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Antimicrobial resistance (AMR) is a substantial 
threat to the health of humans and animals. 

Among humans, in 2019 an estimated 1.27 mil-
lion deaths were associated with bacterial AMR (1). 
Among food-producing animals (i.e., animals that 
are used for or produce food items for human con-
sumption), estimates of global AMR burden are still 
lacking. However, recent work has suggested that 
among common indicator bacteria of food-producing  

animals in low- and middle-income countries, the 
proportion of antimicrobials with resistance >50% in-
creased from 12%–15% in 2000 to 34%–41% in 2018 
(2), an increase that may have harmful consequences 
for humans (3). Moreover, the loss of treatment effec-
tiveness in animals is a long-term threat for animal 
production and the millions of persons who rely on 
raising animals for subsistence (4,5). Therefore, moni-
toring AMR in food-producing animals has become a 
global priority for effective prevention strategies.

Since 2009, the European Food Safety Authority 
(EFSA) has led a harmonized surveillance system for 
AMR in food-producing animals and products (6). 
The system includes AMR prevalence estimates for 
Escherichia coli, nontyphoidal Salmonella, and Campylo-
bacter among cattle and pigs (odd years) and chickens 
and turkeys (even years) (7). Data collected by EFSA 
have been instrumental for monitoring AMR and for 
guiding policy decisions in the European Union (e.g., 
the 2018 ban on prophylactic use of antimicrobials in 
animals [8]). The efforts to document AMR have also 
enabled comparison between countries in Europe by 
estimating prevalence of AMR at the national level. 
However, recent works have shown that resistance 
levels in humans and animals can vary at a fine spa-
tial scale, and accumulation of resistance genes in 
those areas may create geographic hotspots for AMR 
(2,9). Identifying geographic hotspots of AMR with-
in countries could help with targeting interventions 
against AMR, such as improved farm biosecurity 
and targeted surveillance, where they might have the 
greatest benefits (10–12).

In that context, point prevalence surveys (PPSs) 
of AMR among food-producing animals, with data 
points collected at individual geographic locations, 
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In Europe, systematic national surveillance of antimi-
crobial resistance (AMR) in food-producing animals 
has been conducted for decades; however, geographic 
distribution within countries remains unknown. To deter-
mine distribution within Europe, we combined 33,802 
country-level AMR prevalence estimates with 2,849 
local AMR prevalence estimates from 209 point preva-
lence surveys across 31 countries. We produced geo-
spatial models of AMR prevalence in Escherichia coli, 
nontyphoidal Salmonella, and Campylobacter for cattle, 
pigs, and poultry. We summarized AMR trends by using 
the proportion of tested antimicrobial compounds with 
resistance >50% and generated predictive maps at 10 
× 10 km resolution that disaggregated AMR prevalence. 
For E. coli, predicted prevalence rates were highest in 
southern Romania and southern/eastern Italy; for Sal-
monella, southern Hungary and central Poland; and for 
Campylobacter, throughout Spain. Our findings suggest 
that AMR distribution is heterogeneous within countries 
and that surveillance data from below the country level 
could help with prioritizing resources to reduce AMR.
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provide an opportunity to supplement the national 
estimates of AMR assembled by EFSA (2). The result-
ing mapped predictions could be used to help design 
regional antibiotic stewardship campaigns or target 
local investment in farm biosecurity (12). However, 
generating robust predictions of AMR pose at least 
3 challenges. First, comparisons need to be made be-
tween the resistance trends inferred from PPSs and 
EFSA; second, subnational predictions should reflect 
resistance levels reported by EFSA at the national lev-
el; and third, an appropriate geospatial modeling ap-
proach must be developed to combine data collected 
at different spatial scales.

In this study, we disaggregated trends in AMR 
prevalence of E. coli, nontyphoidal Salmonella, and 
Campylobacter among cattle, pigs, and poultry. We 
used stacked geospatial models that supplement data 
from EFSA with individual PPSs to map predictions 
of AMR prevalence at a resolution of 10 × 10 km for 
31 countries in Europe.

Materials and Methods

EFSA Data Collection
We reviewed annual EFSA reports published dur-
ing 2011–2022 (13). We extracted country-level data 
on AMR prevalence (2009–2020), focusing on the 
percentage resistance to antimicrobials against E. 
coli, Salmonella, Campylobacter coli, and Campylobacter 
jejuni. We extracted information on country, year of 
isolation, animal type (cattle, pigs, chickens, turkeys), 
sample origin (slaughtered animal, living animal, or 
meat), bacteria, species, number of samples, antimi-
crobial tested, and resistance prevalence. We followed 
European Committee on Antimicrobial Susceptibil-
ity Testing (EUCAST) guidelines to assess microbio-
logical resistance and used microdilution methods 
and epidemiologic cutoff (ECOFF) values (14). We 
retained only antimicrobial/bacteria combinations 
recommended by the World Health Organization Ad-
visory Group on Integrated Surveillance of Antimi-
crobial Resistance (15) for antimicrobial susceptibility 
testing (Appendix Table 1, https://wwwnc.cdc.gov/
EID/article/30/1/22-1450-App1.pdf).

PPS Data Collection
We systematically reviewed PPSs (Appendix) report-
ing AMR prevalence at individual locations in Europe 
(Appendix Figure 1). We searched PubMed, Web of 
Science, and Scopus for PPSs reporting AMR preva-
lence for E. coli, nontyphoidal Salmonella, and Campy-
lobacter in healthy cattle, pigs, and poultry (combined 
data for chickens, turkeys, or other poultry), as well 

as their products (meat and dairy) in Europe during 
2000–2021. Environmental samples (e.g., water, soil) 
were not included. We also extracted information on 
the geographic location of the PPS (Appendix), the 
year the PPS was conducted, the year the bacteria was 
isolated (but not species identification methods used), 
sample types collected (cecal, cloacal, lymph, or fecal 
samples taken from living animals, slaughtered ani-
mals, dairy products, or meat), animal species, num-
ber of samples collected and tested, susceptibility 
testing guidelines used, and susceptibility guidelines 
used for resistance interpretation.

We assessed microbiological resistance across 
PPSs by using different methods (disk diffusion 
vs. broth dilution), guidelines (Clinical and Labo-
ratory Standards Institute [https://www.clsi.org] 
52%, EUCAST 29%, other 14.6%) and cutoffs (clini-
cal break points vs. ECOFFs [15]). We attempted to 
account for these differences by using a harmoniza-
tion approach developed by Van Boeckel et al. (2) 
(Appendix). We calibrated data from PPSs by using 
antimicrobial susceptibility testing, guidelines, and 
breakpoints reported in each study to match those 
of EUCAST guidelines each year, to enable compari-
son between those data and data reported by EFSA. 
As with EFSA data, we retained only antimicrobial/
bacteria combinations recommended by the World 
Health Organization Advisory Group on Integrated 
Surveillance of Antimicrobial Resistance (15). In ad-
dition, for our analysis we retained only countries 
that reported to EFSA and that had reported >50 
samples during the study period. All prevalence 
estimates extracted from PPS are available at resis-
tancebank.org (https://resistancebank.org) (16).

Comparative Analysis of Data Sources
We used the proportion of antimicrobials with >50% 
resistance (P50s) to summarize trends in resistance 
across each drug/bacteria combination, as in previ-
ous works (2,12,17); all P50s can be recalculated by 
using the data available at resistancebank.org. To as-
sess the difference in AMR prevalence between PPS 
and EFSA data, as well as the implications that that 
could have for geospatial modeling, we compared the 
average P50 in countries reporting at >1 PPS and to 
EFSA during 2018–2020 (Appendix Table 3). A ratio 
<1 indicated a lower 3-year mean P50 using PPS data, 
and a ratio >2 meant a more than double 3-year mean 
P50 from PPS data compared with EFSA data.

Geospatial Modeling of P50
We mapped predicted subnational antimicrobial re-
sistance in food-producing animals at a resolution of 
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0.08333 decimal degrees, corresponding to ≈10 km at 
the equator. To create the map, we used a 3-step pro-
cedure (Appendix Figure 2).

In the first step, we trained 3 child models (one of 
the individual models that are combined to form the 
final model) to quantify the relationship between P50 
and a set of 9 environmental and anthropogenic co-
variates (Appendix Table 2). We selected those covari-
ates because of their suspected association with AMR 
in animals (2,12,17–19). The models used for the first 
step were boosted regression trees (20); LASSO (least 
absolute shrinkage and selection operator) applied 
to logistic regression (21); and overlapped grouped 
LASSO penalties for General Additive Models selec-
tion (A. Chouldechova, unpub. data, https://arxiv.
org/abs/1506.03850). We calculated the importance 
of each covariate by comparing the areas under the 
receiver operator curve (AUCs) between a full model 
that contained all covariates and a model without 
each covariate. To evaluate the relative importance of 
each covariate to the full model, we repeated the pro-
cedure sequentially (Appendix Table 5).

We weighted all models by the number of isolates 
tested in each survey and conducted 10 Monto Carlo 
simulations on the models to account for the varia-
tion introduced by transformation of prevalence esti-
mates into binary variables. The models were trained 
by using 4-fold spatial cross-validation to prevent 
overfitting and ensure generalization in geographic 
regions poorly represented in the training dataset. 
We defined the 4 spatial folds by using a k-means 
clustering algorithm (22). The algorithm clustered 
the surveys according to their spatial distances and 
partitioned them into 4 spatially disjointed sets with 
equal sizes (Appendix). No predictions were made in 
urban settlements; there were areas defined as artifi-
cial surfaces in GlobCover 2009 (23). We conducted 
sensitivity analyses by restricting PPSs to 2009–2020 
only (to match EFSA reporting period), to 6 or 7 of the 
most common antimicrobial/bacteria combinations 
only, and to P50 calculated by class (rather than com-
pound) (Appendix).

In the second step, we ensembled predictions 
from the 3 models according to the models’ predictive 
ability, assessed by using the AUC. We calculated the 
resulting map of P50 as the mean of the 3 model pre-
dictions weighted by their AUC values. We calculat-
ed the associated map of prediction uncertainty as the 
SD of predicted P50 values from the 10 Monte Carlo 
simulations (Appendix Figure 4, panel A).

In the third step, we adjusted the P50 predictions 
in each country, using P50 values calculated from 
EFSA reports. Concretely, we multiplied P50 values 

in each pixel by the ratio of country-level P50 as re-
ported by EFSA and the mean P50 of all pixels across 
each country as predicted by the geospatial model. 
That step ensured that the country-level mean of P50 
values corresponded to reports from EFSA while pre-
serving geographic variations in AMR levels within 
each country. To assess the variations in P50 values 
within each country, we calculated country-level SDs 
of P50s (Appendix Figure 4, panel C).

Last, we created the predictive maps of AMR 
hotspots for each pathogen. The threshold value for a 
pixel to be classified as a hotspot corresponded to the 
95th percentile of all P50 values across the map and 
varied for each pathogen (Appendix Figure 4, panel 
B). We obtained estimated animal densities associated 
with those areas from Gilbert et al. (24). Using those 
estimates, for each country we calculated the percent-
age of each animal species living in the hotspot areas.

Results

EFSA Surveillance
At the country level, EFSA data for 2009–2020 pro-
vided 33,802 AMR prevalence estimates (resulting in 
2,996 P50s). The data were for E. coli, nontyphoidal 
Salmonella, C. coli, and C. jejuni in cattle, pigs, and 
poultry across 31 countries in Europe.

PPSs
At the local level, for 2000–2021 we identified 209 
PPSs, which provided 2,849 AMR prevalence esti-
mates (resulting in 368 P50s). The data were for E. 
coli, nontyphoidal Salmonella, and Campylobacter in 
food-producing animals and derived products from 
21 countries in Europe. In terms of AMR prevalence, 
E. coli accounted for 44.4%, Salmonella for 34.2%, and 
Campylobacter for 21.4%. Poultry accounted for ap-
proximately half of the AMR prevalence (n = 1,429, 
50.2%), followed by pigs (28.1%) and cattle (21.8%). 
One third of the sample types tested were meat (34.7%, 
n = 988), followed by fecal samples (23.4%). Across the 
countries included in the analysis, geographic cover-
age was on average 4.21 PPSs (interquartile range 
0–11.7)/100,000 km2. Half of the PPSs identified were 
from the combination of Spain (20.5%), Italy (18.7%), 
and Germany (10.5%) (Figure 1). The average number 
of PPSs published by year increased from 3 during 
2000–2005 to 14 during 2015–2021 (Figure 1, panel B).

Comparison of PPS and EFSA
AMR prevalence estimates varied considerably be-
tween data sources and country. For 2018–2020, 
Greece, Poland, and Germany accounted for more 
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than double the national average P50 calculated from 
PPS data compared with P50s calculated from EFSA 
(Table 1). Conversely, the national average P50 calcu-
lated from PPS data from Portugal and Switzerland 
was <30% lower than that calculated from EFSA.

The highest resistance prevalence estimates were 
for tetracycline (57.9%–36.4%), ampicillin (58.6%–
34.9%), ciprofloxacin (64.6%–13.1%), and nalidixic 
acid (60.9%–25.5%). The difference in mean P50 be-
tween PPSs and EFSA data ranged from 15.2% to 
−17.4% for Salmonella and from 19.1% to −7.96% for E. 
coli. For Campylobacter, systematically higher preva-
lence estimates were obtained from PPSs; differences 
ranged from 12.1% to 0.78% (Figure 2).

Geospatial Modeling
We mapped predicted P50s at 10 × 10 km resolution 
for each of the 3 bacteria across Europe (Figure 3). In 
the final models, the predicted P50 values ranged from 
0 to 79% for E. coli, 0 to 40% for Salmonella, and 0 to 
100% for Campylobacter (Figure 3, panel A; prediction 
uncertainty, Appendix Figure 3, panel A). P50 cutoffs 
for hotspots of AMR (calculated as the top 95% of the 
values on the map) were 0.43 for E. coli, 0.23 for Salmo-
nella, and 0.60 for Campylobacter. AMR hotspots for E. 
coli were predicted to be located in southern Romania 
(Muntenia, Dobrogea) and southern and eastern Italy 
(Sicily, Emilia-Romagna, Apulia); and for Salmonella, 
predicted hotspots were in southern Hungary, north-
ern Italy, and central Poland. More than 90% of hotspot 
areas for Campylobacter were predicted to be through-
out mainland Spain (Figure 3, panel B).

For E. coli, the highest geographic variations in 
predicted P50 levels were in Romania (13% pixel-lev-
el SDs), Bulgaria (11%), Greece 1(2%), and Italy (11%). 

For Campylobacter, the highest geographic variations in 
P50 were in France (10%) and Germany (10%; Appen-
dix Figure 4, panel C). No countries had high spatial 
variations in predicted P50s for Salmonella. Cold spots 
for all 3 bacteria were identified in Sweden, Norway, 
Finland, and Iceland (data not shown). Spatial varia-
tions of P50 for countries containing coldspots were 
small, with pixel-level standard deviations of 3.2% 
(E. coli), 0.9% (Salmonella), and 1.0% (Campylobacter). 
Restricting PPS by year and antimicrobial bacteria 
combinations resulted in little difference (mean Pear-
son correlation coefficient 0.992; mean absolute error 
0.932%) to the overall model predictions (Appendix 
Table 4). In addition, we found little difference when 
P50 was calculated by antimicrobial class rather than 
individual compound (Pearson correlation coefficient 
0.995, mean absolute error 0.66%) (Appendix Table 
4, Figure 4). Importance of environmental covariates 
to the models varied by pathogen (Appendix Table 
5). For E. coli and Salmonella, the covariate with high-
est importance was the percentage of tree coverage 

Figure 1. Data from study 
of predictive mapping for 
antimicrobial resistance of 
Escherichia coli, Salmonella, and 
Campylobacter in food-producing 
animals, Europe, 2000–2021. A) 
Geographic distribution of point 
prevalence surveys (PPSs). 
B) Number of PPSs published 
per year. Additional information 
is provided in the Appendix 
(https://wwwnc.cdc.gov/EID/
article/30/1/22-1450-App1.pdf).

 
Table 1. Three-year mean of proportion of antimicrobial drugs 
with >50% resistance from PPS and EFSA data and ratios of P50 
for countries reporting to both data sources, Europe, 2018–2020* 

Country 
Mean P50 
from PPSs 

Mean P50 
from EFSA 

PPS and EFSA 
P50 ratio 

Poland 0.64 0.26 2.47 
Germany 0.60 0.25 2.42 
Greece 0.39 0.19 2.02 
Spain 0.39 0.24 1.67 
Belgium 0.29 0.21 1.34 
Romania 0.31 0.28 1.10 
Italy 0.23 0.25 0.92 
Switzerland 0.17 0.22 0.77 
Portugal 0.18 0.32 0.57 
*EFSA, European Food Safety Authority; PPS, point prevalence surveys; 
P50, >50% antimicrobial resistance. 
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(∆AUC 0.106 for E. coli and 0.078 for Salmonella). For 
Campylobacter, the covariate with highest importance 
was antimicrobial use in animals (∆AUC 0.037), close-
ly followed by yearly average of minimum monthly 
temperature (∆AUC 0.034).

In 9 of the 31 countries in Europe, >50% of cattle, 
pigs, or poultry are estimated to be raised in the pre-
dicted AMR hotspot areas (Table 2). For instance, 93% 
of poultry in Spain, 90% of poultry in Greece, and 
97% of poultry and 92% of pigs in Cyprus are raised 
in AMR hotspots.

Discussion
In this study, we geographically disaggregated AMR 
prevalence for E. coli, nontyphoidal Salmonella, and 
Campylobacter reported among food-producing ani-
mals across Europe by supplementing national EFSA 
data with subnational PPS data to produce maps of 
estimated AMR prevalence. For multiple countries, 
such as Italy, Romania, and Poland, rather than con-
sistently high countrywide AMR levels, in our final 
model we predicted specific geographic hotspots of 
high AMR prevalence that may coexist within regions 

Figure 2. Mean prevalence for 
antimicrobial class and bacteria 
combinations, split by data 
source, Europe, 2009–2020. A) 
Escherichia coli; B) Salmonella; 
C) Campylobacter. AMP, 
ampicillin; CAZ, ceftazidime; 
CHL, chloramphenicol; CIP, 
ciprofloxacin; CST, colistin; CTX, 
clavulanic acid; EFAS, European 
Food Safety Authority; FOX, 
cefoxitin; GEN, gentamicin; 
IPM, imipenem; NAL, nalidixic 
acid; PPS, point prevalence 
survey; STR, streptomycin; TET, 
tetracycline.

Figure 3. Mapping of predicted P50s and hotspot areas for antimicrobial resistance of Escherichia coli, Salmonella, and Campylobacter, 
Europe. A) Predicted proportions of antimicrobials with P50 at 10 × 10 km resolution per bacteria. B) Antimicrobial resistance hotspots 
(light blue) in eastern Europe, Italy, and Spain. Cutoffs: E. coli, 0.43; Salmonella, 0.23; Campylobacter, 0.6 (95% percentile). P50, >50% 
antimicrobial resistance.
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of lower AMR prevalence in the same countries. In 
specific regions, countries in which AMR seems to 
be consistently high may have made more progress 
against AMR than previously thought (with only 
some, rather than all, areas containing high levels) by 
interpretation of EFSA data or nationally published 
reports. Further improvements could be made in 
those countries by targeting interventions (e.g., im-
proved farm biosecurity and targeted surveillance in 
hotspots where AMR levels remain high). In contrast, 
largely diffuse and geographically uniform (low) 
countrywide AMR prevalence was found in countries 
with low AMR levels (e.g., Sweden, Norway, and Ice-
land); uncertainty in these predictions were higher 
for Campylobacter than for E. coli and Salmonella.

For all 3 bacteria studied, AMR prevalence was 
substantially lower in Norway, Sweden, Denmark, 
and Switzerland than the average for Europe. Those 
countries were among the first to establish animal 
AMR surveillance (i.e., DANMAP in Denmark in 
1995 [25]) and have now integrated surveillance of 
zoonotic bacteria in humans and animals. For several 
decades, they have been guiding national and inter-
national control strategies. For instance, in the 1990s, 
increased prevalence of vancomycin-resistant entero-
cocci reported by DANMAP was instrumental to ban-
ning use of antimicrobial drugs for growth promotion 
in livestock (25).

In contrast, countries in which a high proportion 
of food-producing animals are raised in areas predict-
ed as hotspots of resistance by our study are Cyprus, 
Portugal, and Spain. In 2018, one fifth (20.8%) of the 
pigs in the European Union were reared in Spain (26), 
where 88% of its pigs were predicted to be raised in 
geographic hotspots of Campylobacter resistance, pri-
marily in Aragon and Catalonia. However, that find-
ing was not the case for other high-density pig regions 
such as Brittany (France), northwest Germany (Lower 
Saxony and North Rhine-Westphalia), and Denmark 
(27). Those findings suggest that high AMR is not 
necessarily associated with high animal densities but 
possibly with other drivers such as farming practices, 
biosecurity measures, and antimicrobial use (28).

Across Europe, the highest prevalence of resis-
tance in our models was reported for antimicrobial 
drugs commonly used in animal production: tetracy-
clines, quinolones, penicillins, and aminoglycosides 
(gentamicin and streptomycin). Of particular concern 
were the compounds considered critically impor-
tant antimicrobials for human medicine (29) and for 
which AMR prevalence was predicted to be >50% 
(ampicillin in E. coli [58.6%] and ciprofloxacin in Cam-
pylobacter [64.6%]).

In our study, estimates of P50 for Salmonella were 
much lower than those for E. coli and Campylobacter, 
which could potentially be attributed to the success of 
targets imposed by the European Union (e.g., reducing 
Salmonella prevalence in poultry over the past decade 
[30]). In addition, several countries had already imple-
mented Salmonella control strategies before European 
Union–wide initiatives. For instance, in the 1970s, the 
United Kingdom set up national AMR surveillance for 
Salmonella, and in 1969, France had similar initiatives 
for Salmonella and E. coli (25). Switzerland also imple-
mented a stringent control program for Salmonella En-
teritidis in 1993 (31), more than a decade earlier than 
the first European Union–wide initiative (30).

When we compared estimates of resistance (P50) 
derived from PPS and EFSA data, the average P50 
from PPSs seemed to more closely match national 
EFSA prevalence values in some countries more than 
in others. For instance, in Spain and Italy, the ratios of 
P50 inferred from PPS and EFSA data were close to 1 
over the past 3 years. One reason may be the higher 
number of PPSs from these countries (17 in Spain and 
13 in Italy), which average out closer to the EFSA 
values. In contrast, in countries with P50 ratios >2 or 
<0.8 (Poland, Germany, Greece, Portugal) inferred 
from PPS and EFSA data, only 1–4 studies have been 
conducted in the past 3 years. Therefore, although 

 
Table 2. Percentages of food-producing animals raised in each 
country that fall within an antimicrobial resistance hotspot area 
(95th percentile per pathogen) for France, Germany, Spain, and 
countries in which pathogen percentage >50% for >1 animal 
species* 
Pathogen, country Cattle, % Pigs, % Poultry, % 
Escherichia coli    
 France 0 0 0 
 Germany 0 0 0 
 Spain 2.1 2.3 1.8 
 Bulgaria 34.4 51.5 57.8 
 Cyprus 33.8 68.9 68.5 
 Greece 39.4 57.9 35.5 
 Romania 34.8 77.5 57.8 
Salmonella    
 France 0 0 0 
 Germany 0 0 0 
 Spain 8.8 28.2 24.8 
 Cyprus 51.8 91.6 96.6 
 Hungary 63.5 64.7 80.6 
 Italy 52.0 70.2 64.0 
 Poland 21.6 66.0 74.3 
 Romania 17.0 65.2 45.0 
Campylobacter    
 France 0.5 4.6 6.2 
 Germany 1.8 14.9 23.2 
 Spain 32.3 87.9 93.0 
 Cyprus 26.0 44.9 66.3 
 Greece 10.9 58.4 90.3 
 Portugal 22.1 74.9 88.0 
*Antimicrobial resistance for Escherichia coli, nontyphoidal Salmonella, 
and Campylobacter. 
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smaller sample sizes may be insufficient for compar-
ing national averages (PPS vs. EFSA) they may still 
represent subnational heterogeneity in AMR not ob-
served in the national average from EFSA. A higher 
coverage of PPSs may further improve the confidence 
in subnational model predictions.

Among the limitations of our modeling study, 
the first is that our literature search for PPSs pub-
lished in Europe during 2000–2021 resulted in a 
mere 209 PPSs that were associated with geographic 
information. In contrast, for the same period, 446 
PPSs with geographic information were published in 
China (12). Torres et al. also assembled AMR studies 
of food-producing animals during 1957–2018; how-
ever, of the 510 papers from Europe identified, the 
breakdown of their surveys corresponding to our 
search criteria was not available in open access (32). 
Thus, the limited number of surveys that satisfied 
our inclusion criteria, particularly the reporting of 
geographic information, precluded mapping AMR 
prevalence for individual drug/bacteria combina-
tions or animal species.

Second, with regard to using PPSs for regional 
estimations, differences in sampling strategy and 
sample sizes may affect the comparability of surveys 
and potentially explain why prevalence calculated 
from PPSs was in some instances higher than the 
prevalence estimates reported by EFSA. In particu-
lar, targeted sampling for bacteria that probably have 
high-resistance profiles, such as extended-spectrum 
beta lactamase–producing E. coli (33), could lead to 
comparatively higher AMR in PPS data than in the 
general population, which are more likely to be ob-
served with the EFSA sampling scheme. In terms of 
microbiology, the set of tested antimicrobials differed 
between PPSs, which necessitated use of a composite 
metric. In addition, there were some transparency is-
sues in terms of which methods or breakpoints were 
used (i.e., assumptions had to be made in the case 
of missing data [such as guideline year] and in the 
harmonization approach used for PPSs that used dif-
ferent guidelines, which may have led to some un-
intended bias), as well as a diversity of breakpoints 
used. Despite attempts to reduce variability between 
surveys, some variability may still exist and there-
fore efforts should be made to develop standard-
ized protocols in the future, such as for all PPSs to 
shift to using ECOFF values and to release raw data. 
The creation of a consensus breakpoint table that 
could be used by all would also greatly assist with 
the comparability of those data and reduce the need 
for such adjustments. Because most studies reported 
only sampling location or region by name rather than  

specific coordinates, coordinates and size of region 
were estimated (and may not always represent the loca-
tion of the farms where the animals were raised), which 
may have led to further uncertainty in our models.

Third, because of the limited number of PPSs, 
as well as their heterogenous distribution across the 
study period, incorporating the temporal dimension 
into the modeling framework remains challenging 
at this stage. Therefore, countries that have had con-
siderably reduced AMR levels since 2009, such as 
the Netherlands (34), may be associated with higher 
AMR prevalence in our maps than that in the latest 
reports. However, as the number of surveys grows in 
the future, other spatio-temporal approaches, such as 
the Integrated Nested Laplace Approximation (35), 
could be used to account for not only spatial but also 
temporal variations in AMR prevalence extracted 
from PPSs.

Last, because of the static framework of geo-
spatial modeling, it was not possible to incorporate 
all relevant data. That limitation may have a dy-
namic effect on AMR prevalence estimates, notably 
animal movement.

In conclusion, high-resolution maps that predict 
subnational hotspots can help support targeted re-
source allocation and control strategies for reducing 
AMR burden. Such strategies could include improv-
ing farm biosecurity and targeted surveillance. The 
accuracy of these maps could be gradually improved 
in the future should countries routinely report geo-
graphic location data along with microbiological 
sampling results.
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etymologia revisited
Schizophyllum commune 
[skiz-of′-ǐ-ləm kom′-yoon]

Schizophyllum commune, or split-gill mushroom, is an envi-
ronmental, wood-rotting basidiomycetous fungus. Schizo-

phyllum is derived from “Schíza” meaning split because of the 
appearance of radial, centrally split, gill like folds; “commune” 
means common or shared ownership or ubiquitous. Swedish 
mycologist, Elias Magnus Fries (1794–1878), the Linnaeus of 
Mycology, assigned the scientific name in 1815. German my-
cologist Hans Kniep in 1930 discovered its sexual reproduction 
by consorting and recombining genomes with any one of nu-
merous compatible mates (currently >2,800).
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Predictive Mapping of Antimicrobial 
Resistance for Escherichia coli, Salmonella, 

and Campylobacter in Food-Producing 
Animals, Europe, 2000–2021 

Appendix 

Methods 

Literature Review 

We conducted a systematic literature review on antimicrobial resistance (AMR) preva-

lence in livestock and livestock products in Europe (Appendix Figure 1). We used three data-

bases: PubMed, ISI Web of Science, and Scopus. Our original search focused on four pathogens 

commonly found in animals and their products: Escherichia coli, Staphylococcus aureus, Cam-

pylobacter spp., and non-typhoidal Salmonella spp. The searches were conducted at different 

time periods between May 2019 and January 2022, and included studies published between 2000 

and 2021. 

The general format for our literature queries was: (Resistance) AND (Bacterial Species) 

AND (Animal/Sample Type) AND (Country). 

The keywords used for the literature review on PubMed, ISI Web of Science, and Scopus 

were: (“antibiotic resistance” OR “antimicrobial resistance” OR resistance OR resistencia OR 

“resistencia aos antibioticos” OR resistencia OR “resistencia a antibioticos” OR susceptibility 

OR susceptibilidade OR suscetibilidade OR antibiogram OR “antibiotic susceptibility testing” 

OR antibacteriano OR antibiotic OR antimicrobial OR antibiotic OR antibacterial OR antimicro-

biano OR antibiograma OR antibiotic) AND (Escherichia OR “E. coli” OR coliform OR salmo-

nella OR “salmonella spp.” OR “S. aureus” OR staphylococcus OR “Staphylococcus spp.” OR 

“MRSA” OR “MSSA” OR campylobacter OR “campylobacter spp.” OR “C. jejuni” OR “C. 

https://doi.org/10.3201/eid3001.221450
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coli”) AND (animal OR food OR “food producing” OR meat OR cow OR cattle OR beef OR bo-

vine OR buffalo OR pig OR piggeries OR pork OR “chicken” OR “flock” OR “broiler” OR 

“layer” OR “egg” OR “poultry” OR “avian” OR milk OR dairy OR cheese) AND (France OR 

Spain OR Netherlands OR Denmark OR Sweden OR Italy OR Greece OR Germany OR French 

OR Spanish OR Dutch OR Danish OR Swedish OR Italian OR Greek OR German OR Norway 

OR Norwegian OR Finland OR Finnish OR Poland OR Polish OR “United Kingdom” OR Eng-

land OR English OR Romania OR Romanian OR Bulgaria OR Bulgarian OR Iceland OR Ice-

landic OR Hungary or Hungarian OR Portugal OR Portuguese OR Austria OR Austrian OR 

Czechia OR “Czech Republic” OR Czechian OR Ireland OR Irish OR Lithuania OR Lithuanian 

OR Latvia OR Latvian OR Croatia OR Croatian OR Slovakia OR Slovakian OR Estonia OR Es-

tonian OR Switzerland OR Swiss OR Moldova OR Moldovan OR Belgium OR Belgian OR 

“North Macedonia” OR Macedonia OR Macedonian OR Slovenia OR Slovenian OR Cyprus OR 

Luxembourg OR Malta OR Maltese). In PubMed, this query was put directly into the search bar. 

On Scopus, this search was conducted using TS = (keywords given above), where TS stands for 

our search topic. In the ISI Web of Science, the search was conducted using TITLE-ABS-

KEY = (keywords given above). Here, TITLE-ABS-KEY stands for title, abstract, and key-

words. 

In PubMed, Scopus, and ISI Web of Science, an initial search on eight European coun-

tries (Italy, Germany, the Netherlands, Spain, France, Greece, Denmark, and Sweden) was con-

ducted on January 7, 2020, for Point Prevalence Survey (PPS) published between 2000 and 

2019. These searches yielded 14,445 results. Titles and abstracts were screened manually. After 

removing duplications, reviews, meta-analyses, book chapters, and papers irrelevant to our topic 

of interest, we had 1,265 potentially relevant manuscripts. At this point, papers were read and re-

moved if geographic data was unavailable, no antimicrobial susceptibility testing was performed, 

the study focused on sick animals, the survey focused on animals at the country-wide level, re-

sults were pooled between different animal species or sample types, or resistance prevalences 

were pooled between different pathogen types. From these, 191 papers were extracted, yielding 

4853 resistance estimates. 

Next, in PubMed, Scopus, and ISI Web of Science, a search for the remaining European 

countries was conducted on April 23, 2020, for PPS published between 2000 and 2019. This 

search yielded 54,591 results. Titles and abstracts were screened in the same manner as the first 
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search, and the same non-relevant results were removed. After this step, we had 745 potentially 

relevant manuscripts. From these, 98 were extracted, yielding 1567 resistance prevalences. 

In PubMed, Scopus, and ISI Web of Science, a search for all European countries was 

conducted on January 7, 2021, for PPS published in 2020. This search yielded 6,005 results. Ti-

tles and abstracts were reviewed in the same manner as the previous two searches, and the same 

non-relevant results were removed. After this step, we had 253 potentially relevant manuscripts. 

From these, 34 were extracted, yielding 783 resistance prevalences. 

A final literature search (identical to that of January 7, 2021) was run on January 10, 

2022, to identify all PPS published in 2021. This search yielded an additional 6,598 results. As 

outlined previously, all the same steps for title and abstract screening were followed, leaving 110 

potentially relevant manuscripts. Of these, 22 were extracted, yielding 606 resistance preva-

lences. Overall, this gave 345 papers with 7,809 resistance estimates of any antibiotic-pathogen 

combination. 

As there was no mandated or routine reporting of Staphylococcus aureus to EFSA (there 

was only limited voluntary reporting of MRSA from 5 countries in 2018 and 6 countries in 2019) 

AMR estimates for S. aureus were subsequently excluded. Additionally, only countries reporting 

to EFSA were retained. The final number of manuscripts was 209. 

Geographic localization of point prevalence surveys 

Only PPS that reported geographic information were included in the study. The extracted 

information was recorded in “name_of_location” and “level_of_uncertainty” variables. 

• “Name_of_location” contains the name(s) of the most precise location information 

available in the article. Where more than one location was reported, both names 

were recorded. 

• “Level_of_uncertainty” contains the administrative level at which the sampling was 

performed (see Legend on resistancebank.org for full details). These data were 

then used to determine “Ycoord” and “Xcoord” variables. 

• These data were then used to determine “Ycoord” and “Xcoord” variables. There 

were two ways in which these were generated: 
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1. Samples taken from across an area/province – the centroid of the province was 

obtained. 

2. Several sampling points across an area/region – the middle point of all the sam-

pling points was taken. This can be identified using variable “name_of_location” 

where more than one name is recorded. 

Example: 

DOI: 10.1155/2009/456573 

Extract 1 from paper: “C. jejuni isolates were selected from a prevalence study of ther-

mophilic campylobacters in livestock carried out in the Basque Country (Northern Spain)” 

Extract 2 from paper: “…isolates were selected on the basis of isolation source (host, 

farm, and flock). Hence, the 72 isolates analysed by broth microdilution included 19 isolates 

from 12 poultry farms (18 flocks), 25 from dairy sheep (21 farms), and 28 isolates from cattle 

(14 beef cattle and 11 dairy cattle farms)” 

Interpretation: Tested a specific subset of isolates from across Basque. 

Level of uncertainty: Province 

Name of location: Basque County 

X/Y Coordinates: taken from the centroid of the Basque province. 

Harmonization of antimicrobial resistance rates 

The two most frequently used systems for antimicrobial susceptibility testing (AST) are 

Clinical and Laboratory Standards Institute (CLSI) and European Committee for Antimicrobial 

Susceptibility Testing (EUCAST). Each system uses breakpoints to classify susceptible and re-

sistant phenotypes; these values are updated annually. Therefore, adjustment for breakpoint vari-

ation over time is essential. 

In this study, we found 96% of records reported the guidelines used, while 72% of these 

records also reported the year of the guidelines used. The majority of records reported CLSI 

(52%), followed by EUCAST (29%), despite all studies originating from the European region. 

4.4% of records did not report a guideline, and these records were excluded from subsequent 

analysis. The remaining records reported a mix of guidelines used in mentioned surveillance 
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systems (e.g., DANMAP, NARMS, BSAC etc). For records where the guideline was reported, 

but no specific year, a date 4 years prior was assumed as this was the median lag between publi-

cation date of the survey and year of the guidelines. These assumptions were applied to maxim-

ise the amount of data retained for subsequent analyses. 

The same harmonization procedure was then applied to all records as outlined in refer-

ence (1). This harmonization procedure resulted in 9% of records (262 out of 2888) being re-

vised. 

To assess the impact of using CBPs rather than ECOFFs, we changed the breakpoints 

used to ECOFFs rather than CBP, which resulted in 11% of the calculated P50s changing. Of 

these 38 P50s, the average absolute change was 18.9%. For these P50s, the majority (n = 35) be-

came larger, while five became smaller. Therefore, ≈90% of the calculated P50s would remain 

the same if the breakpoints were changed, and the absolute change would be relatively small. 

Desk review of national reports 

We conducted a desk review of European countries to identify national reports that con-

tain information on AMR in food-producing animals (Appendix Table 6). The contents of the re-

ports were compared with EFSA, to determine if there was any further relevant data contained 

within these reports. Due to the limited additional data, with low comparability, these data were 

not extracted for this study. 

Geospatial modeling of P50 

During the first step, the P50 values (proportions) were transformed into presence and ab-

sence of resistance using a random binarization procedure. Concretely, each P50 value was du-

plicated 5 times, and compared with a random number between 0 and 1. P50 values higher than 

the random number were classified as presence of resistance, otherwise the values were classi-

fied as absence of resistance. 

Sensitivity analyses and covariate importance 

Sensitivity analyses were conducted by (a) restricting PPS to the same period as EFSA 

(2009–2020), (b) restricting to the six/seven most common drug-bug combinations and (c) by 

calculating P50 by class of drug rather than individual compound. For analysis (b), for E. coli 

and Salmonella the seven drugs included were: TET, AMP, SXT, CHL, CIP, GEN, CTX. The 

six most common drugs for Campylobacter were AMP, STR, GEN, CIP, TET, ERY. 
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The importance of covariates was calculated by sequentially removing each covariate 

from the modeling procedure and comparing the changes in the mean AUC across 10 Monte 

Carlo simulations. 

Results 

Descriptive analysis 

A total of 81,639 records were identified from the literature search (Appendix Figure 1). 

Following de-duplication, title, abstract and subsequent full paper screen, a total of 209 studies 

with geographic information had data extracted. From 209 PPS where geographic information 

was reported, 2,849 AMR estimates were extracted, providing 368 P50s. 

From the EFSA reports, 2,996 P50s at country-level (33,802 AMR estimates) were calcu-

lated from data collected between 2009 and 2020. The numbers of countries reporting to EFSA 

each year ranged from 23 in 2009, 20 in 2011, to 31 countries reporting annually from 2015 on-

wards. 

Appendix Table 1. Suggested antimicrobials, by bacteria, for inclusion for antimicrobial susceptibility testing (AST) for surveillance 
of AMR in foodborne bacteria (2) 
Antimicrobial classes Salmonella, E. coli Campylobacter 
Aminoglycosides Gentamicin Gentamicin 

Streptomycin 
Amphenicols Chloramphenicol  
Carbapenems Imipenem 

Meropenem 
 

Cephalosporins II Cefoxitin  
Cephalosporins III Cefatoxime (or Ceftriaxone) 

Ceftazidime 
 

Cephalosporins IV Cefepime  
Glycopeptides   
Glycylcyclines Tigecycline  
Lincosamides  Clindamycin 
Lipopeptides   
Macrolides Azithromycin Erythromycin* 
Nitrofurans Nitrofurantoin  
Oxaxolidinones   
Penicillins Ampicillin 

Amoxicillin 
Temocillin 

Ampicillin 

Polymyxins Colistin  
Quinolones Ciprofloxacin 

Nalidixic acid 
Pefloxacin^ 

Ciprofloxacin 
Nalidixic acid 

Rifamycins   
Streptogramins   
Sulfonamides Sulfisoxazole#  
Tetracyclines Tetracycline Tetracycline~ 
Trimethoprim Trimethoprim  
Antimicrobials italicized are second priority 
* Resistance toward erythromycin reflects azithromycin resistance 
^ To screen for ciprofloxacin resistance in Salmonella spp. when disk diffusion is used. 
# Trimethoprim-sulfamethoxazole can be used instead of using sulfisoxazole or trimethoprim alone 
~ Doxycycline may be used instead of tetracycline 
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Appendix Table 2. Environmental and anthropogenic covariates use to train child models 

Name Acronym Year 
Original 

Resolution Source Unit 
Travel time 
to cities 

acc 2015 
 

30-arcsec 
resolution 

 

 (3) 
https://www.map.ox.ac.uk/accessibility_to_cities/. 

minute 

Antimicrobial 
use in ani-
mals 

use 2013 0.083333 
decimal de-

grees 
 

 (4) 
http://science.sciencemag.org/con-

tent/357/6358/1350.full 

Log10[(mg/pixel)+1] 

Yearly aver-
age of mini-
mum 
monthly tem-
perature 

tmp 1970–
2000 

2.5 min 
 

 (5) 
http://worldclim.org/version2 

°C * 10 

Percentage 
irrigated ar-
eas 

irg 2015 0.083333 
decimal de-

grees 
 

Global Map of Irrigation Areas (GMIA) (6) 
https://zenodo.org/record/6886564#.YuZ1HS8RpN0 

% 

Population 
density of 
cattle, chick-
ens, pigs, 
and sheep 
(GLW ver-
sion 4) 

ca_v4 
ch_v4 
pg_v4 
sh_v4 

 

2015 0.083333 
decimal de-

grees 

 (7) (https://www.nature.com/articles/sdata2018227) 
 

Log10[(Heads/pixel) +1] 

Percentage 
of tree cover-
age 

veg 2013 0.008333 
decimal de-

grees 

 (8) 
https://earthenginepartners.appspot.com/science-

2013-global-forest/download_v1.2.html 

% 

 
 
 
 
Appendix Table 3. Absolute difference between resistance prevalence for antimicrobials by data source (point prevalence survey 
(PPS) vs European Food Safety Authority (EFSA)) between 2018 and 2020, and their WHO designation of antimicrobial im-
portance*. 
Variable E. coli Salmonella Campylobacter WHO Grouping 
AMP 19.11 8.27 - Critically important 
CAZ 10.41 - - Critically important 
CHL 7.51 15.2 - Highly important 
CIP −0.02 −17.4 1.71 Critically important 
CST 10.66 3.41 - Critically important 
CTX 10.41 1.87 - Critically important 
ERY - - 12.1 Critically important 
FOX −7.96 - - Highly important 
GEN 9.09 0.96 7.66 Critically important 
IPM 5.53 - - Critically important 
NAL 8.7 −2.35 0.78 Critically important 
STR - - 4.99 Critically important 
TET 16.07 3.81 1.87 Highly important 
*A ratio <1 indicated a lower 3-y mean P50 using PPS data, and a ratio >2 meant a more than double 3-y mean P50 from PPS data compared to 
EFSA. 
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Appendix Table 4. Comparison between maps produced using all extracted data, maps produced using restricted number of drugs, 
maps produced when P50 is calculated by class of drug (rather than individual compound), and maps produced using only surveys 
published between 2009 and 2020. Mae: mean absolute error; Cor: Pearson correlation coefficient. 
Variable E. coli Salmonella Campylobacter 
(a) Restricted by year (2009–2020)    
 No. of surveys 123 66 74 
  Mae 0.85% 0.75% 1.4% 
  Cor 0.994 0.986 0.995 
(b) Restricted pathogen-antimicrobial combinations    
 No. of surveys 153 97 111 
  Mae 1.5% 0.46% 0.63% 
  Cor 0.984 0.994 0.999 
(c) P50 calculated at class level    
 No. of surveys 156 99 113 
  Mae 1.0% 0.5% 0.49% 
  Cor 0.992 0.993 0.999 
 
 
 
Appendix Table 5. Importance of covariates for mapping the distribution of AMR, indicating mean AUC of the full model, and the 
decrease in mean AUC after each covariate was removed from the modeling procedure. 
Variable E. coli Salmonella Campylobacter 
Full model 0.635 0.606 0.536 
Travel time to cities 0.03 0.001 0.02 
Antimicrobial use in animals 0.019 0.037 0.037 
Yearly average of minimum monthly temperature 0.033 0.042 0.034 
Percentage irrigated areas 0.016 0.034 0.027 
Population density of cattle 0.024 0.036 0.023 
Population density of chicken 0.025 0.041 0.023 
Population density of pigs 0.017 0.03 0.032 
Population density of sheep 0.03 0.029 0.032 
Percentage of tree coverage 0.106 0.078 0.024 
 
 
 
Appendix Table 6. Desk review of European countries reporting AMR in zoonotic and foodborne bacteria (2007–2020) 

No. Country 
EU 

Member 
State 

Reporting 
to EFSA* 

PPS ex-
tracted^ 

National level integrated surveillance (9) 
Comparison of report content and frequency of data reporting com-

pared to EFSA reports 
1 Albania  ✔   
2 Austria ✔ ✔ ✔  
3 Belgium ✔ ✔ ✔  
4 Bulgaria ✔ ✔ ✔  
5 Cyprus ✔ ✔   
6 Czech Republic ✔ ✔ ✔  
7 Denmark ✔ ✔ ✔ ✔ DANMAP (Last accessed 21 Feb 2022). Established 1995. 

Pathogen & animal types: 
• Salmonella Typhimurium (pig) 

• Salmonella Derby (pig) 
• Campylobacter jejuni (chicken, cow) 

• E. coli (chicken, cattle) 
Reporting content: 

Same pathogens and animal types are reported to EFSA each year, 
with the same sample sizes. 

Additional data available: 
Last published report contains 2020 data. 

8 Estonia ✔ ✔ ✔  
9 Finland ✔ ✔ ✔ ✔ FINRES-VET (Last accessed 21 Feb 2022) 

Pathogen & animal types: 
• Campylobacter jejuni (chicken, cow) 

• Salmonella spp. (pooled animal types) 
Reporting content: 

Report less in report than to EFSA. 
Additional data available: 

Last published report contains 2020 data. 
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No. Country 
EU 

Member 
State 

Reporting 
to EFSA* 

PPS ex-
tracted^ 

National level integrated surveillance (9) 
Comparison of report content and frequency of data reporting com-

pared to EFSA reports 
10 France ✔ ✔ ✔ ✔ ONERBA (Last accessed 21 Feb 2022) 

Pathogen & animal types 
• E. coli (cattle, turkeys, pig) 

Reporting content: 
Only report mandatory data (e.g., in 2018 only reported on turkeys and 
chickens, and for the requested sample size). The ONERBA published 

report in 2018 contains larger samples sizes and contain additional 
data on pigs. 

Additional data available: 
Last published report only contains 2018 data, however historical re-
ports contain additional animal types and larger sample sizes com-

pared to EFSA. 
11 Greece ✔ ✔ ✔  
12 Germany ✔ ✔ ✔ ? GERMAP (no report publicly available since 2015) 
13 Croatia ✔ ✔   
14 Hungary ✔ ✔ ✔  
15 Iceland  ✔   
16 Ireland ✔ ✔ ✔  
17 Italy ✔ ✔ ✔  
18 Lithuania ✔ ✔   
19 Luxembourg ✔ ✔   
20 Latvia ✔ ✔   
21 Malta ✔ ✔   
22 The Nether-

lands 
✔ ✔ ✔ ✔ MARAN (NETHMAP) (Last accessed 21 Feb 2022) 

Pathogen & animal types: 
• Salmonella spp. (pooled animal types) 

• E. coli (pigs, chicken, cow, turkey) 
Reporting content: 

Only trends reported in prose. Data not in an extractable format. 
Additional data available: 

N/A – no extractable data available. 
23 Norway  ✔  ✔NORM-VET (Last accessed 21 Feb 2022) 

Pathogen & animal types 
• Salmonella spp., but animals are pooled 

• Campylobacter jejuni and Campylobacter coli (chicken, turkey, 
pigs) 

• E. coli (chicken, turkey, cattle, pigs, goats) 
Reporting content: 

Animal types differ year-on-year, in-line with EFSA requirements; report 
same sample sizes. 

E.g., in 2020, reported E. coli in chicken and turkeys while in 2019, re-
ported E.coli in cattle and pig. 

Additional data available: 
Last published report contains 2020 data. 

24 Poland ✔ ✔ ✔  
25 Portugal ✔ ✔ ✔  
- Republic of 

North Macedo-
nia 

 ✔  Excluded from geospatial analysis due to small numbers in EFSA data. 

26 Spain ✔ ✔ ✔  
27 Sweden ✔ ✔ ✔ ✔ SVARM (Report - SWEDRES) (Last accessed 21 Feb 2022) 

Pathogen & animal types: 
• ESBL-producing E.coli (chicken) (no AST) 

• Salmonella spp. (pooled animals) 
• Campylobacter jejuni (chicken) and coli (pig) 

Reporting content: 
Report Campylobacter in-line with EFSA requirements. 

Additional data available: 
Last published report contains 2020 data. 

28 Switzerland  ✔ ✔ ARC-Vet (Last accessed 21 April 2022) 
Pathogen & animal types 

• E. coli (pig, cattle) 
• Campylobacter coli (pig) 

Reporting content 
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No. Country 
EU 

Member 
State 

Reporting 
to EFSA* 

PPS ex-
tracted^ 

National level integrated surveillance (9) 
Comparison of report content and frequency of data reporting com-

pared to EFSA reports 
- 

Additional data available 
Last published report contains 2019 data. 

29 Slovenia ✔ ✔   
30 Slovakia ✔ ✔ ✔  
31 The United 

Kingdom 
✔ ✔ ✔ ✔ VARSS 

Pathogen & animal types: 
• E. coli (chicken, turkey, pigs) 
• Salmonella (chicken, turkey) 

• Campylobacter jejuni (chicken, turkey) 
Reporting content: 

Animal types and pathogen in-line with EFSA requirements, with same 
sample size. 

Additional data available: 
Last published report contains 2020 data. 

*Last published report in April 2022 contains data from 2019/2020 
^Where at least one PPS extracted per country, either published or data collected between 2000 and 2021 

 



 

Page 11 of 15 

 
Appendix Figure 1. PRISMA Flow Diagram 
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Appendix Figure 2. Geospatial modelling framework 
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Appendix Figure 3. (a) Prediction uncertainty calculated from the variation of predicted P50 values 

across the ten bootstraps (b) Hotspot map for 31 countries (light blue indicates hotspot areas, the top 

95% percentile) (c) Standard deviation in P50 estimates per country 
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Appendix Figure 4. Sensitivity analyses of geospatial modelling for (a) date restriction to 2009-2020 only 

(b) 6-7 most common drug-bug combinations and (c) P50 by class of drug rather than individual com-

pound. 
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