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ABSTRACT 

This report reviews the performance and applicability of technology for the control of 
emissions from diesel-powered equipment used in underground coal and metal/nonmetal mines. 
The methods discussed include Mine Safety and Health Administration-approved low-emission 
engines, engine derating, fuels, fuel additives, diesel oxidation catalysts, and diesel particulate 
filters. The potential of each of these technologies is examined individually and in combination. 
The performance estimates are derived from the published literature and presented in narrative and 
tabular form.  The purpose of this report is to help the mining industry select the most appropriate 
method to reduce underground exposures of miners to diesel exhaust in the context of the recently 
developed diesel regulations. It is important to note that the control technologies discussed in this 
report have received limited evaluation in underground mines.  Additional research is ongoing, and 
some engineering design changes may need to be implemented before all of these diesel emission 
control technologies can be safely and successfully used in underground mines. 
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EXECUTIVE SUMMARY 

This report presents the potentials and limitations of control technology for reducing exhaust 
tailpipe emissions from diesel-powered equipment used in underground mining.  It does not discuss 
ventilation, enclosed cabs, or personal protection (respirators), but only commercially available 
products that reduce the particulate matter (PM) and harmful gases from the exhaust pipe of diesel-
powered equipment.  While the current operational conditions for diesel equipment commonly 
provide adequate ventilation to control the harmful gases, these same conditions result in levels of 
worker exposure to diesel particulate matter (DPM) that are significantly higher than those of any 
other occupation and significantly higher than the new U.S. and current European standards. 
Because of a historical concern over the health effects from long-term exposure to DPM and the 
recent promulgation of two DPM rules by the Mine Safety and Health Administration (MSHA), 
the focus has been on solutions that reduce PM rather than the toxic exhaust gases.  However, 
as we show, the existing technology can provide significant reductions to both. 

The control technology found to be appropriate for discussion falls into the following six 
general categories: MSHA-approved engines with low emissions, derated engines, fuels, 
fuel additives, diesel oxidation catalytic converters (DOCCs), and diesel particulate filters (DPFs). 

Using low-emission, MSHA-approved engines is a viable option that can result in a 
significant reduction of PM emissions and, in some cases, a reduction of toxic gas emissions.  This 
option can be demonstrated using the Isuzu C240 (QD60), a very popular engine for outby 
applications in coal mines.  The direct substitution of the Isuzu C240 with a Deutz F4L1011 would 
result in a 64% reduction of emitted DPM based on the MSHA particulate index (PI) for each 
engine. 

It is possible, and sometimes practiced, to limit the maximum fueling rate of a particular 
engine to less than its rated maximum specifically to reduce emissions.  This practice is called 
derating. Relatively minor reductions in rated power may result in significant reductions in 
PM emissions.  For example, by reducing the maximum deliverable horsepower of the Isuzu C240 
from 56 to 52, DPM emissions are reduced by 62% (from 9.35 to 4.25 g/hr). 

The use of commercially available alternative fuels—e.g.,  biodiesel and synthetic diesel— 
and water-fuel emulsions can result in lower gaseous and PM emissions.  The sulfur content of the 
fuel becomes a concern when considering the application of oxidation catalysts to the point that the 
use of ultralow sulfur fuel (ULSF) is highly recommended.  Fuel additives, developed as combustion 
enhancers and smoke reducers, can contain metal compounds.  These additives create additional 
emissions of metallic ash with possible adverse health effects and thus are not recommended. 
However, some additives, notably fuel-borne catalysts (FBCs), are specifically formulated to lower 
the exhaust temperatures necessary to burn off the soot collected by particle filters.  When used with 
a particle filter, the FBCs pose no additional health hazard, since the filter effectively prevents 
emissions of the catalyst metals. 

Diesel oxidation catalysts can significantly reduce both carbon monoxide (CO) and 
hydrocarbons (HC) (the source of the “diesel” odor).  They also reduce the organic fraction of PM. 
However, oxidation catalysts greatly enhance sulfate formation from the sulfur present in the fuel 
and thereby add another toxic component to the exhaust emissions.  Diesel exhaust also contains 
nitrogen oxides, NOx (NO + NO2); catalysts tend to convert some of the nitric oxide (NO)  to a more 
toxic form, nitrogen dioxide (NO2), which can be of concern depending on the amount of NO 
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converted and the ability of the prevailing environment to dilute or adsorb (on mine surfaces) 
the NO2. 

DPFs are extremely effective at removing PM (primarily carbon soot and adsorbed HC) from 
engine exhausts. In addition, the DPFs can be catalyzed to provide good reductions of CO and HC. 
However, the DPM that is collected by the particle filter needs to be removed.  The preferred 
approach is to use the high exhaust temperatures to burn off the collected soot during engine 
operation—that is, to cause spontaneous or autoregeneration.  As a general rule, the engine should 
operate at medium to high loads for at least 20% to 25% of the time to ensure sufficient temperature 
for regeneration.  Catalysts are used to lower regeneration temperatures, and their use ensures 
regeneration under a wide range of applications. Alternatively, filters with integral heaters that are 
connected to an air and electrical supply managed by an off-board system have been shown to be 
viable for application in which conditions do not favor autoregeneration.  For low-horsepower, light-
duty applications, a system that performs an on-board regeneration in 10 min is available.  As a final 
alternative, a DPM-loaded filter can be exchanged for a clean filter that was regenerated in a simple 
electric kiln designed for the purpose. 

Combinations of these technologies provide better reductions of both the gaseous and 
particulate exhaust components.  In particular, the systems combining catalytic oxidation and 
filtration offer the highest reductions of DPM and gases, except for NO2. This combination produces 
the best results when used with ULSF. 

NIOSH considers the combination of a low-PM-emitting engine (possibly derated), a form 
of oxidation catalyst, and a DPF, when operated within an effective maintenance program, to be the 
best available technology for reducing hazardous diesel emissions for applications in underground 
mines.  It would be necessary to add the measurement of tailpipe DPM (by methods yet to be 
selected) to the accepted practice of monthly tailpipe gas checks to ensure that the DPF is 
performing as expected. 

The area of diesel emissions control technology is changing rapidly.  The information 
presented is current as of December 2001.  The best source for monitoring this changing field is the 
World Wide Web.  The Web sites to consult include www.cdc.gov/niosh/mining, www.msha.gov/ 
S&HINFO/DIESEL.HTM, and www.deep.org for mining specific information; and 
www.DieselNet.com and arbis.arb.ca.gov/toxics/diesel/ss/summary_2.htm for developments in 
particulate emissions control for automotive, highway, and off-highway equipment.  The authors of 
this document may also be contacted. 
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1   Introduction 

1.1   Health Concerns 

Continual expansion of the use of diesel engines in the mining industry and the uncertainties 
associated with the long-term effects of exhaust emissions on miners’ health have recently focused 
attention on risk assessments of diesel engine exhaust.  The issue of DPM has raised a host of health 
and environmental concerns and has gained considerable attention of researchers and various 
regulatory agencies. 

The concerns about the health effects of DPM exposure have resulted in the issuing of 
regulations by MSHA governing the emission rates for diesel equipment used in U.S. coal mines 
[66 Fed. Reg.3

3Federal Register.  See Fed. Reg. in references. 

 5526 (2001)] and environmental compliance levels for DPM in U.S. metal and 
nonmetal mines [66 Fed. Reg. 5706 (2001)].  Other countries have also adopted regulations that 
limit environmental levels of DPM [DieselNet 2001].  It is clear from the documentation supporting 
the MSHA regulations that miners (and other workers in confined spaces) are the most highly 
exposed of any occupation. 

1.2   Diesel Exhaust Composition 

The complexity of the chemical and physical composition of diesel exhaust emissions makes 
the assessment of health risk from exposure to diesel engine exhaust a daunting task.  Although the 
major portion of diesel exhaust contains nitrogen, oxygen, water, and the asphyxiant carbon dioxide 
(CO2), it also contains recognized noxious, toxic, and potentially harmful substances:  particulate 
matter (PM) or soot; organic compounds such as lubricating oil and unburned or partially burned 
HC, which are primarily the source of the unpleasant odor associated with burning diesel fuel; 
oxides of nitrogen (NO and NO2, collectively known as NOx); CO; and sulfur oxides.  Inorganic 
constituents of diesel exhaust, such as metals, acids, and salts, are also among the chemical 
constituents hypothesized to be toxic. 

MSHA regulations at 30 CFR 7 define DPM as “any material collected on a specified filter 
medium after diluting exhaust gases with clean, filtered air at a temperature of #125 °F (52 °C), 
as measured at a point immediately upstream of the primary filter.  This material is primarily carbon, 
condensed HC, sulfates, and associated water.” This pragmatic definition provides engine testing 
facilities with a tool for assessing PM emissions simply by measuring the weight (mass) gain of the 
filter, i.e., by gravimetric analysis.  In practice, physical and chemical processes governing the 
formation and transformation of the DPM before and after collection make accurate interpretation 
of DPM emissions and their health impact a complex issue.  For example, despite the varying 
chemical composition of the DPM, the masses obtained are all considered “equivalent” whether they 
are organic condensates, solid carbon particles, sulfates plus water, or metallic ash from lubrication 
oils. Using the gravimetric determination of DPM may be useful for comparing engine emissions 
under nearly identical set of operating conditions, fuels, and measurement methods.  However, it is 
flawed when used to compare the performance of some control technologies and equally inadequate 
in providing an assessment of health impact.  Adding to the complexity is that the prescribed MSHA 
testing to determine PM emissions is performed over a set of eight steady-state engine operating 
conditions, which does not therefore include acceleration transients (a major source of PM) and may 
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not be representative of the actual engine operating conditions.  According to Kittelson [1998], 
typical particle composition of a heavy-duty diesel engine tested under a heavy-duty transient cycle 
breaks down as follows: carbon, 41%; unburned fuel, 7%; unburned oil, 25%; sulfate and water, 
14%; and ash and other components, 13%. 

The structure and chemical composition of DPM is a function of numerous parameters; 
the major ones are fuel composition, engine design, engine operating conditions, and the exhaust 
aftertreatment process.  The composition of exhaust particles also depends on where and how they 
are collected or measured.  In addition, the composition of DPM might be significantly altered (and 
thus different from that measured in the laboratory) when the exhaust is released in the mine setting. 

The diameter of diesel particles ranges from 5 nm (1 nm = 1×10-9 m) to 1 µm (1 µm = 
1×10-6 m), depending on engine design and operating conditions.  Two distinct size modes 
characterize PM distribution: the agglomeration mode and the nucleation mode.  Particles in the 
agglomeration mode (50 nm to 1 µm) contribute to the majority of the DPM mass.  The chemical 
composition of agglomeration-mode particles are mainly a carbonaceous core and adsorbed organic 
compounds.  The nucleation mode contains the majority of the particle number, but does not 
contribute significantly to the total particulate matter (TPM) mass.  Particles in the nucleation mode 
have been found to be composed mostly of volatile or semivolatile organic compounds, sulfur 
compounds, and trace elements. 

Hydrocarbons, one of the major organic pollutants in diesel exhaust, are emitted as gaseous 
and PM-bound compounds.  The phase (gas, condensed liquid, or solid) of HC in diesel exhaust 
depends on their molecular weight, temperature, and concentration and is expressed as a partition 
coefficient, which is the ratio of the mass of compound in the particulate phase to the mass of 
compound in the vapor phase.  Higher molecular weight and some intermediate molecular weight 
compounds known as soluble organic fraction (SOF) are adsorbed on the PM.  Common particulate-
bound compounds are linear- and branched-chain HC with 14 to 35 carbon atoms; polynuclear 
aromatic hydrocarbons (PAHs); alkylated benzenes; nitro-PAH; and a variety of polar, oxygenated 
PAH derivatives. These compounds are of particular concern because several of them have been 
associated with carcinogenicity and mutagenicity, as reported in various laboratory studies.  Some 
of the vapor phase compounds that could potentially affect human health include formaldehyde, 
methanol, acrolein, benzene, 1,3-butadiene, and low-molecular-weight PAHs and their oxygenated 
and nitrated derivatives. 

Several methods are in use for determining occupational exposures to the components of 
diesel exhaust. Direct-reading instrument and chemical methods (stain tubes) are used to determine 
the gas concentrations of CO2, CO, NO, and NO2. Field determination of the organic vapor fraction 
is not normally performed.  The determination of workplace concentrations of exhaust PM is a more 
complex undertaking.  There is no consensus on exactly what is to be measured (total or elemental 
carbon, combustible carbon) or the analytical method (thermo-optical, coulometric, gravimetric) for 
determining workplace DPM concentrations.  A synopsis of these methods is presented in the 
MSHA “Diesel Toolbox” [MSHA 1997]. Gravimetric-based methods that determine the amount 
of respirable combustible dust (RCD) [Maskery 1978; Gangal et al. 1990; Gangal and Dainty 1993] 
or that determine the amount of submicron particulate collected on a filter are inadequate at 
moderately low workplace concentrations because so little mass is collected that weighing error 
becomes significant.  Methods based on determining the amount of elemental carbon (EC) present, 
such as the coulometric method [ZH 1/120.44 (1995)] adopted in Europe and the NIOSH Method 
5040 [NIOSH 1999], are much more sensitive to DPM.  These methods exploit the established 
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unique and reasonably strong correlations between EC and DPM [NIOSH 1999].  In coal mines, 
because of the presence of both organic and EC in the coal mine dust, a submicron impactor 
[Cantrell et al. 1993] can be used to separate the larger dust particles from the diesel combustion 
particles for EC analysis. A direct-reading instrument, such as the Ecochem PAS 2000 photoelectric 
aerosol sensor (PAS), is available and can be used for noncompliance measurement of workplace 
or tailpipe (with dilution) carbon particle concentration.  The state-of-the-art aerosol instrumentation 
used for measurement of mass (MOUDI, ELPI, etc.) and number (SMPS) concentrations is too 
costly, complex, and cumbersome for routine monitoring of PM underground. 

1.3   Occupational Exposure 

Table 1 shows the occupational exposures to DPM of miners and of those in other 
occupations. 

Table 1.—Typical occupational DPM exposure levels 

Occupational group Exposure level, mg/m3 

(1 mg/m3 = 1,000 µg/m3) 

Underground miners, coal, no aftertreatment1 0.9 - 2.1 

Underground miners, coal, disposable diesel exhaust filter1 0.1 - 0.2 

Underground miners, coal, wire mesh filter1 1.2 

Underground miners, metal/nonmetal, no aftertreatment1 0.3 - 1.6 

Surface miners1 <0.2 

Urban fire station2 0.1 - 0.48 

Forklift operators, dock workers, railroad workers2 0.02 - 0.10 

Truck drivers2 0.004 - 0.006 
1Haney et al. [1997]. 
2DieselNet [1999b]. 

1.4   Selected Regulatory Limits 

Table 2 provides some regulatory limits for occupational exposures to DPM. 
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Table 2.—Exposure limits for DPM  [DieselNet (2001)] 

Country or organization Value, mg/m3 DPM Measurand 

Current Limits: 
U.S.: MSHA metal/nonmetal 
underground mines [66 Fed. 
Reg. 5706 (2001)] 

July 19, 2002: 0.4 
January 19, 2006: 0.16 

Total carbon (EC + OC) 
as determined by 

NIOSH Method 5040 

U.S.: MSHA underground 
coal mines [66 Fed. Reg. 
5526 (2001)] 

Emissions rates set for 
various classes of equipment, 
e.g., heavy duty equipment: 

2.5 g/hr 

Total DPM measured in 
accordance with ISO 8178 

procedures [30 CFR4 

4Code of Federal Regulations.  See CFR in references. 

7 
(1996)] 

Germany:  General 
occupational environment 

0.1 EC, coulometric 

Germany:  Underground 
metal and nonmetal mining 
and construction sites 

0.3 EC, coulometric 

Canada: Underground, metal 
and nonmetal mining 

1.5 RCD 

Switzerland [Majewski 1999] 0.1 EC, coulometric 

Proposed Limits: 
ACGIH [1995] 0.15 Particles <1 µm in size 

ACGIH (1998) 0.05 Total carbon in particles 
<1 µm in size 

ACGIH (2001) 0.02 (EC = 40% of DPM) EC particles <1 µm in size 
“In its 2001 Notice of Intended Changes, the ACGIH proposed a TLV of 0.02 mg/m3 for diesel exhaust particulates 
measured as elemental carbon (EC), with proposed carcinogenicity classification A2 - “Suspected Human Carcinogen.” 
This EC-based TLV is practically equivalent to the previously proposed TLV of 0.05 mg/m3, presumably as total diesel 
particulate matter (EC fraction typically constitutes about 40% of the total diesel particulate mass).”  (Source: 
www.DieselNet.com.) 

In January 2001, MSHA promulgated two new rules regulating the exposure of underground 
miners to DPM.  The metal rule [66 Fed. Reg. 5706 and 35518 (2001)] requires underground metal 
and nonmetal mine operators to comply by July 19, 2002, with the interim DPM concentration of 
400 µg/m3  measured as total carbon using NIOSH Analytical Method 5040 [NIOSH 1999].  On 
January 19, 2006, the compliance level DPM concentration limit will be 160 µg/m3 measured as 
total carbon. 

The underground coal rule [66 Fed. Reg. 5526 and 27864 (2001)] controls the exposure of 
the miners by limiting the emission rate from newly introduced and existing diesel-powered 
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equipment.  MSHA found that due to the absence of an accurate method for sampling DPM in 
underground coal mines, a performance rule, similar to that promulgated for metal and nonmetal 
mines, is not feasible.  Additionally, in-place coal regulations [30 CFR 75.325(f) and (g) (1996)] 
specify ventilation air quantities for each piece of equipment, allowing reasonably precise estimation 
of the resulting DPM concentration from the engine emissions.  Engine emission rates are calculated 
using the emission rate determined through MSHA engine certification [30 CFR 7 (1996)] and the 
reduction provided by the application of emission control technology, namely, particle filters.  On 
its Web site, MSHA provides a list of filters and their accepted filtration performance for this 
purpose [MSHA 2001a]. Should alternative emission controls be used, the emission rates of the 
engine and control system would have to be determined using the MSHA engine certification 
procedures [30 CFR 7 (1996)]. Only systems verified as meeting the 2.5 g/hr (permissible or heavy-
duty) or 5 g/hr limits (outby light-duty) would be accepted. 

The coal rule contains a complex timetable of equipment type and emission rates.  Suffice 
it to state that all heavy-duty equipment must eventually meet a DPM emission rate of #2.5 g/hr. 
Newly introduced light-duty equipment must either use an engine approved by the Environmental 
Protection Agency (EPA) or emit <5 g/hr of DPM.  Existing light-duty equipment is exempt from 
the rule.  The MSHA Web site lists MSHA-approved engines and their emission rates [MSHA 
2001b]. 

Both rules leave the choice of controls up to the mine operators.  The metal and nonmetal 
rule allows a wider choice of control technology, since it uses an environmental standard to measure 
compliance.  The choices of control technology for coal are much more limited, if for no other 
reason than economic:  any system that does not use a device with an MSHA-accepted PM reduction 
factor must undergo expensive testing.  Also, for coal mines, only a limited number of engines and 
associated power packages are available that are suitable for use in gassy areas of the mines. 

1.5   Diesel Particle Concerns 

Current PM emissions legislation is based on ambient mass concentrations, mg/m3. None 
of these regulations contain a reference to either the size or the number concentration of the 
particles. Further, the prescribed gravimetric analysis of PM is nonspecific with respect to chemical 
composition and aerosol properties and, thus, delivers no toxicologically relevant information. 
Additionally, known DPM size distributions indicate the presence of very fine particles that, when 
inhaled, are eventually trapped in the slowly cleared alveolar regions of the human lungs.  The 
health implications of these ultrafine particles is currently unknown and is the subject of much 
speculation and research. The MSHA DPM rule for metal and nonmetal mines [66 Fed. Reg. 5706 
and 35518 (2001)] uses total carbon as measured by NIOSH Method 5040 [NIOSH 1999] as a 
compliance measurement.  This method, however, accounts for neither particle size nor inorganic 
continuants such as sulfates and transitional metals. 

The effects of inorganic constituents of DPM on mortality and morbidity have been the 
subject of numerous epidemiological and toxicological studies [Mauderly et al. 1995] and should 
not be underestimated.  The transition metals can cause the production of hydroxyl radicals, which 
are considered to be toxic products. Residual lubrication oil ash is also toxic to cells and lungs. 
Finally, a wide range of inorganic and organic sulfur and nitrogen compounds have irritating, 
cytotoxic, and mutagenic properties.  Animal studies [Schlesinger 1995] indicate that nitrates, 
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sulfates, and sulfuric acid particles impair pulmonary functions such as mucociliary clearance and 
airway resistance. 

1.6   Document Purpose 

The purpose of this document is to provide an overview and review of practical, available 
technology that can be used to reduce gaseous and particle emissions from new or older diesel-
powered equipment in underground mines.  Upon reading this document, it is hoped that the 
decision-makers in labor, industry, and government will be able to learn which control alternatives 
are available and proven, to what extent each is able to reduce toxic gases or harmful PM from diesel 
exhaust, the caveats and conditions of use for each, the effects of combining technologies, and the 
estimated costs.  Armed with this knowledge, it is additionally hoped that the same entities will be 
able to recognize the most effective technologically feasible controls for reducing miners’ exposure 
to diesel emissions in underground mines. 

1.7   Scope 

This document presents the performance and limitations of control technology designed to 
reduce diesel exhaust emissions from the tailpipe.  It does not discuss ventilation, enclosed cabs, 
personal protection (respirators), or measurement technology, but only proven commercially 
available technology that reduces the PM and toxic gases from the exhaust of diesel-powered 
equipment. 

The technology discussed is applicable to most, if not all, diesel equipment used in 
underground coal or metal/nonmetal mines.  Additional design and engineering efforts must be made 
to adapt some of the technology for use in areas (inby) of coal mines that require precautions against 
methane ignition or hot surface temperatures. 

This document does not address maintenance or proper application of diesel engines.  It is 
expected that the industry has or will shortly institute across-the-board maintenance procedures that, 
at a minimum, follow MSHA guidelines and the engine or vehicle manufacturer’s prescribed 
maintenance procedures.  Additionally, engines, when operated at altitudes >1,000 ft, need to be 
properly derated, and then the torque converter of the vehicle needs to be matched to the derated 
engine to avoid excessive emissions from lugging down the engine and to allow the engine to attain 
the optimum engine speed for maximum power transfer to the drive train. 

The control technology found to be appropriate for discussion falls into the following general 
categories: low-emission engines, derated engines, fuels, fuel additives, DOCCs, and DPFs. 
Combinations of these technologies are possible and are also discussed. 

2   Control Technologies 

Mine ventilation has traditionally been the primary means for controlling workplace 
concentrations of diesel emissions in underground mines.  With the continual increase in the number 
of diesel equipment units deployed in underground mines and the rising concerns about adverse 
health effects of diesel emissions, increasing the ventilation rate as the sole means to control 
exposures becomes an inadequate and expensive approach.  Concerns with engine efficiency and 
the general environmental impact of diesels on urban air quality have driven research to reduce 
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emissions at the source, resulting in much lower-emitting (particularly NOx and PM) diesel engines 
and practical aftertreatment and other emission reduction technologies.  Although some of the 
aftertreatment technology was originally developed for use in underground mines and tunnels, the 
present drive for research results from the need to address on-highway diesels.  (The latest 
information on worldwide regulations can be found on at www.DieselNet.com/standards.html; 
the current EPA rules can be found at www.epa.gov/otaq/diesel.htm.) The underground mining 
industry can benefit greatly from the advances in technology and the economies of scale of the on-
highway truck and bus market.  This document provides a brief review of the most effective 
technologies developed for curtailment of diesel emissions, including the toxic gases and PM.  These 
technologies include engine design, engine derating, fuel formulations, fuel additives, DOCCs, and 
DPFs. 

Evaluation of the performance of emission control technology in underground mine settings 
is difficult because of the intrinsically transient operation of machinery with the pronounced 
variations in numerous parameters, such as daily workload and ventilation rates.  Therefore, only 
a very limited amount of accurate data exist on the emission reduction performance of the 
technologies in underground mine conditions.  Nonetheless, the examination herein of the body of 
literature representing laboratory tests and the knowledge of the scientific and engineering principles 
of the technology provide an adequate foundation for estimating the effects of the application of this 
technology to reduce diesel emissions in the underground mine operations.  This analysis also 
provides sufficient data to support decisions on the technical feasability of control technology 
alternatives. However, the limited field performance data available point to the need to perform 
more field evaluations on appropriately selected technology. 

2.1   Maintenance 

Over the relatively short history of the use of diesels in underground mining, the need for 
good maintenance has always been recognized.  This recognition has not always generated the 
adoption and disciplined implementation of the best maintenance practices being applied to every 
diesel engine or vehicle in operation in underground mines.  Nevertheless, it is extremely important 
to realize that the very first step on the path to reducing worker exposures is to implement an 
effective diesel vehicle/engine maintenance protocol and apply it to every diesel unit that operates 
underground. The early work in this area was performed by the U.S. Bureau of Mines [Waytulonis 
1987]. The University of Minnesota’s Center for Diesel Research [Spears 1997] developed 
procedures for using tailpipe gas measurements as a diagnostic for engine maintenance. 
A comprehensive study on the relationship between diesel engine maintenance and tailpipe 
emissions was recently completed by McGinn [2000] under a research effort by the Diesel 
Emissions Evaluation Program (DEEP).  McGinn has developed a maintenance auditing procedure 
[McGinn et al. 2000] and guidelines [McGinn 1999], which were recently implemented in a hard-
rock mine with demonstrable results.  The guidelines and training of the mine personnel involved 
participation by mine management, machine operators, mechanics, and most importantly the engine 
and vehicle manufacturers’ service (not sales) representatives.  Dramatic reductions in exhaust PM 
and CO emissions were observed in some cases where good maintenance practice was applied. 
These documents can be found at www.deep.org/research.html. 
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There are several important reasons to provide the best possible engine maintenance when 
considering or implementing control technology.  The first reason is that the lowest emissions 
resulting from the application of any control technology are obtained when starting with the lowest 
possible engine-out emissions.  The second reason is that ventilation requirements and PM emission 
rates determined through MSHA’s engine certification process were obtained using a properly tuned, 
well-maintained (new) engine.  It is important that the engines in the field have emission 
characteristics no worse than those of the certified engine so that calculations that use the MSHA 
ventilation and PM emission rates to ensure safe levels of toxic gases, to estimate workplace diesel 
particulate levels, or to compare particulate emission rates among engines are valid.  In addition, 
excessive emissions from poorly maintained engines may jeopardize performance of aftertreatment 
technologies. For example, excessive emissions of the ash caused by burning crankcase oil might 
result in clogging and premature failure of the DPF. 

In sum, although maintenance is not strictly an “add-on” hardware control technology, 
the very first step in applying control technology to reduce workplace exposures to diesel exhaust 
is to implement an effective maintenance program and closely monitor its effectiveness. 

2.2   Engine Design and Selection 

Over the last decade or so, major improvements have been made in engine design that have 
resulted in substantially lower emission rates of DPM.  Additionally, lower engine emissions can 
be obtained by limiting the maximum fueling rate to an engine, resulting in a lower power output 
but substantial reduction in DPM emissions and some fuel savings. 

2.2.1   Lower DPM Emission Engines 

The major efforts in reducing PM emissions from diesel engines have been directed toward 
optimizing the combustion and fuel injection systems and minimizing the lube oil consumption of 
the engine. The successful engineering techniques for these purposes are high compression, air 
intercooling of turbocharged engines, center positioning of the injector nozzle, increased number 
of the nozzle perforations, very high injection pressure, suppression of the air swirl, and a shallow 
piston bowl. These techniques have resulted in significant reductions of PM mass emitted from the 
engine. Mayer [1997] found that modern engines emit 10% of the total particulate mass emitted by 
engines designed 15 to 20 years ago. Unfortunately, these new low-emission engines were found 
to emit more ultrafine particles at all load points than the older engine of the same family [Bagley 
et al. 1993; Baumgard and Johnson 1996; Mayer 1997]. Mayer et al. [1999] concluded that engine 
designers presently do not have a strategy for effectively curtailing the emission of these 
nanoparticles. It is yet to be confirmed that this increase in nanoparticles, which was observed under 
laboratory test conditions, actually manifests itself in actual mine settings.  Nevertheless, tests of 
DPFs using several different filter media confirm that filters are very effective in “trapping” the 
nanoparticles [Mayer et al. 1999; Czerwinski et al. 1998]. 

Although a variety of engineering technologies have resulted in engines with greatly reduced 
emissions, mine operators are presently limited in their choice of diesel engines.  After 
November 24, 1999, only engines listed by MSHA [MSHA 2001b] as approved can be used in coal 
mines [30 CFR 75.1907 (1996)].  After March 20, 2001, all diesel engines introduced into metal and 
nonmetal mines must be MSHA- or EPA-approved [30 CFR 57.5067 (2001)].  Furthermore, they 
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must be set to operate at the conditions under which the approval was granted.  Thus, with the 
exception of derating for altitude,  there is little or no room for altering engines, let alone changing 
the design. Furthermore, the MSHA requirement that all engines in use in coal mines must have 
current approval may be the reason that many engines of older design appear along with the newer 
engines on the MSHA list. 

The engine selection limitation is exacerbated for the permissible areas in coal mines.  Only 
six engines are approved, and these are of much older design.  These engines have very high 
PM emission rates.  In some cases, a reduction of 95% in PM is needed to bring the emission rate 
down to 2.5 g/hr required by the coal rule. As this review will reveal, a 95% reduction in total DPM 
challenges the capabilities of the contemporary control technology.  The limited selection has also 
resulted in engine applications that underutilize the engine, wasting fuel, and unnecessarily 
increasing DPM concentrations in the workplace.  On the other hand, some applications require 
more horsepower than these engines can provide, especially when they are derated for altitude. 
Clearly, there is a need for cleaner permissible engines.  Because of the significant expense of 
certifying an engine for permissible applications and the minuscule market size, there is little 
incentive for engine manufacturers to provide new permissible engines to the coal industry. 

In its 1996 revision to diesel engine approval procedures [30 CFR 7 (1996)], MSHA 
recognized the concerns over diesel particulate emissions and recognized that newer engines can 
emit DPM at a much lower rate.  Therefore, MSHA provided a means, the PI, for conveying this 
lower PM emission to the mining industry.  The PI is the amount of air needed to dilute the engine-
produced DPM to 1 mg/m3. It is calculated from a weighted-average PM obtained over the 
ISO 8178 C1, eight-mode, steady-state test described in 30 CFR 7.  A lower PI characterizes an 
engine with a lower PM emission.  Unfortunately, but unavoidable, the MSHA test procedures do 
not account for the fact that a significant portion of real-life PM emissions occurs during engine 
transients (accelerations) or for the significant variation in duty cycles across applications. 

The PI and the ventilation rate are the keys for selecting a low-emission engine for 
underground mine applications.  With the understanding that a given application requires an engine 
with a certain power, rated speed, and physical size, one can examine the MSHA approval list sorted 
by horsepower (see the appendix to this report) and pick an engine with the lowest PI that closely 
matches the engine power and rated speed required for the application.  Next, one can check the 
ventilation rate required by that engine and determine whether that rate is acceptable.  (Some of the 
low-PI engines require exceptionally high gaseous ventilation rates that may pose limitations on 
their use if ventilation is critical).  Mine operators should consider these factors when purchasing 
new equipment or a replacement engine.  Likewise, equipment suppliers should try to design their 
equipment for low-emission engines and offer it as an option in their equipment lines. 

A close look at the tabulated nameplate ventilation rates and particulate indices for the 
category B (nonpermissible or outby) engines approved by MSHA reveals significant differences 
in the emissions, especially in engines of low horsepower.  Table 3 shows the differences between 
the Isuzu C240(QD60) engine and a comparable Deutz F4L1011 engine. 
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Table 3.—Isuzu-Deutz engine comparison 

Engine Rating 
hp @ rpm 

MSHA name 
plate 

ventilation 
rate, cfm 

MSHA PI, 
cfm 

MSHA 
approval 

Approximate 
cost 

Isuzu C240 
(QD60) 56.0 @ 3,000 2,500 5,500 7E-B038-0 $4,000 

Deutz 
F4L1011 56.3 @ 3,000 3,000 2,000 7E-B060-0 $6,000 

In MSHA approval tests, the Deutz F4L1011 engine emits, on average, approximately 64% 
less DPM than the Isuzu C240 engine.  Assuming that the prevailing ventilation rate is already 
>3,000 cfm and remains unchanged, switching to the Deutz engine will reduce the contributions to 
the workplace DPM concentrations from that vehicle by almost two-thirds. If the ventilation rate 
must be increased from 2,500 to 3,000 cfm to accommodate the Deutz, then by virtue of this 
increased ventilation rate, the contribution of the Deutz to the workplace DPM concentration is 70% 
less than that of the Isuzu. 

The example involving the Isuzu and Deutz is not unique; numerous low-PI engines over 
100 hp are also available for substitution. Table A-1 in the appendix of this report lists MSHA-
approved engines. In this table, the engines with exceptionally low PIs have been identified. 
Significant workplace reductions, primarily in metal and nonmetal mines, can be achieved by 
replacing any existing engine having a high PI with a current MSHA-approved engine with a low PI. 

It is noteworthy that DPM reductions attainable by selecting clean engines or derating 
engines can be quite substantial. EPA-certified engines emit one-tenth the DPM than those of 
10 years ago. There remains a question (which NIOSH hopes to investigate) about the alleged 
increase in nanoparticle number from low-PI engines [Bagley et al. 1993; Baumgard and Johnson 
1996; Mayer 1997]. Health professionals are concerned and uncertain about the effect of 
nanoparticles on worker health. 

Lastly, for optimum results regardless of the choice made, the engine-out (before any 
aftertreatment if it is used) emissions of DPM and toxic gases must be kept to the minimum by 
diligent application of proper maintenance. 

2.2.2   Engine derating 

Substantial reductions in PM emission rates can result from lowering of the maximum 
fueling rate of an engine. It is possible that many of the engines certified by MSHA are certified at 
or very near their maximum power where PM emissions are quite high.  There is no restriction by 
MSHA on reducing the maximum power delivered by lowering the maximum fuel setting, i.e., 
derating. It is not unheard of that some mines choose to derate their engines to reduce DPM and CO 
emissions, reduce tire slippage and wear, and save on fuel costs.  The MSHA list provides some 
insight into the effects of derating an engine on PM emissions. 
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Table 4 shows the effects of derating on gaseous and DPM emissions from an Isuzu 
C240MA engine. The DPM emission rate can be reduced by 55% (calculated from the MSHA PI) 
with only a 7% reduction in power. If each engine is operated at the nameplate ventilation rate, the 
resulting DPM concentration is reduced by 62%. 

Table 4.—Derated Isuzu engine comparison 

Engine Rating 
hp @ rpm 

MSHA name 
plate ventilation 

rate, cfm 

MSHA PI, 
cfm 

MSHA 
approval 

Isuzu C240MA 56.0 @ 3,000 2,500 5,500 7E-B085-0 

Isuzu C240MA 52.0 @ 3,000 3,000 2,500 7E-B086-0 

The comprehensive list of MSHA-approved engines provided on pages 5667-5668 of the 
coal rule [66 Fed. Reg. 5526 (2001)] have the Isuzu QD100-306 engine listed at 66 hp with a PI of 
10,000 cfm and at 70 hp with a PI of 50,000 under the same approval number.  Therefore, the 
reduction of 4 hp by limiting the fueling rate results in an 80% reduction in the DPM emission rate 
for this engine. 

These two examples may be anomalies.  PM emission rates for certified engines at powers 
lower than that of the certification testing may be obtained from the engine manufacturer.  If the loss 
of power would not affect the performance of the equipment for a particular application, it is 
certainly advisable to check with the engine manufacturer on the emission reductions to be gained 
by derating the engine. If the derating is substantial, it is also advisable to check with the equipment 
or torque converter manufacturer to determine whether another converter should be used to obtain 
an optimum power match to the derated engine.  The proper procedures are explained by 
Forbush [2001]. 

2.3   Fuels 

In parallel to the development of the cleaner diesel engine technologies, much attention has 
been given to the defining of future diesel fuel quality requirements.  Extensive research in this field 
[Baranescu 1988; Cowley et al. 1993; Xiaobin et al. 1996] has shown that properties such as sulfur 
content, fuel density, cetane number, oxygen, and aromatic content are the physical and chemical 
properties that most significantly influence particulate and gaseous emissions.  Research by 
Den Ouden et al. [1994] showed that the contribution from fuel properties other than sulfur to heavy-
duty diesel emissions is comparatively small and can be characterized by a combination of cetane 
number and density. Fuel sulfur forms both sulfur dioxide (gas) and sulfates (solids at room 
temperature).  A comprehensive summary discussion and table are presented in the “Diesel Fuels” 
section of the Technology Guide of the DieselNet Web site [DieselNet 1998d]. 
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2.3.1   Commercial Fuel and the Effects of Sulfur 

The mechanism for sulfate formation is as follows:  during fuel combustion, the sulfur 
oxidizes to produce sulfur dioxide (SO2), a fraction (<5%) of which can be further oxidized to sulfur 
trioxide, SO3, which combines with water to form a sulfuric acid aerosol [Heywood 1988].  Studies 
with low-sulfur fuel revealed that the number of relatively large particles (>0.040 µm) remains 
unaffected when fuel with low sulfur content is used.  In contrast, low sulfur content is found to 
reduce the concentration of nanoparticles (<0.040 µm) by several orders of magnitude, revealing that 
most particles of this size are sulfur-related.  Certain aftertreatment technologies such as diesel 
oxidation catalysts (DOC) and catalyzed diesel particulate filters (CDPF) can exacerbate the 
conversion of SO2 to SO3 and thus should be used with ULSFs (<50 ppm) to minimize sulfate 
particulate formation and poisoning of the catalyst. 

Sulfur content in current low-sulfur diesel fuel (Federal LS No. 2 diesel fuel, which is the 
U.S. on-highway truck fuel) is on average 340 ppm (maximum of 500 ppm) by weight and, most 
likely, will be reduced further in the future.  The sulfur content of diesel fuel currently used in 
California (CARB diesel) averages 120 ppm S.  A recent economic study sponsored by the Engine 
Manufacturers Association (EMA) concluded that the incremental cost to reduce sulfur level in 
diesel fuel from the current 500 ppm to <50 ppm would be on average about 5 to 7 cents/gal [EMA 
1999]. The Manufacturers of Emission Controls Association (MECA) reported that reducing the 
level of sulfur in diesel fuel would allow the introduction in the United States of several promising 
control technologies that reduce emissions of NOx and PM [MECA 1999b].  In December 1999, 
ARCO announced plans to offer a cleaner burning diesel fuel to help reduce soot emissions from 
urban municipal fleets in southern California.  The ARCO fuel will have a maximum sulfur content 
of 15 ppm.  The price of the ARCO fuel is expected to be approximately 5 to 7 cents/gal more than 
that of the CARB diesel fuel (120 ppm S).  On December 21, 2000, EPA announced that refiners 
will be required to start producing diesel fuel for highway use with 15 ppm sulfur or less by June 
1, 2006, with availability at retail stations by September 1, 2006. 

Klein et al. [1998] studied the effects of fuel sulfur content on the PM emissions from diesel 
passenger cars equipped with oxidation catalysts.  The engines were tested at steady-state 
conditions. Klein et al. found that with low-sulfur fuel and low exhaust temperature, the PM 
reduction was linked to a shift in particulate size distribution toward smaller sizes.  For low-sulfur 
fuel and high exhaust temperature, the particulate mass emission rate increased with the use of an 
oxidation catalyst. This trend was attributed to SO3 production and a shift in particulate size 
distribution toward larger sizes.  For high-sulfur fuel and low exhaust temperature, PM emissions 
had the same trend as that for low-sulfur fuel and low exhaust temperature.  For high-sulfur fuel and 
high exhaust temperature, PM emissions showed the same trend as that for low-sulfur fuel and high 
exhaust temperature.  Significantly, Carder [1999] found that reducing fuel sulfur from 0.3% (3,000 
ppm) to 0.04% (400 ppm) resulted in a 22% reduction of DPM mass emission in an MWM D916-6 
engine operated over the ISO 8178 cycle. 

The Diesel Emissions Control–Sulfur Effects (DECSE) Program, a joint government/industry 
research effort, evaluated the impact of diesel fuel sulfur level on the emission control systems such 
as NOx absorber catalyst, DPF, lean-NOx catalyst, and DOC [DECSE 2001].  A study [DECSE 
1999] on the effects of diesel sulfur level on DOC performed on the Cummins ISM 370 engine 
showed that, at high exhaust temperatures (518 °C, OICA Mode 2), the engine-out PM emissions 
are largely independent of fuel sulfur level.  PM emissions over heavy-duty FTP cycle varied 
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independently of fuel sulfur levels for both engine-out and catalyst-out emissions.  At this condition, 
engine-out sulfate conversion was approximately 2%.  A DOC with relatively low precious metal 
content (low activity) increased the sulfate conversion to 10%.  Catalyst-out emissions showed a 
very strong sulfur effect: an increase in fuel sulfur from 3 to 350 ppm resulted in a 400% increase 
in PM emissions. 

A study [DECSE 2000] of the effects of diesel sulfur level on performance of a CDPF and 
a Continuously Regenerating Trap (CRT) using a Caterpillar 3126 engine showed that the engine-
out PM emissions increased approximately 30% when the fuel sulfur level was increased from 3 to 
350 ppm.  Both DPFs reduced PM emissions by 95% over the OICA cycle with 3-ppm sulfur fuel. 
However, with 30-ppm sulfur fuel, the PM reduction efficiencies dropped to 74% and 72% for the 
CDPF and CRT, respectively. With the 150-ppm sulfur fuel, the postfilter PM emissions increased 
and efficiencies were 0 and 3%; with the 350-ppm sulfur fuel, the PM emissions increase was 122% 
and 155% for CDPF and CRT, respectively. The effects of fuel sulfur level on gas-phase emissions 
and fuel consumption were not significant.  Analysis of the PM showed that the increases were 
attributable to the sulfur content.  Nearly 40% to 60% of fuel sulfur was converted to sulfate PM, 
as measured over the 13-mode OICA cycle for both DPFs. 

As a part of DETR/SMMT/CONCAWE Particulate Research Programme, Andersson and 
Wedekind [2001] compared effects of diesel fuel sulfur content on DPM emissions.  They compared 
diesel fuels with sulfur content of 500 ppm, 300 ppm, and 50 ppm with ultralow sulfur (<10 ppm) 
Swedish Class I diesel fuel. Ultralow sulfur showed a small, but significant reduction in particle 
mass and number compared to the other fuels tested.  Effects of fuel sulfur were found to be greatest 
within the nucleation mode particles. 

In summary, the sulfur content of diesel fuel adversely affects diesel emissions by producing 
SO2 and sulfates. The use of oxidation catalysts further increases the production of sulfates, which, 
unfortunately, are not significantly trapped by particle filters, decreasing their effectiveness to 
reduce DPM mass and creating the potential for nanoparticle formation [Kittelson 1998].  The rate 
of sulfate production depends on catalyst formulation and exhaust (catalyst) temperature.  Catalysts 
that are highly effective at converting CO and HC are also highly effective at SO2 conversion. It 
follows, therefore, that a less active catalyst produces fewer sulfates, but with the penalty of less 
reduction in CO and HC. At low exhaust temperatures (<225 °C), SO2 conversion to sulfates is 
minimal, but at higher temperatures (between 225 °C and 560 °C, peaking at 450 °C) conversion is 
substantial [DieselNet 1999a]. Since exhaust temperature is not a freely controllable parameter in 
the field, the production of sulfates and thus workplace concentrations vary greatly and are 
unpredictable. Additionally, sulfates poison catalysts. It is clear, therefore, that both SO2 and 
sulfates add to the toxic burden of the exhaust.  For these reasons, it is advisable to know the sulfur 
content of the fuel and crankcase oil used and to strive to use those with the lowest sulfur content 
in underground mines.  Use of lower sulfur fuels and oils results in lower exhaust toxicity from 
lower sulfate and permits the use of more active catalysts that are highly effective in reducing CO 
and HC. DOCC suppliers should take into account the sulfur content of the fuel used at their 
customers’ mines when providing DOCCs for their equipment. 

2.3.2   Alternative fuels 

Reformulated and alternative diesel fuels recently received significant attention as a way of 
controlling emissions and providing energy independence.  Fuels such as biodiesel and synthetic 
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diesel fuel obtained through Fisher-Tropsch (F-T) conversion are high-quality alternative fuels. 
These fuels can be used in neat form or blended with petroleum diesel fuel to make a cleaner diesel 
fuel. Fuel-water emulsions also promise reductions in the NOx and PM emissions. 

2.3.2.1   Fisher-Tropsch 

Fisher-Tropsch (F-T) conversion is a gas-to-liquid process used for synthesis of HC from 
CO and hydrogen. Historically, the process was used for producing synthetic diesel fuel from coal, 
natural gas, and biomass resources in countries where petroleum fuel stock was in short supply.  The 
process has received attention recently because of its ability to convert natural gas resources to 
liquid fuels and chemicals.  The synthetic diesel fuel produced by this process is of very high quality 
and has the potential to significantly reduce exhaust emissions.  The F-T fuels have a high cetane 
number (up to 70), a low sulfur content (<10 ppm), and a low aromatic content (<3%).  The benefits 
are most pronounced in reducing PM emissions [Schaberg et al. 1997; Mayer 1997; Norton 
et al.1999] owing in part to the almost complete absence of sulfur and its accompanying sulfate 
emissions.  Absence of sulfur also enables the use of catalytic oxidation technologies without the 
concern over catalyst poisoning or PM emission penalties from the catalytic creation of sulfates. 
McMillian and Gautam [1998] concluded that F-T fuels provide a basis for reduction of NOx using 
higher exhaust gas recirculation (EGR) rates.  However, the low efficiency of the F-T process 
currently makes this fuel expensive.  Because the lubricity of F-T fuel is significantly lower than that 
of regular diesel, the addition of a lubricity improver is required. 

F-T fuel is not commercially available in the United States, but companies including Shell, 
Chevron, Exxon, and ARCO are working on developing production.  F-T fuel is commercially 
available in the Republic of South Africa from companies such as Sasol and Mossgas.  Syntroleum 
Corp. currently owns and operates a pilot plant in Tulsa, OK, where it has successfully demonstrated 
numerous elements and variations of the Syntroleum Process (an F-T process based on a proprietary 
catalyst developed by Syntroleum) since 1990.  ARCO and Syntroleum are presently building a 
70-bpd demonstration plant at ARCO’s Cherry Point Refinery in Washington State.  Syntroleum and 
Enron are planning to complete an 8,000- to 10,000-bpd specialty chemical plant late in 2001. 
Syntroleum is expecting to build a commercial-scale gas-to-liquid plant within the next 3 years. 

Recently, the performance of synthetic diesel fuels was examined by several researchers. 
Schaberg et al. [1997] examined diesel exhaust emissions using Sasol slurry phase distillate (SSPD) 
process fuel. It was found that the SSPD fuels produce significantly lower emissions than the diesel 
No. 2 and CARB fuels in all four regulated emission categories.  When compared to the No. 2 diesel 
fuel, HC, CO, NOx, and PM emissions were reduced by 49%, 33%, 27%, and 21%, respectively. 
The exhaust emissions were lower owing to the very high quality of the synthetic diesel fuel used 
(cetane number >70, aromatic content <1%, sulfur content <10 ppm).  The soluble organic fraction 
(organic carbon (OC)) of the integrated PM was found to be significantly lower when the cetane 
number was increased, but this benefit was offset by an increase in the insoluble (EC) portion of the 
TPM. Schaberg et al. [1997] also found a linear relationship between fuel sulfur and the sulfate 
portion of total particulate emissions.  The influence of F-T fuel on the particle size of the PM was 
not examined. 

Mayer [1997] compared standard Swiss low-sulfur diesel fuel with a chemically pure 
paraffin fraction made by DEA-Mineralöl AG, Hamburg, Germany (negligible content of sulfur, 
nitrogen, and aromatics).  Emission improvements with synthetic fuel were reported as 
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“disappointingly low.”  Mayer concluded that the reformulation of diesel fuel cannot efficiently 
curtail the emission of ultrafine particles. 

More recently, Norton et al. [1999] examined regulated emissions from older model transit 
buses operated on an F-T fuel (produced by Mossgas of the Republic of South Africa) using West 
Virginia University’s transportable chassis dynamometer.  Three buses without and three with 
catalytic converters were tested. Compared to their emissions when operating on No. 2 diesel fuel, 
buses without catalytic converters emitted 20% lower PM; buses with catalytic converters emitted 
31% lower PM when operating on neat Mossgas fuel. 

Bugarski [1999] tested an Isuzu C240 engine with diesel No. 2 and neat F-T fuel.  It was 
found that when using the synthetic diesel instead of diesel No. 2 the mass of PM emitted decreased. 
However, the number of ultrafine particles, i.e., those particles that are thought to be deposited in 
the alveolar region of the lungs, unfortunately, increased. 

2.3.2.2   Biodiesel 

Biodiesel is defined as the monoalkyl esters of long-chain fatty acids derived from renewable 
lipid sources. Biodiesel is registered with the EPA as a pure fuel or as a fuel additive and is a legal 
fuel for commerce.  Pure biodiesel has extremely low sulfur content (maximum 50 ppm) and no 
aromatic content.  The cetane number of biodiesel is comparable to that of No. 2 diesel.  Since 
biodiesel is oxygenated (esters contain oxygen), its combustion in diesel engines is more complete 
than that of petroleum fuels. 

The use of biodiesel instead of regular diesel fuel in a conventional diesel engine may result 
in a substantial reduction of unburned HC, CO, and PM.  A slight increase in the NOx emissions 
(caused by a significant increase in NO2) was observed for neat biodiesel or biodiesel blends 
compared with regular diesel fuel [Sharp 1998]. Durbin et al. [2000] observed that 100% biodiesel 
and biodiesel blends produce slightly higher PM emissions from 1995 Ford 350 than the California 
330-ppm sulfur fuel.  Durbin et al. also observed significant difference in the fuel effects on 
emissions for different vehicles.  Absence of sulfur also enables the use of catalytic oxidation 
technologies without the concern over catalyst poisoning or PM emission penalties from the 
catalytic creation of sulfates. A U.S. Bureau of Mines study reported by Howell and Weber [1997] 
showed PM reductions of 50% when neat biodiesel was used instead of regular diesel fuel.  The test, 
performed with biodiesel and biodiesel blends in underground mines, also resulted in noticeably less 
offensive exhaust odor. A study conducted for DEEP by the combined staff of NIOSH, University 
of Minnesota, Michigan Technological University, and ORTEC reported by Watts et al. [1998] and 
Bagley and Gratz [1998] in an isolated zone of an underground metal mine compared standard low-
sulfur No. 2 diesel fuel with a blend of 55.6 vol % soy methyl ester and D2 fuel.  The test vehicle 
was equipped with a DOC for both fuels. The observed reduction in DPM was approximately 20% 
when measured by RCD or NIOSH 5040 methods [Watts et al. 1998].  Bagley and Gratz [1998] 
reported a reduction in solid particle fraction (SOL) of 20% and a reduction of 75% in mutagenic 
activity. 

The synthetic diesel and biodiesel fuels can be used in existing engines and fuel injection 
systems without negatively impacting operating performance.  Additionally, results of tests on 
Jet A-1 fuel conducted at Southwest Research Institute concluded that biodiesel shows significant 
lubricity improvement compared to diesel fuel [Howell and Weber 1997].  In general, biodiesel fuel 
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produces lower CO, HC, and carbon particles, but increased soluble OC, so that TPM mass may 
either decrease slightly or increase. 

McCormick et al. [2001] studied the impact of biodiesel chemical structure, specifically fatty 
acid chain length and a number of double bonds, on emissions of NOx and PM. Seven biodiesel 
fuels produced from real-world feedstocks and 14 produced from pure fatty acids were tested in a 
heavy-duty truck engine using the U.S. heavy-duty Federal test procedure.  They found that NOx 
emissions increased with increasing fuel density or decreasing fuel cetane number of biodiesel fuel. 
For tested biodiesel fuels with density <0.89, PM emissions were found to be constant.  McCormick 
et al. also concluded that PM emissions were impacted only when cetane number values were less 
than those of conventional diesel fuels today. PM reductions were found to be proportional to the 
fuel oxygen content for biodiesel fuels with cetane number greater than about 45 or density less than 
0.89. An increase in NOx emissions over petroleum diesel was evident, but they could not explain 
a mechanism that would cause it. 

Biodiesel over time will soften and degrade certain types of elastomers and natural rubber 
compounds.  Therefore, precautions are needed when using high-percentage blends to ensure that 
the existing fueling system, primarily its fuel hoses and fuel pump seals, does not contain elastomer 
compounds incompatible with biodiesel.  If a vehicle’s fuel system contains these materials, their 
replacement with biodiesel-compatible elastomers such as Viton B is recommended.  The recent 
switch to low-sulfur diesel fuel has caused most original equipment manufacturers (OEM) to switch 
to components suitable for use with biodiesel, but users should contact their OEM for specific 
information.  Fuel-injection equipment manufacturers have agreed that fuels containing up to 5% 
of biodiesel are compatible with existing equipment. 

Petkewich [2001] reported that the first two public filling stations offering biodiesel fuel in 
the United States were opened in San Francisco, CA, and Sparks, NV, in May 2001.  As of 
November 19, 2001, the price of neat biodiesel is about $2.20.  The “Biodiesel Fuel” section of the 
Technology Guide [DieselNet 2001] provides a comprehensive discussion of this subject.  An 
extensive list of the published literature on biodiesel fuels is available on the EPA Web site [EPA 
2001] and on the Web site of the National Biodiesel Board [2001]. 

2.3.2.3   Fuel-Water Emulsions 

The potential for reducing diesel emissions by adding water to diesel fuel (fuel-water 
emulsions) has been extensively explored recently.  Introducing water to the combustion chamber 
of diesel engines has the effect of reducing combustion temperature and thus reducing the 
production of NOx. Other effects are the reduction of PM and an increase in CO and HC emissions. 
Fuel-water emulsions have been reported to reduce both NOx and PM by 40% to 50% [DieselNet 
1998b; Langer and Daly 1999]. Langer and Daly [1999] also indicated that there was no fuel cost 
penalty. The additional CO and HC produced can be handled by a DOCC.  Special blending 
technologies, usually involving additives, are required to keep the water and petroleum-based fuel 
oil together in a stable emulsion.  On the negative side, fuel oil-water emulsions suffer from the 
potential for corrosion of engine parts, freezing, emulsion instability in storage, and reduced 
lubricity. Ongoing research is addressing these problems and is driven simply by the cost-
effectiveness of this technology. 

Several low-emission, diesel fuel-water blends and blending technologies are available on 
the market.  For example, A-55, Inc., has developed a clean fuel composed of 20% to 30% water, 
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70% to 80% petroleum, and 0.5% of the A-55 additive.  The A-55 fuel is injected as small droplets 
into the engine’s combustion chamber in the same way as traditional fuels.  However, once inside 
the combustion chamber, the water in the A-55 fuel vaporizes, shattering the fuel droplets into much 
smaller droplets.  This secondary atomization of the fuel results in more complete combustion, 
reducing particulate emissions that are the product of incomplete combustion. 

Lubrizol Corp., in conjunction with Caterpillar, Inc., developed the water emulsion fuel 
technology named “PuriNOx.”  The fuel emulsion is applicable to direct-injection heavy-duty diesel 
engines. According to Lubrizol, the technology is compatible with existing engines and 
aftertreatment devices.  The system requires a relatively elaborate fuel mixing plant and thus is well 
suited for larger mines with centrally fueled fleets.  The manufacturers claim reductions in NOx 
emissions from diesel engines of up to 30% and reductions of PM emissions of up to 50%.  Using 
emulsions results in a 10% to 15% loss in engine rated power observed with regular diesel fuel 
[Lubrizol 1999]. 

According to the manufacturers, the fuel-water emulsions should be similar to or lower in 
price than diesel fuels and can be used as ordinary fuel without any modifications whatsoever. 

2.3.3   Fuel Additives 

Metals (such as platinum (Pt), strontium (Sr), copper (Cu), and iron (Fe)) and the rare earths 
(such as cerium (Ce)), when added to diesel fuel in small concentrations, were found to be efficient 
at oxidizing the soot, thereby reducing visible smoke [Howard and Kausch 1980].  Test results also 
showed that fuel additives may decrease the solid PM in raw exhaust by 15% to 25% [Lepperhoff 
et al. 1995; Mayer et al. 1999]. More significantly, FBCs lower the regeneration temperatures of 
DPFs. Spontaneous regeneration of uncatalyzed filters without FBC occurs at 550 °C to 650 °C. 
Use of a catalytic coating on the filter element and an FBC significantly lowers regeneration 
temperatures.  Also, the type and dosage level of the fuel-borne additive make a significant 
difference in regenerating temperatures.  For instance, when a Ce-based FBC is used, continuous 
regeneration of the catalyzed filters occurs at exhaust gas temperatures >400 °C, while stochastic 
(balanced or equilibrium) regeneration occurs between 200 °C and 400 °C [Lepperhoff et al.1995; 
Bach et al. 1998]. Regeneration is unlikely to occur at temperatures <200 °C.  Jelles et al. [1999] 
found that a Pt-Ce fuel additive supports continuous regeneration of a CDPF at temperatures 
>327 °C. 

Today, it is recognized that the primary reason for using an FBC in underground operations 
is to attain spontaneous regeneration of DPFs at the lowest possible exhaust temperature.  Use of 
an FBC for this purpose is pervasive in the tunneling equipment equipped with DPFs in Europe 
[Schnakenberg 1999a]. When the FBC is used in combination with a DPF, there is no concern with 
the toxicity of the metallic ash (emitted as nanoparticles).  Furthermore, as noted above, some FBCs, 
notably the Pt-Ce FBC, are effective at extremely low dosing levels.  In fact, Duffy and Samarchi 
[1997] observed no significant increase in toxicity of the raw exhaust with the optimum dose level 
of 7 ppm Pt-Ce.  Thus, with a DPF in place, the toxic potential of this FBC is insignificant. 

Dosage of the FBC is an important subject of optimization.  It was found that regeneration 
quality is not further improved if a threshold dosage is exceeded [Burtsher et al. 1999].  Minimizing 
the FBC dosage is important in order to minimize costs, to lower the potential increase in exhaust 
toxicity owing to the emission of the FBC metallic ash in the form of nanoparticles, and to reduce 
ash buildup on the DPF. A typical dosing level for the Fe-based additive Satacen® is about 
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36 ppm Fe.  The typical dosing of Octel Octimax 4800 is 20/5 ppm of Fe/Sr.  Considerably less ash 
is produced by Pt-Ce because the dosing level is much lower (2-8 ppm, with the Pt usually 
<0.5 ppm).  The accumulated ash will eventually (at >2,000 hr of operation with Satacen and 
proportionally longer for Pt-Ce) require cleaning the DPF. 

In addition to the minor problem of ash accumulation, a more serious concern related to the 
use of the fuel additives is the emission of the FBC metal oxide upon DPF malfunction and the 
unintentional use of fuel containing an FBC in a vehicle not equipped with a DPF.  Periodic 
monitoring of DPF performance could prevent potential for extended exposures to FBC ash.  It is 
important to ensure that fuel containing the FBC is used only by engines with DPFs.  Furthermore, 
adding the FBC to the equipment fuel tank upon fill-up does not ensure proper dosage.  On-board 
fuel-dosing systems are available on the market, but they are not yet perfected [Schnakenberg 
1999a]. For these reasons, it is necessary to use separate fuel storage and handling systems at this 
time.  One system stores and dispenses fuel for vehicles without DPFs, the other stores and 
dispenses fuel to which an FBC has been added and is intended for use by vehicles with DPFs.  This 
segregation of fuel is the only burden to the mine imposed by FBC use.  When perfected, the 
on-board dosing systems would eliminate the need to segregate fuel supplies for DPF-equipped and 
non-DPF-equipped vehicles. 

The selection and formulation of the FBC is probably the domain of the fuel additive 
manufacturer and the DPF system supplier.  Temperature-time profiles of the engine exhaust 
temperature, taken during full-shift operation of the vehicle intended to receive a DPF, are essential 
in selecting an FBC. Some of the FBC products on the market are: 

(1) EOLYS-DPX9® (Ce) by Rhodia (formerly Rhone-Poulenc, Inc.); 
(2) Platinum Plus® (Pt-Ce) by Clean Diesel Technology (a Ce-based additive supplied by 

Rhodia); 
(3) Ferrocene (Fe) by Aldrich; Satacene®, Sat Chemie Gmbh, now Octel, U.K.; 
(4) OS-96401(Cu) by Lubrizol; and 
(5) Octimax® OCI-4800, Fe-Sr; Octel America, Inc. 

The Health Effects Institute (HEI) conducted a study [HEI 2001] on health risks associated 
with Ce-based additives and concluded that using Ce as an FBC with a particulate filter would result 
in a measurable increase in the ambient levels of cerium oxide in particles <0.5 m (perhaps up to 
several orders of magnitude greater than current levels) depending on the level of Ce actually used, 
the filter efficiency in trapping the particles, and the degree of penetration in the vehicle fleet. 
HEI found as result of short-term diesel engine tests that despite the high efficiency of filters in 
trapping PM (>90%), a small amount of Ce was emitted in the particulate phase of the exhaust. 
Ce mass relative to the total particle mass was found to be between 3% and 18% based on two tests 
using two different types of filters. Based on the limited data available, HEI found that toxicity of 
cerium oxide seems to be small and that cerium oxide might not be of concern when inhaled at the 
low levels. 

2.3.3.1   Review of the Published Research 

Lepperhoff et al. [1995] conducted a study on the performance of a Ce-based fuel additive 
(DPX6, Rhone-Poulenc) in relation to particulate trap (Corning EX-47) regeneration quality, 
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trap filtration efficiency, particle size distribution, and fate of the additive under steady-state engine 
operating conditions. Lepperhoff et al. found that a Ce FBC, when added at a dosage of 50 ppm of 
Ce by weight, reduced particulate emissions by roughly 20%.  The DPM reduction mainly resulted 
from the reduction of the EC content, and the quantity of the volatile HC was unaffected.  In 
addition, the tested fuel additive lowered the collected PM ignition temperature to 200 °C.  When 
using the Ce fuel additive at the Ce dosage of 50 ppm by weight and the Corning EX-47 trap, 
DPM emissions were reduced by >90%.  Ninety-seven percent of the Ce compounds were filtered 
by the trap. 

Jelles et al. [1999] examined the performance of different additives.  The results of their 
testing are shown in table 5. 

 

Table 5.—Minimum temperature for continuous regeneration  [Jelles et al. 1999] 

Additive Concentration, 
ppm wt. Filter Minimum 

temperature, °C 

None — EX-80 540 - 560 

None — Pt EX-80 420 - 430 

Ce 100 EX-80 430 

Pt-Ce 0.5 - 5 Pt EX-80 330 

Pt-Cu 0.5 - 5 Pt EX-80 350 

Pt-Fe 0.5 - 22 Pt EX-80 360 
NOTE: EX-80 designates the type of Corning monolith filter material; Pt EX-80 indicates that the substrate is catalyzed 
with Pt. 

The highest temperature observed during a regeneration of the filter was >900 °C. 
Mayer et al. [1999] found that the use of Cu-based fuel additives resulted in elevated dioxin 

and furane emissions.  Therefore, Mayer et al. suggested that Cu additives should not be used in the 
fuel for underground machinery.  The tests also showed that the use of Fe and Ce additives did not 
result in elevated dioxin and furane emissions. 

Burtsher et al. [1999] examined the effects of the use of Ce-based fuel additives on the 
emission of nanoparticles and the concentration of the additive in the exhaust.  The measurements 
were made on the exhaust generated by a heavy-duty diesel engine (Liebherr 914T) and a small 
naturally aspirated Yamaha diesel engine.  The Ce additive at concentrations of 20 and 100 ppm was 
found in the particulate phase of the exhaust.  The measurements taken by the scanning mobility 
particle sizer (SMPS) showed that the concentrations of nanoparticles significantly increased with 
increases in the concentrations of the additive in the fuel.  Chemical analysis showed that the small 
particles consisted only of the additive material.  Since there is concern with human exposure to 
nanoparticles, Burtsher et al. concluded that diesel exhaust filters should be used to eliminate 
emission of additive-based nanoparticles. 

In sum, FBCs should be used mainly to enhance the regeneration performance of DPFs. 
Care should be taken to ensure that FBCs are added only to the fuel that will be used exclusively by 
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engines equipped with the DPFs. Filters successfully curtail emissions of the metallic ash resulting 
from the use of additives.  It is equally important to avoid use of the regular fuel with filter-equipped 
engines. With regular fuel, the filter may fail to regenerate, consequently overloading the filter with 
soot and eventually causing the filter and engine to malfunction.  The additional cost associated with 
the use of an additive is usually less than 10 cents/gal (4 to 7 cents/gal for Platinum Plus®, for 
example).  MSHA requires [30 CFR 75.1901(c)(1996)] that any fuel additive used in underground 
coal mines be registered with the EPA in accordance with 40 CFR 79.  According to the literature, 
most of the commercially available additives are EPA-approved; all except the Cu-based additives 
are acceptable for underground use. 

2.4   Aftertreatment Technologies 

2.4.1   Diesel Oxidation Catalytic Converters (DOCCs) 

The primary function of a DOC is to oxidize CO and HC to CO2 and water in an exhaust gas 
stream.  The role of the catalyst is to increase the oxidation rate without itself being consumed in 
the process. The catalyst also substantially reduces the temperature needed for oxidation of the CO 
and HCs. Catalysts are characterized by their activity and selectivity. Both characteristics are 
influenced by temperature.  DOCs reduce DPM emissions by oxidizing some of the less volatile HCs 
that contribute to the SOF of the PM mass or become bound to the soot particles by adsorption.  On 
the other hand, DOCs have no effect on the solid core carbon particles (soot) that also make up 
DPM. The efficiency of a DOC can be reduced by catalyst poisoning or excessive accumulation of 
the DPM on the catalyst’s surfaces. A catalyst can be poisoned by fuel sulfur and compounds from 
lubrication oils. 

Some other gaseous components of diesel exhaust are not fully oxidized and thus are also 
candidates for oxidation by the DOC.  NO and SO2 are of particular concern. Nitrogen and oxygen 
(air) spontaneously combine at high combustion temperatures to form mostly NO and a little NO2. 
SO2 is produced by oxidation of the sulfur in the fuel during combustion.  Further oxidation of NO 
and SO2 takes place in the DOC at high exhaust temperatures to produce sulfate and NO2. The 
unfavorable gaseous phase reactions taking place in the DOC are NO 6 NO2 and SO2 6 SO3. These 
reactions increase the toxicity of the emitted exhaust.  NO, with a TLV of 25 ppm and a 
toxicological behavior similar to that of CO, is converted to the acid gas NO2, which has a ceiling 
of 5 ppm and attacks the mucous membranes, increasing the likelihood of infection and causing 
long-term effects from constant irritation as well.  The impact of an increase in NO2 emissions on 
local workplace concentrations depends on the distance from the tailpipe and whether there is a 
mechanism for adsorption of NO2 (such as the rock dust and wet walls in coal mines).  SO2 is also 
converted to SO3, which further combines with water to form sulfuric acid aerosols.  The TLV for 
sulfuric acid is 2.5 mg/m3. It is important in the purchase of DOC to specify that it is for diesel use, 
the fuel sulfur level, and that NO conversion should be specified if not controlled. 

Performance of a DOC is a function of the fuel composition and exhaust temperature.  When 
standard, low-sulfur, Federal diesel No. 2 fuel (D2) containing an average of 340 ppm by weight of 
sulfur is used, the exhaust exiting the DOC may contain elevated concentrations of sulfuric acid and 
sulfate aerosol. Researchers [Mayer 1997; Klein et al. 1998; Carder 1999] observed substantial 
increases in particulate mass and particle number in exhausts treated with DOCs.  They noticed that, 
depending on the concentration of sulfur in the fuel and the exhaust temperature, DOCs may 
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enhance the emission of sulfate aerosols.  The increase in PM mass and number was, however, more 
pronounced for those engine operating conditions that generate high temperature exhaust and thus 
provide favorable conditions for sulfate formation.  Therefore, the sulfur content of diesel fuel is 
critical in the design and application of catalyst technology.  The use of ULSFs (<50 ppm by weight) 
results in substantial reduction in sulfate formation and TPM emissions.  The use of low-sulfur fuel 
also reduces the risk of poisoning a catalyst.  Since a catalyst is more efficient at high temperatures, 
a DOCC needs to be positioned close to the engine. A heat retention blanket should be used in the 
case of longer exhaust runs to maintain exhaust temperature. 

The science of formulating exhaust catalysts involves numerous factors, including selection 
of metal or metal combinations, supporting structure, interactions with stabilizers and promoters, 
and heat treatments.  Catalyst formulations are usually proprietary.  DOCCs presently in use mostly 
appear as two forms of cellular monoliths [DieselNet 1998a] that have replaced the pelletized forms. 
Figures 1 and 2 illustrate the differences between ceramic monolith [DieselNet 1997a] and the 
metallic monolith [DieselNet 1997b] design.  Both are characterized by a high substrate area-to
volume ratio.  They are usually enclosed in a stainless steel container adapted to fit the exhaust 
system.  The size of the DOCC needs to be optimized with respect to engine size.  The volume of 
the DOCC should be approximately equal to engine displacement [MECA 1999a]. 

DOCCs are extensively used for on- and off-road applications.  They are also used by 
underground mine operators as an emission control device to reduce odor, HC, and CO emissions 
from diesel equipment [McClure et al. 1988].  Mayer [1997] has suggested that the positive effects 
of using DOCCs are irrelevant to construction site diesel engines used in tunnels.  Therefore, 
a DOCC should not be deployed for utility vehicle diesel engines in an underground environment 
because the negative effects far outweigh the benefits.  However, if and when ULSF (<50 ppm by 
weight) or sulfur-free fuel is available and used, DOCs with formulations that minimize the 
formation of NO2 can be used to achieve significant reductions in CO and HCs (and thus DPM and 
odors). 

Catalyst substrates are designed to last the entire lifespan of the engine.  The substrates can 
stand harsh operating conditions and offer good thermal durability.  The major reason for DOCC 
failure is deactivation of the catalyst. Catalysts can be deactivated by high temperatures (>650 °C) 
and poisoned by lubricating oil additives (phosphorus, zinc, heavy metals) and fuel sulfur [DieselNet 
1998c]. Leaks of lubricating oil into the exhaust system are very detrimental to catalyst life. 
Heywood [1988] and the more current “Technology Guide” at www.DieselNet.com/tg.html provide 
good reviews of DOC and DOCC technology. 

Figure 1.—Monolithic catalyst substrates. Figure 2.—Catalyst washcoat. 

2.4.1.1   Review of Published Results 



25 

Because catalyst formulations can be varied to accommodate various objectives and fuel 
sulfur levels, the performances reported must be carefully scrutinized.  Early studies such as 
McClure et al. [1988], which investigated the effectiveness of DOCCs used in an underground 
mine, found that although DOCCs are effective at reducing CO, HC, and odors when the exhaust 
temperature remains >250 °C, they increased NOx emissions slightly.  Sulfate emissions were found 
to increase, but the fuel sulfur level was >1,000 ppm, whereas fuel sulfur levels for fuel currently 
available in the United States averages 350 ppm. 

Pataky et al. [1994] investigated the effects of a DOCC on regulated and unregulated 
emissions from a 1991 prototype Cummins L10-310 diesel engine fueled with 100 ppm by weight 
sulfur fuel. The DOCC with metallic substrate and Pt coating was supplied by the Degussa Corp. 
Pataky et al. reported that the DOCC had no significant effect on NOx and NO at any test mode.  The 
DOCC reduced HC emissions by 60% to 70% and TPM by 27% to 54%, primarily as a result of a 
53% to 71% reduction of the  SOF.  The DOCC increased SO =

4  at the higher temperature modes, 
but had no effects at the lowest temperature mode. 

DOCCs were used in the DEEP biodiesel study [Watts et al. 1995; Bagley and Gratz 1998]. 
Tailpipe emissions under torque converter loading showed 98% to 99% reduction in CO, but an 
increase of NO2 by 185% with the standard low-sulfur D2 fuel and 233% with the 55.6% blend of 
biodiesel and the standard fuel. This study also included 1 day of running without a DOCC 
(compared to 4 days of testing each on the blend and straight D2).  Without the DOCC, CO was 
significantly greater than CO with the DOCC; the NO2 was about one-third of the value with 
the DOCC. 

Carder [1999] reported that the tested DOCC reduced HC and CO by an average of 72% and 
93%, respectively, while NOx emissions were not significantly affected.  Interestingly, the exhaust 
treated in the DOCC contained on average 66% higher DPM.  The substantial increase in DPM 
emissions was attributed to sulfate formation. 

Six different DOC formulations were tested on a Detroit Diesel Series 60 engine by MECA 
[1999a]: two of low-activity, two of medium-activity, and two of high-activity.  The fuel sulfur 
level was 368 ppm for the baseline.  MECA researchers found that an optimized catalyst system can 
achieve emission reductions of >35% for PM and 70% for HC and CO.  Gaseous emission 
reductions of HC and CO were found to be directly related to catalyst activity.  The researchers 
found that DOCs are extremely effective at reducing PAHs and other HC emissions.  They also 
found that a DOC can be used in conjunction with an FBC to offset increased PM emissions 
resulting from the use of EGR. 

In conclusion, DOCCs are formulated specifically for diesel engine use and to balance the 
beneficial reductions of CO and HC with the increase in NO2 and sulfates. Use of ULSFs allows 
catalyst formulations that are more effective in reducing CO and HC without the penalty of sulfate 
(counted as DPM mass) formation.  Conversion of NO to NO2 may be an issue. 
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2.4.2   Diesel Particulate Filters (DPFs) 

DPFs were found to be technically feasible, controllable in the field, and a cost-effective 
technology for controlling DPM in European tunneling work [Mayer 1997] and Canadian 
underground metal mines [McGinn 2001a].  Two performance aspects of DPFs are crucial: 
the filtration efficiency of the system and the ability of the system to regenerate and provide long-
term operation without diminishing the filtration efficiency of the filter and performance of the 
engine. The design and performance of DPF systems strongly depend on the vehicle/engine duty 
cycle, and the systems require optimization for specific applications.  Vehicle/engine type and 
operating conditions must be recognized before the design and optimization process. 

2.4.2.1   Particulate Filter Design 

Filter Media 

Filters control DPM emissions by physically trapping soot particles in their structure.  Major 
designs of particulate filters on the market are based on media such as porous cordierite and silicon 
carbide (SiC) wall-flow monoliths and on deep-bed fiber filters constructed from matted, woven, 
or knitted glass or ceramic fibers.  Wire mesh, nonwoven SiC ceramic fiber, and sintered metal 
substrates are some of the alternative substrates still under scrutiny by researchers.  Filter media can 
be catalyzed to enhance filtration efficiency and removal of some gaseous compounds and to lower 
the regeneration temperature. 

Wall-flow monoliths, namely the cordierite filters from Corning, Inc., and NGK Insulators 
Ltd., are the best known and have the longest history of use (since the early 1980s) among all 
available materials (figure 3).  Exhaust flows through the porous ceramic walls (wall flow), and 
DPM is collected on the upstream side of the walls, as shown in figure 4.  The surface of the 
upstream wall may also contain a catalytic washcoat to help lower the autoregeneration temperature. 
Corning’s EX-80 is currently the most popular wall-flow monolith material.  Recently, Corning 
developed a new material (DuraTrap RC) with larger filtration areas and better thermal and 
mechanical properties [Corning, Inc. 2000]. 

Figure 3.—Example of a 
ceramic monolith filter element. 

Figure 4.—Gas flow in a monolith, wall-flow filter.  (Photo-
graph courtesy of Corning Incorporated.) 
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In recent years, SiC materials (Ibiden Co. Ltd., NGK, NoTox A/S) has been successfully 
established as a viable alternative to cordierite.  SiC has lower thermal shock resistance, but its 
higher melting temperature makes it more durable over cordierite substrates during uncontrolled 
regeneration. SiC filters also have higher porosity than cordierite, which results in less back 
pressure. SiC filters are generally more expensive than equivalent filters made of cordierite. 

Fiber filters are classified as deep-bed or depth filters because the particles are trapped deep 
within and onto the filter fibers directly, as shown in figure 5.  The filter material is supported 
between two long, narrow concentric cylindrical grids or mesh to form a thick-walled tube.  The 
exhaust flows through the walls of the tube, and several of these tubes are assembled to form a filter 
(figure 6). The fiber surfaces of these filters may also be catalyzed. 

Mayer et al. [1995] found that the ceramic monolith surface filter and the deep-bed filter of 
knitted fibers have distinctively different properties.  When evaluated on a gravimetric basis, both 
systems showed comparable efficiencies of around 90%.  When evaluated on a particle-count basis, 
the efficiency of the surface filter was <70%, while that of the deep-bed filter was >90%.  The 
efficiency of the surface filters was found to deteriorate for particles <100 nm, falling practically to 
zero for the 30-nm-diam particles.  The efficiency of the surface filter increased with loading 
(formation of the filter cake), and there was a simultaneous progressive increase in back pressure. 
The filtration efficiency of knitted fiber filters was found to be highest in the new state, but 
deteriorated slightly with increased loading. 

The efficiency of a DPF in the removal of CO, HCs, and the OC fraction of DPM from the 
exhaust stream can be enhanced by adding an oxidation catalyst to the filter material.  In addition, 
a catalyst lowers the ignition temperature for initiating the autoregeneration process.  DPFs can be 
catalyzed by a washcoat or by deposition of catalytic material from an FBC.  The formulation and 
quantity of a catalyst need to be designed and optimized for a particular application, specific to the 
exhaust temperature of the engine considered, the engine duty cycle, and the formulation of the fuel. 
Armed with these parameters, the DPF manufacturer can specify the appropriate catalyst technology 
or recommend other means to accomplish DPF regeneration.  An excess of catalyst in a system may 
result in increased emissions of sulfates or NO2 and increased toxicity of the exhaust.  An 
insufficient amount of catalyst in a system may result in reduced efficiency of the system and/or the 
inability of the system to regenerate under the duty cycle.  Properly optimized amounts of a catalytic 
coating and FBC allow for the use of Federal diesel No. 2 fuel with its specified maximum of 
500-ppm sulfur. 

Figure 5.—Knitted microfiber filter 
(deep-bed filter). 

Figure 6.—Example of a particulate filter system 
using fiber media. 
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DPF size depends on the size of the engine, the engine-out DPM emissions level, and the 
regeneration technique used. When systems are not capable of autoregeneration, filters are 
significantly larger to accommodate soot collected during relatively long periods of operation 
without imposing excessive exhaust back pressures. 

Installations of a DPF system require instrumentation for monitoring the exhaust gas back 
pressure. A gauge indicating exhaust back pressure as well as a visual and audible alarm should be 
installed on the dashboard of a vehicle where the driver can observe it to ensure that the back 
pressure remains under limits recommended by the engine manufacturer (usually between 100 and 
200 mbar).  Thus, the driver can take corrective action if the back pressure exceeds recommended 
limits.  Postnikoff [1999] found that the back pressure gauge, more specifically the tube from the 
exhaust pipe to the gauge, is the weakest component of a DPF system.  This tube may become 
clogged with soot during use and needs to be cleaned periodically using compressed air. 

Maintenance of an autoregenerating DPF consists of, at most, removing it from the vehicle 
and cleaning accumulated ash from it.  The need for these actions can be detected by an increase in 
baseline back pressure. The need for cleaning usually occurs at 2,000 hr or more depending on the 
FBC dosing and amount of lubrication oil ash.  This period can be extended by using lubrication oils 
with low ash content and, when needed, fuel catalysts that require low dose rates.  Additional efforts 
are needed to support filters that require off-shift regeneration.  In addition to routine (monthly) 
maintenance checks on vehicle emissions is the need to measure the exhaust DPM to verify 
performance.  According to the experiences of manufacturers, researchers, and operators, DPF 
systems do not seem to cause any additional engine wear or otherwise affect vehicle maintenance. 

Approximately 1,600 knitted glass fiber DPFs manufactured by Oberland Mangold GmbH 
have been deployed on different diesel engines, mostly in tunneling and mining [Kahlert 1999].  The 
exhaust temperatures are high enough to cause the collected PM to be removed by oxidation 
sometimes with the assistance of an FBC.  Some of the Oberland Mangold systems have achieved 
over 8,000 hr of operation without failure or loss of efficiency.  Postnikoff [1999] reported that a 
typical service life for a ceramic DPF deployed on vehicles in Agrium, Inc., potash mines is 5 years 
under severe service. Significantly, the author also reported that a few of the Engelhard Corp. units 
(ceramic DPF) presently have 10 years of service.  Early on, premature failures of the ceramic DPF 
also occurred and were attributed to extreme vibrations and shock or improper canning. 

Regeneration Methods for Particulate Filters 

The soot collected by DPFs needs to be removed to avoid excessive fuel penalty and damage 
to the engine and the filter. The removal of the soot, termed “regeneration,” is a rather complex 
process. Many process parameters must coincide to ensure regeneration that does not harm the 
filter. The governing parameters are exhaust gas temperature, exhaust gas back pressure, the 
remaining oxygen content in the exhaust gas, volumetric flow rate, etc.  When the temperature in 
a DPF exceeds the required soot ignition temperature, the DPM burns and the back pressure 
decreases. 

Depending on the exhaust temperatures, DPF systems are designed to regenerate on-board 
the vehicle during on-shift use, or either on-board or off-board while the vehicle is off-shift. 
Regeneration must occur at intervals that are frequent enough to ensure that the filters do not 
become overloaded.  The concept of on-board, on-shift regeneration was found to be superior to 
off-shift regeneration due to significantly lower operating costs.  Most importantly, on-shift in-line 
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regeneration systems offer unrestricted vehicle operation during the regeneration process and are 
thus favored by vehicle/engine operators. 

The temperatures at which DPM burning occurs are generally higher than the exhaust 
temperatures commonly achieved by modern engines.  Tests by Bach et al. [1998] showed that 
uncatalyzed filters spontaneously regenerate at 550 °C to 650 °C.  However, the exhaust 
temperatures in most heavy-duty diesel applications do not exceed 450 °C.  Modern turbocharged 
diesel engines at low loads run at even lower exhaust gas temperatures, very often <200 °C 
[Bach et al. 1998]. 

A number of techniques have been developed for active and passive on-board regeneration 
of filters during continuous operation of a vehicle.  The passive approach requires that vehicles 
operate at high part-loads or at full loads for at least 20% to 25% of the time with idling periods 
minimized.  The deployment of particulate filters relying on passive regeneration is not 
recommended if the engine/vehicle is operating exclusively at low to medium part-load. 

The active regeneration approach allows more flexibility regarding engine operating 
conditions, but requires a source of energy for the heaters.  Thus, it is imperative when considering 
using a DPF to obtain a temperature-time profile of the exhaust temperature for the vehicle to be 
equipped with the DPF. Armed with the temperature profile, the DPF manufacturer can specify the 
appropriate catalyst technology or recommend other means to accomplish DPF regeneration. 

Field data indicate that mine vehicles, depending on the type of operation, spend a significant 
percentage of time at engine operating conditions that do not favor passive regeneration.  Data 
obtained from the engine control management system of trucks at Noranda, Inc.’s Brunswick Mine 
[McGinn 2001b] show that those vehicles average over 30% of the time at low idle. 

During continuous regeneration, the average rate of PM mass accumulation and the average 
rate of removal are in balance.  At low exhaust temperatures, mass accumulates until the rate of 
accumulation equals the rate of removal by burning and an equilibrium loading and back pressure 
are reached. At these conditions, the engine back pressure should remain within acceptable limits. 
If regeneration does not occur frequently enough, a DPF may become overloaded with DPM. 
Excessive accumulation of DPM may result in uncontrolled regeneration.  During uncontrolled 
regeneration DPM burns too quickly; this results in extremely high temperatures and CO emissions. 
Regeneration can cause high thermal stresses in the filter, which leads to cracks in the material.  In 
addition, at high regeneration temperatures, chemical reactions can occur when fuel additives are 
present. This might result in changing the crystal structure, strength, and filtration properties of the 
ceramic filter. 

Passive regeneration of a filter is promoted by use of catalytic coatings and/or FBCs.  Base 
metals (Fe, Sr), precious metals (Pt), and rare earths (Ce) have roles in reducing the ignition 
temperature necessary for oxidation of the PM.  To obtain continuous regeneration, a DPF needs to 
reach the regeneration temperature frequently during a vehicle/engine duty cycle.  The dosage of 
the coating and FBC needs to be optimized with respect to vehicle/engine operating conditions and 
fuel type used.  In experiments, unsuccessful coatings on filters were found to reduce particle 
collection efficiency and reduce aerodynamic regeneration effectiveness of DPFs [Larsen et al. 
1999]. Excess catalyst may also result in increased emissions of sulfuric acid [Carder 1999] and 
NO2. 

Some of the engines deployed in underground mines are not candidates for passive, catalytic, 
on-board regeneration. Postnikoff [1999] found that most of the medium-duty outby vehicles in the 
Agrium potash mines do not work hard enough to meet the minimum 350 °C required for 
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deployment of catalyzed ceramic DPFs.  Active regeneration techniques are the only option for 
continuous on-board regeneration when an engine/vehicle operates exclusively or mostly at low to 
medium part-load and thus exhaust temperatures are too low for obtaining passive regeneration.  In 
active regeneration methods, the exhaust gas, and thus the filter, is heated to the necessary oxidation 
temperature by an external energy source.  Under such a system, the filter collects the particulate 
contained in the exhaust gas during the so-called loading phase.  The particulate load is burned 
intermittently, during the regeneration phase, when the entire exhaust gas is heated up to a 
temperature level such that the accumulated PM will begin burning. 

Electric heaters (DCL, Engelhard, ECS, etc.) and diesel fuel burners (Deutz) are some 
of the most common techniques used for active regeneration.  Diesel fuel burner technology is 
well established and safe for DPF regeneration and is primarily designed for city bus application. 
This technology is well established in Europe, but Deutz, so far, has not introduced this technology 
to the North American market.  The regeneration process for such a system takes approximately 
10 min [Houben et al. 1994].  Required control and regulation instrumentation results in substantial 
initial costs. In addition, a moderate fuel penalty is associated with the fuel burner system. 

Necessary regeneration temperatures can also be obtained by heating the exhaust gas or the 
trap material by means of electrical heaters.  Due to high energy requirements, electrical heating has 
mostly been used for stationary regeneration of DPFs.  However, some engine and aftertreatment 
equipment manufacturers are developing alternative techniques for heating traps, such as microwave 
technology [Popuri et al. 1999]. These active trap regeneration systems are generally expensive and 
energy-intensive. Therefore, manufacturers are working on solving these issues that currently are 
substantially limiting the scope of the application of such systems. 

Passive and active technologies can be combined to enable trap regeneration to take place 
at low exhaust gas temperatures, which reduces demand for external energy and lowers the cost for 
the active components of the system.  Bach et al. [1998] tested a particulate trap regeneration system 
that combined the advantages of an FBC (in this case Ce) and additional electric heating.  Bach et al. 
found that trap regeneration can take place at low exhaust gas temperatures of about 270 °C.  The 
consumption of electrical energy was significantly reduced due to the catalytic action of the additive. 

The alternative to on-board regeneration during operation is to perform either an on-board 
or off-board regeneration while the vehicle is off-shift.  On-board regeneration is usually performed 
by means of electrical heaters integral to the DPF and an off-board control unit.  Off-board 
regeneration requires removal of the DPF and replacing it with a regenerated unit.  The soot-laden 
filter is placed in a kiln where it is heated under controlled conditions.  Either of these two 
regeneration procedures must usually be performed after every shift; thus, a vehicle is immobilized 
during regeneration. Manufacturers are working on shortening the time necessary for the 
regeneration process. Unikat AB has developed a system that can be regenerated in as little as 
30 min [Unikat AB 1999].  According to the manufacturer, the off-board regeneration of the 
Engelhard SPX soot filter requires only 14 min [Engelhard Corp. 1999].  A DCL filtration system 
retrofitted to a load-haul-dump vehicle at Noranda’s Brunswick Mine uses an onboard electrical 
heating system as a backup system in cases when the filter does not passively regenerate.  The filter 
system must be connected to the regeneration station for approximately 2 hr to achieve complete 
regeneration [McGinn 2001a]. An ECS Omega diesel particulate system installed on a light-duty 
tractor at INCO’s Stobie Mine required <10 min at the regeneration station after each shift 
[Nault 2001]. 
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All filters, whether passively or actively regenerated, must, after a certain number of hours 
in operation, be cleaned from the accumulated ash.  The accumulated ash results in a gradual 
increase in exhaust back pressure of the regenerated filter.  The exhaust back pressure should be 
regularly monitored, and the filter should be cleaned before back pressure jeopardizes engine or 
filter performance.  The rate of ash accumulation is a function of several factors, including engine 
condition, primary oil consumption, formulation of oil and fuel, and use of fuel additives containing 
metals.  Due to complexity and requirement for specialized equipment, this cleaning procedure is 
usually performed by the filter manufacturer. 

2.4.2.2   Review of Published Results 

Baz-Dresch et al. [1993] tested an uncatalyzed Corning EX-66 cordierite filter (the 
advertized collection efficiency of the uncatalyzed trap was 65% to 70%).  Testing was conducted 
on a Caterpillar 3304 engine, designed for mining applications.  The engine was tested under six of 
the ISO 8178 C1 eight-mode, steady-state operating conditions (I50, I75, I100, R50, R75, R100). 
The engine was fueled with low-sulfur fuel.  Baz-Dresch et al. found that the regeneration 
temperature increased from 405 °C measured after 839 hr of operation to 450 °C measured after 
2,881 hr of operation. Gaseous and DPM emission measurements indicated deterioration of the 
filter medium over time.  Below are the reduction efficiencies obtained after 839, 1,584, and 2,881 
operating hr; the ranges result from different behaviors at different engine modes (and exhaust 
temperatures): 

Reduction efficiencies 

Operating hours 

839 hr 1,584 hr 2,881 hr 

CO, ppm 21.3% to 64.8% 14.3% to 57.5% 2.9% to 42.1% 

HC, ppm 5.4% to 89.7% 23.1% to 76.5% 39.4% to 83.2% 

DPM (mg/m3) 48.1% to 94.5% 41.2% to 81.9% 28.5% to 82.2% 

Baz-Dresch et al. [1993] speculated that damage to the DPF occurred because of mechanical 
shocks and vibration, cracking or melting of the ceramic due to uncontrolled regeneration, or a 
cracked substrate that resulted from high thermal gradients during repeated regeneration. 

The U.S. Bureau of Mines conducted a study to evaluate the performance of a CDPF alone 
and combined with a DOC at two metal mines (Q and T) and under laboratory conditions [Watts et 
al. 1995]. The tested DPF was a ceramic monolith.  Three methods were used to measure DPM and 
respirable dust concentrations in the two mines:  personal diesel exhaust aerosol sampler (PDEAS), 
micro-orifice uniform-deposit impactor (MOUDI), and RCD sampler.  The mean DPM reduction 
efficiency per unit production for the DOC + CDPF system, installed on a Caterpillar 3306 engine, 
was 71 ± 29% for mine Q.  The efficiency of the CDPF was estimated to be 72 ± 21% (PDEAS) or 
62 ± 25% (RCD) for mine T. 
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Mayer [1997] reported 80% to 85% efficiency for a DPF tested in a study by VERT 
(Verminderung der Emissionen von Realmaschinen im Tunnelbau).  This efficiency was assessed 
on the basis of “pure” gravimetric PM evaluation. The particulate count reductions were reported 
to be >90%. The filtration efficiencies for soot were >90%, and the filtration rate for nanoparticles 
>99%. From extensive testing, Mayer concluded that the DPF using a monolithic element was very 
efficient at filtering large diesel exhaust particles.  However, for this and other DPFs using different 
filtration media, massive breakthrough of the smallest sized diesel particles—the nanoparticles— 
was found.  This was also observed in DPFs using sintered metal filters.  However, for the DPF 
using the fiber element, the deep-bed filters, the efficiency increased with a decrease in particle size. 
Mayer concluded that catalyzed diesel particulate traps are extremely efficient and state-of-the-art. 

MECA [1999a] found that a DPF, when used with 54-ppm (instead of 368-ppm) sulfur fuel, 
reduced PM, HC, and CO emissions from a Detroit Diesel Corp. (DDC) Series 60 engine exercised 
over the U.S. heavy-duty transient FTP cycle by 70%, 94%, and 63%, respectively.  When the DPF 
was used with FBCs, the PM emissions were reduced by 78%.  MECA concluded that the PM 
emission levels of 0.005 g/bhp-hr were achievable by using a DPF with a zero-sulfur fuel. 

Larsen et al. [1999] tested three different types of particulate traps: a Corning EX-66 
cordierite substrate coated with a micromembrane by CeraMem Corp., an Ibiden SiC material, and 
an Ibiden SiC substrate coated with a ceramic micromembrane.  All of the filters achieved >93% 
total filtration efficiencies (by mass); the regular SiC filter reached levels of 97%.  For the small 
particles, the uncoated SiC trap performed the best; it reduced the DPM by a factor of 99%. 

Carder [1999] reported results of testing a Caterpillar 3306 engine retrofitted with a CDPF 
designed for that particular engine by Clean Air System.  The overall weighted ISO 8178 eight-
mode average DPM reduction of the system was 72%.  The average reductions in HC, CO, and CO2 
were 88%, 83%, and 21%, respectively. Oxides of nitrogen were not substantially reduced. 

The DETR/SMMT/CONCAWE Particulate Research Programme [Andersson and Wedekind 
2001] has investigated the effects of engine technologies and fuel specifications on regulated PM, 
particle number, mass, and size.  The largest effects of a single technology on particles was observed 
with DPFs (oxidation catalyst followed by a DPF), where particle mass and number were reduced 
by several orders of magnitude.  The exception was at high exhaust temperature conditions, where 
significant numbers of nucleation mode particles were emitted after the DPF.  The filter reduced 
integrated particle mass emissions by about 90%.  Filter effects dominated within the accumulation 
mode (particles sizes between 0.08 and 1 µm). 

The harsh environment makes deployment of filters on diesel-powered underground mining 
equipment a challenging task.  So far, limited data are available in the literature on the performance 
of DPFs deployed on underground mining production equipment.  One of the valuable sources of 
such data is the trap evaluation studies at Noranda’s Brunswick Mine and INCO’s Stobie Mine. 
These studies, sponsored by DEEP, have the evaluation of the different DPFs deployed on heavy-
and light-duty production vehicles as the long-term goal.  The preliminary results of those studies 
were presented at the Mining Diesel Emissions Conference (MDEC 2001). 
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2.4.3   DOCC and DPF Combinations 

Systems incorporating a DOCC and DPF are commercially available; such systems have 
been tested by several researchers. The combined systems incorporating both a DOCC and DPF 
were designed to provide good reductions of gaseous and PM emissions. 

The CRT developed by HJS and Johnson Matthey is an example of such a system.  The CRT 
system consists of an extremely active DOCC followed by a DPF.  CO and HC are almost 
completely oxidized to CO2 and water. The catalyst was formulated so that it also oxidizes a 
substantial portion of the NO to NO2. The NO2 generated oxidizes the carbon in the particulate trap, 
thus performing regeneration at low exhaust temperatures.  Trap regeneration occurs at temperatures 
between 200 °C and 450 °C, low enough to result in almost continuous regeneration.  An advantage 
of continuous regeneration is that the local peak thermal stresses can be avoided.  Unfortunately, 
substantial amounts of NO2 are not utilized and pass through the DPF (NO2 slip). Three key 
requirements for the system to perform properly are reasonable balance between NOx and particulate 
emissions, a duty cycle that regularly gives rise to exhaust gas temperatures >260 °C, and the use 
of ULSF. 

CRT systems have been successfully applied for curtailing DPM emissions from city buses. 
Czerwinski et al. [1998] tested an HJS-CRT system on a Liebherr D914T construction engine as part 
of the VERT suitability project. They reported very good filtration efficiency of the system at all 
test conditions and recommended the system to the users.  The average reductions over the ISO 8178 
eight-mode test were about 85% for PM, 94% for CO, 39% for HC, and 21% for NOx. Despite 
decreases in NOx concentrations, the concentration of NO2 increased when the exhaust was treated 
in the CRT system.  This increase in NO2 has caused a reluctance on the part of the manufacturer 
to offer systems for use in underground tunneling and mining operations.  (This was, in fact, the 
reason given for their declining to bid on a DEEP DPF evaluation project [Schnakenberg 1999b]). 

2.4.3.1   Review of Published Results 

Czerwinski et al. [1998] tested a HJS-CRT system on a Liebherr D914T construction engine. 
The HJS-CRT system consists of a ceramic monolith oxidation catalyst in line with a ceramic 
monolith particulate trap.  The engine was fueled by Swiss standard diesel fuel (sulfur 500 ppm, 
cetane number 48) and Greenenergy ULSF (sulfur 25 ppm, cetane number 50).  The engine 
operating conditions were: rated speed, 100% load (R100); intermediate speed, 100% load (I100); 
R50, I50, I25, I10, as defined in ISO 8178 [30 CFR 7 (1996)].  The evaluation was performed on 
the basis of measurements taken by an SMPS, PAS, and ELPI and by gravimetric and coulometric 
(reports EC) analysis.  The observed average filtration efficiency was 85%. The count of 
nanoparticulates was also reported to be reduced efficiently.  The HJS-CRT system also reduced 
concentrations of CO, HC, and NOx by 93%, 35%, and 21%, respectively. An increase in NO2 
concentration of in the exhaust treated in the system was also reported. 

Kauffeldt and Schmidt-Ott [1998] tested a passenger car with a particulate trap and a truck 
powered by a diesel engine and equipped with an oxidation catalytic converter and a particulate trap. 
The type of filter medium, catalyst, and fuel used were not reported.  Treatment of the passenger car 
exhaust gas in the particulate trap resulted in a large reduction of particulate mass and a significant 
increase in the number concentration of ultrafine particles.  Small particles were found to be droplets 
of HC. 
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Carder [1999] tested a Rohmac-DCL system consisting of a monolith oxidation catalyst in 
line with a ceramic monolith particulate trap.  The system was installed on an Isuzu C240 engine. 
The filtration system was designed for underground coal mine applications with the catalyst 
formulation selected to enhance regeneration.  The formulation was not optimized for control of 
sulfate production. Diesel fuel sulfur content was 400 ppm (by weight). The weighted ISO 8178, 
eight-mode average DPM reduction for the system with the particulate trap placed downstream of 
the oxidation catalyst was reported to be 67.7%. The DPM reduction for the particulate trap with 
an oxidation catalyst installed upstream of it ranged from 40% to 99%, with an average of 78%. 
Therefore, the position of the trap and the DOC was found to have little effect on DPM emissions. 
The particulate trap with a downstream oxidation catalyst system also reduced HC and CO, 
on average, by 79% and 95%, respectively. The system with the catalyst upstream of the trap 
reduced HC and CO, on average, by 87% and 94%, respectively. 

The Rohmac-DCL system was also tested on a Lister-Petter LPU-2 engine using the same 
fuel as in the work described above [Carder 1999].  The reductions in PM emissions of the trap-
catalyst system were reported as 80% over modes 6 and 7.  The average reductions of HC, CO, and 
NOx were found to be 97%, 90%, and 28%, respectively.  MECA [1999a] found that when a DPF 
was used with an upstream NO-to-NO2 catalyst and low-sulfur fuel (54 ppm), reductions in PM, HC, 
and CO emissions were 87%, 95%, and 93%, respectively. 

Hansen et al. [2001] tested an in-use bus engine retrofitted with CRT system over 
13 stationary modes (13-mode test) using 45 to 49 ppm of sulfur fuel.  They found that sulfate, 
formed from sulfur in the fuel, is stored in the catalytic washcoat in the CRT filter’s precatalyst at 
temperatures <380 °C and released again at temperatures >380 °C.  The overall PM reduction 
efficiency of the tested CRT system measured over 13 modes was 55%.  The system had a PM 
reduction efficiency >80% at the exhaust temperatures <375 °C.  Hansen et al. found that sulfate, 
formed from sulfur in the fuel, is stored in the washcoat in the CRT filter precatalyst at temperatures 
<380 °C and released again at temperatures >380 °C.  The analysis showed that sulfate and water 
constitute almost the entire particulate mass when the filter was used.  In popular terms, the CRT 
filter just replaces carbon particles with sulfate particles.  Hansen et al. concluded that reducing the 
sulfur content in the fuel cannot completely solve sulfate storage, but can prolong the time needed 
for the washcoat to become saturated with sulfur. They also concluded that even if ULSF is used, 
sulfur from the lubrication oil is sufficient to saturate the precatalyst.  This is because 1% sulfur in 
the lubrication oil, which is not an unusual amount, corresponds to about 10-ppm sulfur in the fuel 
at normal rates of oil consumption. 

2.4.4   Disposable Diesel Exhaust Filter (DDEF) 

Disposable diesel exhaust filter (DDEF) systems are widely accepted by the underground 
coal mining industry [Ambs et al. 1994].  The DDEF system usually consists of a heat exchanger, 
filter element, filter housing, flame arrester, complete water jacketing to keep surface temperatures 
below MSHA requirements, exhaust temperature and exhaust back pressure monitor, and engine 
shutoff system.  Heat exchangers are used to reduce the exhaust temperature to below 150 °C 
(dry exchangers) or 185 °C (water scrubber), one of several requirements for diesel equipment used 
in inby areas of underground coal mines [30 CFR 7 (1966)].  The reduced exhaust temperatures 
enable the use of disposable paper filters ($35 and $145).  The filter elements presently used have 
a service life of about one to three shifts and cost from $35 to $145 depending on the system. 
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Since the maximum surface temperature of all surfaces of the permissible diesel engine and 
the diesel power package is limited by regulations to 150 °C (302 °F) [30 CFR 7 (1996)], exhaust 
system components of such a package are usually water-jacketed.  Some efforts are now being made 
to replace bulky water-jacket systems with high-tech insulation materials. 

Water scrubbers and dry-heat exchanger systems are the most commonly used systems for 
reducing exhaust temperature.  The water scrubber has the dual purpose of cooling the exhaust and 
quenching flames and sparks at an acceptable engine back pressure.  However, the water scrubber 
has high maintenance requirements due to the need for replenishing the water in the scrubber every 
few hours and the corrosion caused by the conversion of the SO2 in the water box to sulfuric acid. 

Dry scrubber systems use a heat exchanger to reduce exhaust temperatures at the filter face. 
This technology with an incorporated DOC has demonstrated the capability to reduce DPM by 97% 
compared to the engine output, when tested under the ISO 8178, eight-mode protocol in the 
laboratory [Paas 1999]. 

The major drawbacks of DDEF systems are high initial costs and large dimensions. 
However, these paper filter systems are currently the only filtration systems available for inby diesel 
equipment in underground coal mines. 

2.4.4.1   Review of Published Results 

Ambs et al. [1994] conducted a study on the performance of DDEFs.  The study was done 
on a Jeffrey 4114 Ramcar powered by an MWM D916-6 engine and equipped with a DDEF system 
and waterbath exhaust conditioner (water scrubber). Field evaluation results showed that the DDEF 
reduced diesel exhaust aerosol concentrations in the mine ambient air from 70% to 90%.  Ambs 
et al. found that the usable life of the filter ranged from 10 to 32 hr depending on factors such as 
mine altitude, engine type, and duty cycle. 

Carder [1999] tested a Caterpillar 3306 engine retrofitted with a Dry System Technology 
(DST) dry scrubber system.  The tests showed an 82% reduction in the averaged ISO 8178 eight-
mode PM mass emission rate, but the reduction was rather low (8%) under rated speed/maximum 
load conditions. This indicated a low efficiency of the paper filter at high filter face temperatures, 
resulting from inability of the heat exchanger to cool the exhaust sufficiently. 

3   Conclusions and Recommendations 

Table 6 illustrates potential reductions in diesel emissions achievable by various control 
technologies that can be applied to curtail diesel emissions from underground equipment.  Caution 
should be exercised when interpreting the emission numbers given in the examples.  The numbers 
are based on published results from tests on similar technologies, but performed with different 
engines and under a variety of test conditions.  The references for the data can be found in the text 
describing the particular technology applied.  Where numerical data were not available, the 
performance evaluation is descriptive and not quantitative. 

Extrapolation of these estimates to other applications (engines and/or duty cycles) is not 
exact. They should be considered as indicative of possible results and not necessarily as 
quantitatively accurate. The complexity of the problem requires a system to be designed and 
optimized for a particular application.  Thus, the actual field performance of the combinations of the 
engines and control technologies may differ significantly from the estimates given in the table. 
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Selection of a particular technology is based on recognizing all of the peculiarities and interactions 
of the application. The choice is complex, based on engine operating conditions, reduction 
performance, and capital and operational costs.  Further, present health concerns and worker 
exposure data indicate the need to focus on the reduction of PM emissions when choosing the 
appropriate technology. However, at the same time, the opportunity to reduce toxic gases should 
not be neglected. Fortunately, several combinations of technologies result in reductions of both PM 
and gases. 

The use of a CDPF in combination with an FBC if needed for regeneration (DPF + FBC) 
seems to be the most effective aftertreatment technology for reductions of DPM and gaseous 
emissions from the diesel exhaust.  The continuous regeneration of the DPF can be achieved for 
vehicles that operate at medium and high loads for at least 20% to 25% of the time.  DPF + FBC 
combinations were reported to have efficiencies as high as 95% in the removal of DPM in both field 
and laboratory conditions. The use of ULSF is not mandatory in such systems, but can further 
reduce DPM mass emission and nanoparticle concentrations by eliminating sulfate formation. 

DPFs were proven to be effective in removing ultrafine and nano-sized particles from the 
exhaust. When this combination is used with a new low-PM emitting engine, the resulting DPM 
emissions are further reduced in proportion to the ratio of the PM emissions (MSHA PI indices) of 
the two engines. Literature indicates that the potential of this latter combination is a reduction of 
DPM by 97%, resulting in an additional 40% lower workplace DPM concentration over the system 
that provides a 95% reduction.  This combination (low-PI engine + DPF + FBC) provides good 
reductions of gaseous emissions as well. 

If the reduction of gaseous emissions is the primary target, any combination of technologies 
using a DOCC is the most effective.  The use of ULSF is recommended to prevent increases in the 
emission of sulfate particles.  Substantial PM reductions (50%) can be obtained by the use of a water 
emulsion of the ULSF.  Alternatively or in addition, replacement of the (older) engine with a low-
emission engine can further reduce PM emissions up to 80%.  The combination of a DOCC, water-
fuel emulsions, and ULSF with or without low-emission engines is not well explored in the 
literature. The authors would welcome the opportunity to verify this promising option. 
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APPENDIX A.—LOW-PI MSHA-APPROVED ENGINES 

Table A-1 lists the MSHA-approved engines (as of January 2, 2001) for nonpermissible areas. 
Shaded entries indicate an engine with a significantly lower PI than those of comparable horsepower. 
Although in some cases an engine choice may not be physically possible, an engine with the lowest PI 
that meets the physical size and approximate horsepower for the application should be chosen.  For 
example, one should consider the 28.2-hp Deutz F2L1011 (PI=1,000) over either the Lister-Petter, LPU3 
MKI (PI=7,000), LPU3 MKII (PI=4,500), or Deutz F2L1011F (PI=3,500). Similarly, the Deutz 
F4L1011 56.3 hp (PI=2,000) could replace the Isuzu C240 (PI=5,500). In the latter example, the 
tailpipe DPM is reduced by 64%. 

Table A-1.—List of MSHA-approved engines (as of December 2001) 

Approval 
No. Engine model hp @ rpm 

MSHA 
nameplate 
ventilation 
rate, cfm 

MSHA 
particulate 
index, cfm 

7E-B070-0 Farymann Diesel, 43F 14 @ 3,000 1,000 4,000 
7E-B042-0 Lister-Petter, LPU2 MKI1 17.5 @ 3,000 1,000 5,000 
7E-B053-0 Kubota, Model V1200 25.8 @ 3,000 1,000 1,500 
7E-B041-0 Lister-Petter, LPU3 MKI1 26.3 @ 3,000 1,500 7,000 
7E-B062-0 Deutz, F2L10111 28.2 @ 3,000 1,500 1,000 
7E-B044-0 Lister-Petter, LPU3 MKII 29 @ 3,000 1,500 4,500 
7E-B015-0 Deutz F2L 1011F 30 @ 3,000 2,000 3,500 
7E-B091-0 Deutz F2L1011F 30 @ 3,000 2,000 1,500 
7E-B074-0 Isuzu 3LD1MA 33.3 @ 3,000 2,000 3,500 
7E-B040-0 Lister-Petter, LPU4 MKI1 35 @ 3,000 2,000 9,500 
7E-B043-0 Lister-Petter, LPU4 MKII 38.6 @ 3,000 2,000 6,000 
7E-B026-0 Deutz, F3L912W (2.8L)1 40 @ 2,300 2,500 2,500 
7E-B076-0 Isuzu 4LC1MA 41 @ 3,000 2,000 4,500 
7E-B061-0 Deutz, F3L10111 41.6 @ 3,000 2,500 1,500 
7E-B033-0 Perkins, 104-19 42.5 @ 2,800 2,000 7,000 
7E-B014-0 Deutz F3L1011F 44 @ 3,000 2,500 5,000 
7E-B090-0 Deutz F3L1011F 44 @ 3,000 3,000 2,500 
7E-B054-0 Deutz, Model F3M1011F 46 @ 2,800 3,000 3,500 
7E-B031-0 Deutz, F3L912W (3.1L)2 47 @ 2,500 2,500 2,500 
7E-B071-0 Kubota Engine Corp., Model V2203-E 48.4 @ 2,800 2,500 2,000 
7E-B079-0 New Holland North America, 201, 3.3L NA 51 @ 2,200 4,500 8,500 

NOTE: Shaded entries indicate an engine with a significantly lower PI than those of comparable horsepower. 
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Approval 
No. Engine model hp @ rpm 

MSHA 
nameplate 
ventilation 
rate, cfm 

MSHA 
particulate 
index, cfm 

7E-B086-0 Isuzu C240MA 52 @ 3,000 3,000 2,500 
7E-B025-0 Deutz, F4L912W (3.8L)1 54 @ 2,300 3,000 3,500 
7E-B075-0 Isuzu 4LE1MA 54 @ 3,000 2,500 6,500 
7E-B085-0 Isuzu, C240MA 56 @ 3,000 2,500 5,500 
7E-B038-0 Isuzu, C240MA (QD60)1 56 @ 3,000 2,500 5,500 
7E-B060-0 Deutz, F4L10111 56.3 @ 3,000 3,000 2,000 
7E-B027-0 Perkins, 704-26 58 @ 2,600 2,000 8,000 
7E-B089-0 Deutz F4L1011F 59 @ 3,000 4,000 3,000 
7E-B013-0 Deutz F4L1011F 59 @ 3,000 3,500 6,500 
7E-B089-0 Deutz F4L1011F 59 @ 3,000 4,000 3,000 
7E-B077-0 Deutz BF3M1011F2 61 @ 2,800 5,500 5,500 
7E-B055-0 Deutz, Model F4M1011F 61 @ 2,800 3,500 4,500 
7E-B029-0 Deutz, F4L912W (4.1L)2 62 @ 2,500 3,000 3,500 
7E-B024-0 Deutz, F5L912W (4.7L)1 67 @ 2,300 4,000 4,500 
7E-B019-0 Deutz BF4L 1011F 74 @ 2,800 5,500 4,500 
7E-B030-0 Deutz, F5L912W (5.1L)2 76 @ 2,500 4,000 4,000 
7E-B006-0 Isuzu QD 100-3011,2 79 @ 2,800 5,000 8,500 
7E-B023-0 Deutz, F6L912W (5.6L)1 80 @ 2,300 4,500 5,000 
7E-B056-0 Deutz, BF4M1011F2 82 @ 2,800 5,500 5,500 

7E-B072-0 Detroit Diesel Series, Model DDC 
D704LTE 84 @ 2,600 6,500 7,000 

7E-B028-0 Deutz, F6L912W (6.1L)2 93 @ 2,500 4,500 5,000 
7E-B001-0 Deutz-MWM 916-61 94 @ 2,300 4,000 11,500 
7E-B004-0 Caterpillar 3304 PCNA1 100@ 2,200 5,000 15,000 
7E-B022-0 Perkins, 1004-40T2 108 @ 2,400 9,000 9,000 
7E-B064-0 Caterpillar, 3054 DIT2 108 @ 2,400 9,000 9,000 
7E-B011-0 Deutz BF4M1012C2 110 @ 2,500 6,500 4,000 
7E-B045-0 Isuzu, 4BGIT-MA 111 @ 2,400 7,000 13,000 
7E-B011-0 Deutz BF4M1012EC2 113 @ 2,500 6,500 4,000 
7E-B084-0 Cummins 4BTA3.9-C 116 @ 2,500 6,500 7,500 
7E-B088-0 Isuzu CBG1-MA1 116 @ 2,500 4,500 11,500 
7E-B020-0 Perkins, 1004-40TW 122 @ 2,300 10,000 7,500 
7E-B065-0 Caterpillar, 3054 DIT 122 @ 2,300 10,000 7,500 

7E-B073-0 Detroit Diesel Series, Model DDC 
D706LTE 123 @ 2,600 7,500 11,000 

7E-B059-0 Deutz, BF4M1013E 125 @ 2,300 11,500 4,500 
7E-B059-0 Deutz, BF4M1013 127 @ 2,300 11,500 4,500 
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Approval 
No. Engine model hp @ rpm 

MSHA 
nameplate 
ventilation 
rate, cfm 

MSHA 
particulate 
index, cfm 

7E-B046-0 Isuzu, 6BGI-MA 129 @ 2,500 6,000 16,000 
7E-B039-0 Isuzu, 6BD1MA (QD145)1 135 @ 2,800 9,000 12,000 
7E-B034-0 Deutz, F6L413FW 137 @ 2,300 8,000 7,000 
7E-B003-0 Caterpillar 3306 PCNA1 150 @ 2,200 7,500 23,000 
7E-B021-0 Perkins, 1006-60T 152 @ 2,200 13,000 12,000 
7E-B066-0 Caterpillar, 3056 DIT 152 @ 2,200 13,000 12,000 
7E-B008-0 Deutz BF4M1013C2 158 @ 2,300 8,500 7,500 
7E-B005-0 General Motors L57, 6.5L Hummer 160 @ 3,400 7,500 9,500 
7E-B052-1 Cummins Model B5.9,2 without DOC 160 @ 2,500 11,500 5,000 
7E-B052-3 Cummins Model B5.9,2 with DOC 160 @ 2,500 12,000 3,500 
7E-B052-2 Cummins Model B5.9,2 without DOC 175 @ 2,500 11,500 5,000 
7E-B052-4 Cummins Model B5.9,2 with DOC 175 @ 2,500 12,000 3,500 
7E-B052-5 Cummins Model B5.9,2 with DOC 180 @ 2,500 12,000 3,500 
7E-B035-0 Deutz, F8L413FW 182 @ 2,300 10,500 9,500 

7E-B067-0 Navistar, A185, 
Model years 1988-1994 185 @ 3,300 8,500 15,000 

7E-B058-0 Deutz, BF6M1013E 189 @ 2,300 17,500 5,500 
7E-B058-0 Deutz, BF6M1013 194 @ 2,300 17,500 5,500 

7E-B016-0 General Motors, L65, 6.5L, Turbo-
Hummer 195 @ 3,400 9,500 24,000 

7E-B052-0 Cummins Model B5.92 215 @ 2,700 14,500 4,000 
7E-B052-6 Cummins, Model B5.9,2 with DOC 215 @ 2,000 14,500 4,000 

7E-B068-0 Navistar, A215 and A225, Model years 
1994.5-1997 215 @ 3,000 18,000 11,000 

7E-B036-0 Deutz, F10L413FW 228 @ 2,300 13,500 12,000 
7E-B057-0 Deutz, BF6M1013EC 228 @ 2,300 16,000 8,500 

7E-B050-0 Detroit Diesel Series, 40 Model 
N063DH322 230 @ 2,200 12,500 4,500 

7E-B057-0 Deutz, BF6M1013C 233 @ 2,300 16,000 8,500 
7E-B051-0 Cummins, Model ISB-235 235 @ 2,700 10,000 6,000 
7E-B069-0 Navistar, A250, B235, and B250 250 @ 2,600 15,000 6,000 

7E-B080-0 Detroit Diesel Series 40, N063-DH32 
I-3082 250 @ 2,200 16,500 3,000 

7E-B007-0 Deutz BF6M1013C2 261 @ 2,300 12,000 19,000 
7E-B010-1 Caterpillar, 3306 DITA1,2 270 @ 2,200 15,000 6,000 
7E-B037-0 Deutz, F12L413FW 274 @ 2,300 16,000 14,000 
7E-B083-0 Daimler Chrysler 275 @ 2,200 11,000 7,000 
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particulate 
index, cfm 

7E-B078-0 Deutz BF6M1013FC-MVS 282 @ 2,300 17,000 4,000 
7E-B017-0 Caterpillar, 3306 ATAAC1 300 @ 2,200 11,500 12,000 
7E-B047-0 Detroit Diesel Series, 50 DDFC1,2 315 @ 2,100 16,000 5,000 

7E-B092-0 Detroit Diesel Series, 50 Model 
6043TK322 315 @ 2,100 21,000 7,000 

7E-B048-0 Detroit Diesel Series, 60 (11.1L)DDEC1,2 325 @ 2,100 18,000 5,500 
7E-B012-0 Caterpillar 3176 ATAAC2 335 @ 2,100 15,000 8,000 
7E-B002-0 Deutz BF6M1015C2 402 @ 2,100 18,500 17,500 
7E-B049-0 Detroit Diesel Series, 60 (12.7L)DDEC1,2 475 @ 2,100 28,000 8,500 
7E-B018-0 Caterpillar, 3406E ATAAC1,2 500 @ 2,100 24,000 12,500 
7E-B082-0 Caterpillar, 3408E DITA 510 @ 2,000 33,000 17,000 
7E-B009-0 Deutz BF8M1015C2 536 @ 2,100 24,000 18,000 

7E-B087-0 Detroit Diesel Series 60 14L DDEC IV 
Model 6063HK322 575 @ 3,000 28,000 12,000 

7E-B081-0 Cummins QSK19-C 650 @ 2,100 45,000 33,000 
7E-B032-0 Detroit Diesel, 8V-2,000TA DDEC 650 @ 2,100 45,000 10,000 

1Engine was previously approved under Part 32.
2Lower horsepower ratings have been approved. 

Because the PI increases with engine horsepower (just as the ventilation rate does), it is easier to compare 
engines by examining their rate of particulate production per engine horsepower—that is, by comparing the 
number obtained by dividing the PI by the rated horsepower of each engine chosen. For example, the 175-hp 
Cummins engine (7E-B052-4) has a PI/hp of 20 cfm/hp (3,500 cfm/175 hp).  Using this as a benchmark, of the 
remaining 21 MSHA-approved engines rated between 200 and 650 hp, only 7 have a PI/hp <20 cfm/hp; 5 have 
a PI/hp between 21 and 30; 3 between 31 and 40; 2 between 41 and 50; and only 1 at 72.8 cfm/hp.  The range 
of PI/hp for the engines listed above is 19.6 to 285.7 cfm/hp. 
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