then DP can be taken as 2. If the pores are irregular in shape and distribution, then their 
area-fractal dimension will be less than 2 (Ahmed and Drzymala 2005). In case of irregular 
pore shapes and distributions, slit-island theorem can be used by employing the DF val
ues (Table 2) obtained in this study. Since particle size distribution is a 3-dimensional entity 
(Tyler and Wheatcraft 1989), its Euclidean dimension is 3. Then, the calculated increments 
(DF − 3) are added to the Euclidean dimension for area to obtain DP . The calculated values 
are less than 2 (Table 3). 
Tortuosity (DT ) and pore-area (DP ) fractal dimensions for straight and regular pores as 

well as the values determined using the above approaches for the convoluted and irregular 
pores are given in Table 3. These values will be used in model calculations later in this paper. 

4.2 Up-Scaling Particle Sizes used in Experiments to Actual Gob Material 

Pappas and Mark (1993) simulated the gob material to determine the tensile and compressive 
rock strengths, rock density, surface roughness, and rock shape. However, they scaled down 
the grain-size distribution curves for determining the stress–strain properties of granular 
materials representing a gob. The ratio of scaling between actual and laboratory gob material 
was approximately 10. 
In order to calculate porosity and permeability using actual gob-material sizes and their 

distributions, the gradation curves (Figs. 2 and 3) were up-scaled by 10 times to their original 
sizes. Up-scaling, in effect, changes particle sizes and eventually the channel sizes that will 
be calculated based on particle size. However, as long as the gradation curve is held con
stant, up-scaling does not change the fragmentation fractal dimensions since this will not 



change the slope. Thus, the fractal dimensions reported in Tables 2 and 3 will still be valid. 
Table 4 shows the up-scaled maximum and minimum particle sizes under the assumption of 
scale-invariant fragmentation. 

Table 3 DT and DP values determined for the tortuous and irregular flow channels and straight and smooth 
channels 

Test DT (straight) DT (tortuous) DP(uniform) DP(irregular) 

Before loading 

A 1 

B 1 

C 1 

D 1 

After loading 

A 1 

B 1 

C 1 

D 1 

1.10 

1.10 

1.10 

1.10 

1.26 

1.26 

1.26 

1.26 

2 1.19 

2 1.25 

2 1.19 

2 1.25 

2 1.89 

2 1.91 

2 1.81 

2 1.87 

Table 4 Up-scaled particle sizes 
for different tests before and after 
loading 

Before loading 
Test Qmin (cm) 

A  15  

B  17  

C  15  

D  17  

After loading 
Qmax (cm) Test Qmin (cm) Qmax (cm) 

51  A  5.0  51  

89  B  6.0  89  

51  C  4.0  51  

89  D  8.0  89  

4.3 Porosity of Initial and Compacted Gob Material 

4.3.1 Calculation of Porosity Reduction from Stress–Strain Behavior and from Fractal 
Model (Eq.27) Before and After Compaction 

Before calculating the porosities using particle size distributions and the theory described 
in Sect. 3, porosities that should be experienced in the gob were calculated using the exper
imental stress–strain curve (Fig. 4) and the initial porosities given in Table 1. The results of 
this calculation are shown in Fig. 7. 
The porosity evaluation during uniaxial compression of simulated gob material shows that 

at earlier loadings, the material could be compressed more when compared to later stages as 
also suggested by their stress–strain behavior. At around a stress level of 19 MPa (2,750 psi), 
the final porosities were roughly 10% for Test B, and 19–20% for the other tests. These 
numbers are close to the final porosities given in Table 1. It should be noted that the final 
values reported in Table 1 were obtained at higher stress levels. Thus, a difference of 3–4% 
between the values given in Fig. 7 and the values in Table 1 can be considered close for this 
analysis. As an inner check point, the porosity values reported for 5.4 MPa (800 psi) were 
compared with the corresponding data shown in Fig. 8. These values are also within 1–2% of 



each other. Thus, the data of Fig. 7 will be used to compare with the porosity values calculated 
using fractal models (Eq. 24–31). 

Fig. 7 Porosities calculated for 0.90 
compacting gob materials under 
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Fig. 8 Porosities predicted for compacting gob materials using Eqs. 28– 31 

Initial and final porosities before and after compaction can also be calculated using frac
tal model (Eq. 27) and the particle size distributions of fragmented material. The porosity 
values obtained using Eq. 27 and the values determined in the laboratory before loading 
are compared in Table 5. The pore coefficients r and similarity values r calculated using 
Eq. 25 and 26, respectively, for the initial gob material are also given in Table 5. The porosity 
predictions given in this table are usually within 15% compared to laboratory measurements. 
This difference can be attributed to the nature of independent measurements and calcula
tions. 
Table 5 also shows the pore coefficients r and similarity values r calculated by using 

predicted porosity values in Eqs. 25 and 26. The values of these two numbers should be <1. 
The pore coefficient r in a fractal porous medium can be interpreted as the partial porosity 
contributed to each partial volume by pores of a certain size. Similarity number r, on the  
other hand, is a linear similarity ratio that relates successive pore sizes by their particle sizes 
(Rieu and Sposito 1991). Thus, having close and high r-values indicate close scaling relations 
between each pore and size class. 



Table 5 Comparison of porosities determined in the laboratory with the predictions using Eq. 27 for before-
loading cases 

Test Porosity-ØL -(laboratory) Porosity-ØP -(Predicted) (Eq. 27) rØp (Eq. 26) rØp (Eq. 25) 

A 0.802 0.629 0.873 0.104 

B 0.679 0.711 0.847 0.117 

C 0.790 0.629 0.873 0.104 

D 0.719 0.711 0.847 0.117 

The pore coefficients, r, and similarity ratios, r, for a fractal porous medium for both sets of porosity values 
are also given 

Table 6 The porosities, pore coefficients, r, and similarity ratios, r, for a fractal porous medium, calculated 
using the crushed material size distribution data obtained after loading 

Test Porosity @ 
max. stress 

Final porosity 
from strain 

Porosity -ØP
(Predicted) 

rØp (Eq. 26) rØp (Eq. 25) 

(Table 1) (Fig. 7) (Eq. 27) 

A 0.160 0.19 0.225 0.793 0.025 

B 0.078 0.09 0.216 0.764 0.024 

C 0.152 0.19 0.383 0.775 0.047 

D 0.162 0.19 0.269 0.786 0.031 

The porosities of simulated gob material after loading tests were also calculated by using 
the particle size distributions data after the tests and the fractal model given in Eq. 27. For  
these calculations, lower bounds of the particle diameters after loading, where linear number– 
size relations were observed, were determined as 0.5, 0.6, 0.4, and 0.8 cm (5, 6, 4, and 8 cm 
for up-scaled diameters) for tests A, B, C, and D, respectively. The porosity values obtained 
using fractal fragmentation data in Eq. 27 and the porosities determined in the laboratory 
after loading tests and using the strain data are compared in Table 6. The pore coefficients r 
and similarity r -values calculated using Eq. 25 and 26, respectively, are also given in Table 6. 
This table shows that predicted porosities after loading are lower than the calculated initial 
porosities (Table 5) due to crushing of grains. The comparison of predicted porosities in 
Table 6 with the values calculated using strain data (Fig. 7) and with the reported porosities 
at maximum stress show that the values calculated using non-fractal methods are somewhat 
lower compared to the predicted ones. 

4.3.2 Predicting Compaction “Path” of Gob Material and Evolving Porosities Using 
Fractal Crushing Model 

Progressively increasing stresses during mining compacts the initial gob material until it can 
fully support the weight of the overburden. This stress reestablishment happens at a certain 
distance from the longwall face. During the stress reestablishment period, the reservoir prop
erties of the gob material continue changing as a result of compaction and crushing under 
increasing stress. In this section, the application and the results of the fractal crushing method 
introduced in Sect. 3 are discussed for its potential to model gob compaction. 
Porosities were calculated using fractal compression and crushing models presented in 

Eqs. 28–31. The results of these calculations are shown in Fig. 8. In the calculations using these 
equations, the plastic compressibility index A was taken as 0.1 as suggested by McDowell et 



al. (1996). The Weibull modulus m, on the other hand, was taken as 2.0, considering the fact 
that shale and weak sandstone are natural materials with many defects to lead to their high 
probability of fragmentation. The initial porosities plotted in Fig. 8 are the predicted initial 
porosities given in Table 5. 
Figure 8 shows that as stress increases, the predicted porosities using the fractal model 

(Eqs. 28–31) decrease in a manner similar to Fig. 7. Also, considering the use of predicted 
initial porosities given in Table 5 and the use of Weibull and plastic compression constants 
together with the fragmentation fractal dimensions given in Table 2 for the initial number– 
size distribution of simulated gob material, the predicted porosity values are very close to 
calculations shown in Fig. 7, as well as to the final porosities given in Table 6. This suggests 
that one can use the initial number–size distribution of a granular media and its fragmenta
tion fractal dimension to calculate changing porosities as stress is progressively increased. 
In Fig. 8, the initial porosities and fragmentation fractal dimensions are the same for each 
of the two test pairs (A–C) and (B–D) and their predicted porosities coincide as opposed to 
being separate as in Fig. 7. 

4.4 Calculation of Permeability of Gob Material 

4.4.1 Determining Flow Area of Channels (AP ) in the Fractal Porous Medium 

In order to calculate gob permeability, Eq. 20 was used. The permeability equation requires 
flow area of pores (AP, Eq. 23) and maximum and minimum channel sizes to be known. The 
size of the grains in a fragmented porous media will directly affect the pore flow area and 
pore diameters forming between the grains. Also, as compression increases on the initial gob 
material, the porosity will decrease as discussed in the previous section. In order to calcu
late permeability under increasing loading, up-scaled grain sizes will be used in area- and 
pore-size calculations. In order to incorporate the effect of loading on permeability, a fractal 
crushing model for porosity will be integrated into calculations. 
Equation 23 is used to calculate the total flow area of pores. This equation can alternatively 

be represented with an integral: 

Qmax 
π 
 

Qφ N 1−DT dQ. (32)
3 

Qmin 

In this integral, maximum and minimum particle sizes are the up-scaled values and the num
ber (N) is a function of grain size (Q). In order to find this function, the numbers of up-scaled 
particles for each up-scaled size were plotted. By up-scaling the material mass (assuming 
density stays constant) by 1,000 times due to a 10-fold increase in particle diameter, the 
number–size relations are obtained. The functional relationships for these number–size plots 
are given in Table 7. These equations show that the number–size data can be successfully 
represented by power functions. The R2 values of the equations representing the data in 
Table 7 are about 0.9927. 
In Eq. 32, Ø-values are the partial porosities for each infinitesimal size interval. Integra

tion between Qmin and Qmax will result in the total fractal porosity (ØT ), which will not be 
dependent on Q. With these treatments, the fractal flow area (Eq. 32), for Test-A for example, 



becomes: 

Qmax 
π −1.74φ (10326 1Q ) −DT 

T 

 
QdQ. (33)

3 
Qmin 

Solving the integral gives the fractal pore area. The fractal flow areas calculated for the initial 
gob material of all tests are given in Table 8. These equations can be directly used in per
meability equation (Eq. 20) for flow area term. In these equations, ØT is the porosity which 
changes as uniaxial stress progressively increases according to Eqs. 28–31. 

Table 7 Functional relationships 
of number of particles as a 
function of up-scaled particle 
diameters (Q is in cm) 

Test N 

A Q−1.74 10326.0 

B Q−1.75 8176.7 

C Q−1.74 9687.1 

D Q−1.75 7158.0 

Table 8 Flow areas calculated 
for the initial gob material for 
Tests A-D. Particle diameters are 
the up-scaled values and their 
units are in cm 

Test 

A 

AP (Eq. 23) 

103261−DT π 

3 
φT 

⎡ 

⎣ Q 0.26+1.74DT 
max 

1.74DT + 0.26 
− 

Q 
0.26+1.74DT 
min 

1.74DT + 0.26 

⎤ 

⎦ 

B 
8176.71−DT π 

3 
φT 

⎡ 

⎣ Q 0.25+1.75DT 
max 

1.75DT + 0.25 
− 

Q 
0.25+1.75DT 
min 

1.75DT + 0.25 

⎤ 

⎦ 

C 
9687.11−DT π 

3 
φT 

⎡ 

⎣ Q 0.26+1.74DT 
max 

1.74DT + 0.26 
− 

Q 
0.26+1.74DT 
min 

1.74DT + 0.26 

⎤ 

⎦ 

D 
71581−DT π 

3 
φT 

⎡ 

⎣ Q 0.25+1.75DT 
max 

1.75DT + 0.25 
− 

Q 
0.25+1.75DT 
min 

1.75DT + 0.25 

⎤ 

⎦ 

4.4.2 Determining Size of Tortuous Flow Channels (η) 

In order to determine maximum and minimum channel sizes, Eq. 22 is used. This equation 
gives the sizes of flow channels in each partial volume of a fractal porous medium. In this 
equation, the number term (N) is replaced by its functional form given in Table 7. The partial 
porosity term in the equation is, on the other hand, the amount of porosity in that partial 
volume. In order to obtain partial porosity, the total porosity at a particular loading stage 
can be divided by the “virtual pore-size fractions” or the number of particle size classes 
“s” defined earlier in this paper (Table 2). With these additions, the maximum and minimum 
channel diameters (ηmax and ηmin) as a function of Q can be calculated. These relations are 
given in Table 9. 



Table 9 Minimum and maximum sizes (ηmin and ηmax) of tortuous flow channels as a function of particle 
size 

Test ηmax (Eq. 22) ηmin (Eq. 22) J J 
A 0.82 φT 

s (102361−DT )Q 0.26+1.74DT 
max 0.82 φT 

s (102361−DT )Q 0.26+1.74DT 
min J J 

B 0.82 φT 
s (8176.71−DT )Q 0.25+1.75DT 

max 0.82 φT 
s (8176.71−DT )Q 0.25+1.75DT 

min J J 
C 0.82 φT 

s (9687.11−DT )Q 0.26+1.74DT 
max 0.82 φT 

s (9687.11−DT )Q 0.25+1.74DT 
min J J 

D 0.82 φT 
s (71581−DT )Q 0.25+1.75DT 

max 0.82 φT 
s (71581−DT )Q 0.25+1.75DT 

min 

Particle diameters to be used are the up-scaled values. The units of both particle sizes and the resulting channel 
sizes are in cm 

4.4.3 Predicting Permeabilities for Circular Flow Channels with Different Tortuous Paths 
and for Pore Area Irregularities 

Figure 9 shows the predicted permeability of gob material composed of broken rocks and 
circular flow channels as a function of uniaxial compressive load for shale and weak sand
stone. 
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Fig. 9 Predicted permeabilities for gob simulated in Tests A–D assuming circular channels with DT = 1.1 

Figure 9 shows that the permeability is higher initially and decreases as a result of 
crushing and compaction during loading. The predicted permeabilities are changing from 
0.074 cm2(74 × 105 Darcy) to 0.026 cm2 5 (26 × 10 Darcy) for a gob initially composed of 
bigger rocks and from 0 2 5 2 5 .026 cm (26 × 10 Darcy) to 0.009 cm (9 × 10 Darcy) for smaller 
rock particles. The data shows that the percent reduction in permeability is close in both 
cases, around 65%. Figure 9 also shows that permeabilities are mainly affected by the size of 
the initial material, rather than the type of rock. This is partly due to using the same Weibull 
moduli (m) and plastic compressibility index (A) in the porosity reduction equations. Nev
ertheless, this observation is consistent with the expectations since bigger particles are prone 
to leave more pore space when they are casually dumped into a finite volume. 
The predicted permeabilities in Fig. 9 with DT = 1.1 and DP = 2 conditions may be 

considered as an optimistic approach for permeability calculation, since circular pores with 
no irregularities and relatively low tortuosity may result in higher permeability than it actu
ally is for a gob environment. Thus, the complexity of the model environment was increased 



by changing the DT - and DP -values. DP -values were changed to 1.19 for shale and 1.25 for 
weak sandstone as presented in Table 3 for the initial gob material. DT , on the other hand, 
was increased to 1.26 based on literature data discussed in Sect. 4.1. It is also interesting to 
note that a DT of 1.26 is almost the mid-point between 1 (straight channel) and 1.5 after 
which tortuosity fractal dimension does not have a physical meaning according to Wheatcraft 
and Tyler (1988). The gob permeabilities predicted for more tortuous and irregular circular 
channels using the updated DT - and DP-values are shown in Fig. 10a, b. 
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Fig. 10 Predicted gob permeabilities for different DP-values of 1.19 for shale and 1.25 for sandstone (a), and 
with additional increasing flow channel tortuosity (DT = 1.26) (b) 

Figure 10a, b shows that as the complexity of the flow path and the irregularity of pore 
areas increase, the permeability of the fragmented porous medium decreases. This is in 
agreement with the physical situation and with the practical experiences. For instance, for 
the case presented in Fig. 10a, when the irregularity of circular channels is increased, the 
permeability values decrease by almost 50% compared to the values shown in Fig. 9 that 



represent perfectly circular channels. In addition to this, when we increase the tortuosity 
of irregular circular channels in the porous medium by increasing DT from 1.1 to 1.26 
(Fig. 10b), the permeability values decrease to even lower values. This is also in agree
ment with the expectations and the physics of flow in porous media. The data presented 
in Fig. 10b show that the permeability for a gob composed of smaller rock fragments ini
tially is 0.004 cm2(4 × 105 Darcy), which decreases to ∼ 0.001 cm2(1 × 105 Darcy) when 
the gob is fully compacted under 19.4 MPa stress. For gobs composed of bigger rock frag
ments initially (Tests B and D), permeabilities decrease from 0.015 cm2(15 × 105 Darcy) to 
0 005 cm2 5 × 105 . ( Darcy). These values represent an almost 6-fold decrease as compared to 
the values in Fig. 10. 

4.4.4 Predicting Permeabilities for Gobs with Flow Channels in the Shape of Triangle 
and Ellipse 

In a gob environment, flow channels may vary in shape from circular to triangular to ellip
tical. Equation 20 predicts permeability based on different-shaped channels through the use 
of a shape factor α, as discussed in Sect. 3.2.1. In this study, we have calculated the gob per
meability for equilateral triangle- and ellipse-shaped flow channels as a function of loading. 
In these calculations, DT and DP were 1.1 and 2, respectively. Since both of these shapes 
are regular√  2-D objects filling their area domain completely, their DP is also 2. Equation 13 
and 20 3 were used in Eq.20  as shape factors for an ellipse and a triangle, respectively. 
Figure 11a, b presents the predicted values for these two situations. 
Figure 11a, b shows that the permeability decreases about an order of magnitude in the 

case of triangular pore channels (Fig. 11a) compared to the circular ones (Fig. 9) and about 20 
times, when the channels are in the shape of an ellipse with a 5:1 aspect ratio (Fig. 11b). As 
the aspect ratio is increased to 10:1 (shape factor 126.92) and tortuosity and pore-area fractal 
dimensions are changed to values in Fig. 10b for more tortuous flow paths and irregularly 
shaped pores, the permeabilities decrease even more. Permeabilities calculated for this situ
ation are given Fig. 12. This may represent a situation where irregular, slit-like channels are 
meandering in a fractal fragmented porous medium. This seems to be a closer approximation 
to a gob where flat sandstone and shale rock blocks are piled (Fig. 1) and are compressed under 
overburden loading. Calculations show that in a fractal porous medium as the complexity 
and irregularity of pores increase, the permeabilities decrease accordingly. 

4.4.5 Comparison of Fractal Model Prediction with Reported Values and the Predictions 
of Carman–Kozeny (C–K) and Happel (H) Permeability Equations 

There are not any field measurements of permeability of gobs due to their inaccessibility 
for performing direct measurements. However, there are some reported values calculated 
based on volumetric strains and geomechanical calculations. For instance, Brunner (1985) 
used gob permeability values in ventilation network models as 1 × 10−7 m2 to 1 × 10−5 m2 

(1 × 105 −1 × 107Darcy). Ren et al. (1997) estimated the permeability in the gob to be on the 
order of 1×10−10 m2(1×102 Darcy) in the compacted region. Wendt and Balusu (2002) used 
maximum values around 1×10−9m2 1×103( Darcy). Whittles et al. (2006) reported calculated 
values in the range of 5 × 10−7 m2 5 × 105 Darcy  to 1 × 10−8 m2 1 × 104 ( ) ( Darcy) for a gob. 
Esterhuizen and Karacan (2007) reported calculated values of 1 × 10−9 m2(1 × 103 Darcy). 
The differences in permeabilities may be related to different coal-seam geologies, different 
panel layouts and to differences in caving characteristics. Nevertheless, it should be noted 
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Fig. 11 Predicted permeabilities for a gob simulated in Tests A–D assuming flow channels are in the shape 
of an equilateral triangle (a) and an ellipse (b) with 5:1 aspect ratio between its major axes. DT = 1.1 was  
used as tortuosity 
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that all these reported values are within similar orders of magnitude and close to the perme
ability values calculated by the fractal flow models presented in this study. Thus, the fractal 
fragmentation and fractal-crushing driven methodologies and the flow models presented in 
these analyzes predict permeabilities close to the values reported in other studies. 
In order to compare the permeability values obtained using the calculation methodology 

developed in this paper with popular and simpler equations used for flow in aggregates, Car
man–Kozeny (C–K) and Happel (H) equations (Li and Logan 2001) presented in Eqs. 34 and 
35, respectively, were used. These equations were used to calculate permeability variations 
only for Test-A. When using these equations, porosity reduction was accounted for as the 
stress increased and characteristic aggregate size was taken as the average of maximum and 
minimum particle sizes (33 cm) reported for this test. Figure 13 shows the calculations with 
C–K and H equations. 
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Fig. 13 Predicted permeabilities for gob using Carman–Kozeny and Happel equations (Eqs. 34 and35) 

As this figure indicates, they predict values close to each other. How
ever, these values are orders of magnitude higher than the reported gob permeability values 
in this and other studies. They are also far from being realistic for a compacted gob. Thus, 
fractal models developed in this study predict gob permeabilities more realistically than C–K 
and H equations and thus they are more adequate to use for permeability predictions of a gob 
environment. 

3 = ¯ 2 
k

φQ
C−K  T	 

180	 1− 2 (34)
( φT )

k =	 Q̄
2 3−4

 
5.5ϕ+4.5ϕ

 
3 6 ϕ

H 18 3 3+2 5 (35)
ϕ ( ϕ )

−

 

√
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5 Summary and Conclusions 

This study developed a predictive approach using the principles of scaling and fractal porous 
medium combined with fluid flow. This approach allowed the calculation of porosity and 
permeability from the size distribution of broken rock material in the gob using flow and 
fractal crushing equations for granular materials. The specific conclusions made from this 
study can be listed as follows. 

(1)	 Particle size distributions of gob material can be determined from digital pictures or 
from simulated tests. These data can be used to find the fragmentation fractal dimen



sion of gob material based on a number–size relationship. This study showed that 
the number–size relation for different rock materials and gradations can be described 
with a linear relation. This indicates that the gob material before and after compaction 
shows fractal scaling properties. Tortuosity and pore-area fractal dimensions can then 
be determined using the “slit-island” theorem. 

(2)	 Permeability in a fractal porous media can be described using fractal scaling between 
pore and grain sizes. These information can be used in the Hagen–Poiseuille (H–P) 
equation to describe flow rate, then which can be integrated with the Darcy equa
tion to describe permeability of a fractal porous media in terms of textural and fractal 
properties. 

(3)	 Fractal crushing of granular materials can be used in the definition of flow area to simu
late compaction of a gob. The porosities predicted using a fractal crushing model were 
found to be in good agreement with the porosity values calculated using stress–strain 
data and particle size data. Thus, it is possible using the number–size distribution of a 
granular media and its fragmentation fractal dimension to calculate changing porosities 
as stress is progressively increased. 

(4)	 It was observed that the developed fractal model predicts gob permeability at any load
ing level better than simple models, such as the Carman–Kozeny and Happel equations, 
since it includes complexities of pores and grains in a completely fragmented porous 
medium. Predicted permeability values calculated using the fractal permeability model 
are in better agreement with geomechanical model calculations and reported values in 
the literature. 

(5)	 It was observed that the size of the rock blocks in the gob make a more dramatic 
difference in permeability compared to the type of rock material. However, it should 
also be emphasized that particle size segregation is important as the size distribution 
controls the fractal properties. Thus, if there is segregation in particle size distribution, 
at different heights in the gob, this should affect the transport properties of porous 
medium. 

(6)	 Using the developed approach and the formulations, it is possible change the pore shapes 
and irregularities determined from gob pictures or to change the tortuosity of flow chan
nels based on expectations to obtain better results. Geometrically, the results showed 
that circular and smooth channels give the highest permeability. As the irregularity and 
aspect ratio of the channels increase, permeabilities decrease as expected. 

(7)	 The ultimate benefit of using the approach presented in this paper will be the ability to 
make better gob reservoir property predictions and to ensure better methane control in 
the mine environment. 
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