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A challenge throughout the COVID-19 pandemic 
has been forecasting surges in hospitalizations and 

deaths so that health officials can plan and mitigate ac-
cordingly. However, effective COVID-19 surveillance 
and forecasting has been complicated by numerous fac-
tors: reported new cases variably underestimate true 
incidence; wastewater surveillance of SARS-CoV-2 is 
limited; variants have different virulence levels (1); and 
the risk for severe outcomes depends on previous im-
munizations, infections, and duration of the immune 
response, which is increasingly heterogeneous and 
variant-dependent. Ideally, independent proxies could 
help surveil the risk for increases in levels of severe CO-
VID-19 disease; however, such proxies should be pre-
dictive and include a sufficient lead-lag relationship to 
enable public health mitigation. We investigated a pos-
sible lead-lag relationship between Google searches for 
“loss of smell” and “loss of taste” and COVID-19 hospi-
talizations and deaths.
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Surveillance of COVID-19 is challenging but critical for mit-
igating disease, particularly if predictive of future disease 
burden. We report a robust multiyear lead-lag association 
between internet search activity for loss of smell or taste 
and COVID-19–associated hospitalization and deaths. 
These search data could help predict COVID-19 surges.



Online search activity has previously been shown 
to have some predictive power for other diseases (2). 
Multiple symptoms are associated with COVID-19, 
but “new loss of smell or taste” is highly specific (odds 
ratio ≈10) (3). Loss of taste is confounded because fla-
vor occurs partly through retronasal olfaction, and 
most persons do not differentiate between changes 
in taste versus flavor. In psychophysical smell and 
taste tests of persons with acute COVID-19, 72% had 
an olfactory defect and 19% had a gustatory defect 
(4). Early studies in the pandemic noted a correlation 
between Google Trends searches for loss of smell and 
taste and COVID-19 cases (5,6). This correlation oc-
curred even before anosmia was publicly recognized 
as a COVID-19 symptom (6), underscoring the possi-
bility that olfactory and gustatory symptoms are use-
ful indicators for COVID-19 surveillance.

SARS-CoV-2–induced olfactory dysfunction has 
been studied at the cellular level and in human trials (7). 
Nasal sustentacular epithelial cells adjacent to olfactory 
neurons have high angiotensin-converting enzyme 2 re-
ceptor levels and are a key site of virus replication. SARS-
CoV-2 enters cells either by fusing at the cell surface or 
in endosomes (7). Those 2 pathways vary between cell 
and tissue types; respiratory and olfactory epithelial 
cells use endosomal and cell surface pathways, and cell 

surface pathways require activation by cell surface pro-
teases (e.g., TMPRSS2) (7). Mutations associated with 
Omicron caused it to be TMPRSS2-resistant (8) and dis-
play enhanced replication in the upper respiratory tract, 
consistent with less severe lung disease, lower mortality 
rates (9), and less frequent self-reported olfactory dys-
function (10). A hypothetical correlate is that olfactory 
dysfunction might be a proxy for general risk for infec-
tion of lung cells at the population level. Given this po-
tential link, we examined whether Internet searches for 
“loss of smell” and “loss of taste” correlate with waves 
of COVID-19 deaths with a lead-lag relationship, and if 
so, whether that correlation is maintained across differ-
ent waves of COVID-19 variants. 

To robustly test for a potential association, we 
analyzed Google Trends searches for “loss of smell” 
and “loss of taste” across 5 different English-speaking 
countries and 3 different years (2020, 2021, and 2022) 
and examined the correlation to reported COVID-19 
hospitalizations and deaths (Figure). We retrieved 
weekly query frequencies for “loss of smell” (or “an-
osmia”) and “loss of taste” (or “ageusia”) from the 
Google Extended Trends API for Australia, Canada, 
South Africa, the United Kingdom, and the United 
States. Using public sources, we computed weekly 
COVID-19–associated mortality and hospitalization 
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Figure. Longitudinal association of COVID-19 hospitalization and death with online search for loss of smell or taste. A) Weekly 
COVID-19–associated deaths (per 100,000 population), hospitalizations (per 100,000 population), and Google search trends for ‘loss of 
smell’ and ‘loss of taste’ (per 10 million search sessions) in the United States during March 2020–September 2022. Vertical broken lines 
delimit calendar years. B) Cross-correlation between Google trends of the 2 search queries, and the 2 outcomes in 5 countries (columns) 
over the entire COVID-19 pandemic period of March 2020–September 2022 (top row) and disaggregated by calendar year. Statistically 
significant correlations (p<0.01) are indicated by a data point. Lag between paired search trend and outcome is shown in weeks.



rates for February 2020–August 2022. For each coun-
try, we computed cross-correlation between paired 
search trend and outcome for each week between −6 
(lead) and 6 (lag) for the study period and each calen-
dar year (Appendix, https://wwwnc.cdc.gov/EID/
article/29/8/23-0071-App1.pdf).

We observed a strong correlation in the United 
States between deaths, hospitalization, and searches 
for loss of smell or taste with surprisingly similar am-
plitudes for all major waves (Figure, panel A), includ-
ing those associated with Omicron in December 2021. 
Cross-correlation was high (0.68–0.85) and significant 
(p<0.01) across all 5 countries; the peak trend for loss 
of smell or taste preceded hospitalization and deaths 
by 2–3 weeks (Figure, panel B). This correlation was 
seen across all years combined and was evident for 
most country–year combinations. The association ap-
peared weak in years when outcome rates were low 
(e.g., Australia in 2020). The analysis indicates the 
correlation is robust over 3 years and multiple variant 
waves and that loss of smell or taste might give offi-
cials a useful lead indicator of the risk for COVID-19–
associated hospitalizations and deaths. However, if 
this finding is to be used predictively, the persistence 
of this association would need to be closely tracked 
and monitored.

Strengths of this investigation are the long-dura-
tion longitudinal analysis across multiple countries, 
the use of simple search criteria and variable search 
terms, and analysis of the temporal lead-lag relation-
ship. Limitations include potential for bias on the 
basis of media news cycles, the population scale of 
the analysis, and socioeconomic selection bias related 
to internet access. Future correlations will need to be 
monitored. Search activity might be a more useful in-
dicator of infection levels than COVID-19–associated 
deaths. Despite these caveats, this accessible metric 
should be considered as a public health predictor.
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Longitudinal Association of COVID-19 
Hospitalization and Death with Online 

Search for Loss of Smell or Taste 
Appendix 

## Aggregate daily data to weekly resolutions 

aggregateToWeek <- function(x){ 

  x <- merge(x, date.week.map, by = 'date') 

  x <- x[, j = .(deaths = sum(deaths,na.rm = T),  

               hosp = sum(hosp,na.rm = T),  

               pop = mean(pop)), 

         by = .(region, year, week)] 

   

  x <- merge(x,  

             date.week.map[day =  = 1, j = .(date, year, week)], 

             by = c('year', 'week')) 

   

  x[,j = .(date,  

         region,  

         deaths = deaths*1E5/pop, # per 100000 population 

         hosp = hosp*1E5/pop, # per 100000 population 

         pop)] 

} 
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## Function to find for correlations for outcomes vs trends in a county 

doCountry <- function(req.region = 'United States', req.nrands = 10){ 

  x <- merge(d[region =  = req.region and variable %in% c('smell'),  

               j = .(date, smell = value)], 

             mort[region =  = req.region, j = .(date, deaths)],  

             by = 'date') 

  x <- merge(x, d[region =  = req.region and variable %in% c('taste'),  

                  j = .(date, taste = value)],  

             by = 'date') 

  x <- merge(x, mort[region =  = req.region, j = .(date, hosp)],  

             by = 'date', all.x = T) 

   

   

  smell <- cbind(x$date, scale(x$smell)) 

  taste <- cbind(x$date, scale(x$taste)) 

  mort <- cbind(x$date, scale(x$deaths)) 

  hosp <- cbind(x$date, scale(x$hosp)) 

   

   

  # Calculate cross-correlation for each pair and stack 

  rbind( 

    data.table(var1 = 'smell', var.2 = 'mort',  

               pairSignalWrapper(smell, mort)), 

    data.table(var1 = 'taste', var.2 = 'mort',  

               pairSignalWrapper(taste, mort)), 

    data.table(var1 = 'smell', var.2 = 'hosp',  

               pairSignalWrapper(smell, hosp)), 

    data.table(var1 = 'taste', var.2 = 'hosp',  

               pairSignalWrapper(taste, hosp)) 

 ) 

} 
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### For the two time series, find correlations over the entire period and  

### by calendar year 

pairSignalWrapper <- function(x, y){ 

  overall <- pairSignal(x[,2], y[,2]) # over the entire study period 

  y20 <- pairSignal(x[checkDate(x, 2020),2],  

                    y[checkDate(y, 2020),2]) # calendar year 2020 only 

  y21 <- pairSignal(x[checkDate(x, 2021),2],  

                    y[checkDate(y, 2021),2]) # calendar year 2021 only 

  y22 <- pairSignal(x[checkDate(x, 2022),2],  

                    y[checkDate(y, 2022),2]) # calendar year 2022 only 

   

  ret <- rbind( 

    data.table(period = 'Overall', overall), 

    data.table(period = '2020', y20), 

    data.table(period = '2021', y21), 

    data.table(period = '2022', y22)) 

   

  ret$period <- factor(ret$period,  

                       levels = c('Overall', as.character(2020:2022))) 

   

  ret 

} 

 

 

## Function to calculate cross-correlation between the two signals 

pairSignal <- function(x, y){ 

  obj <- ccf(x, y, lag.max = 6, plot = F, type = 'correlation') 

  p.value <- 2* (1 - pnorm(abs(obj$acf),  

                           mean = 0,  
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                           sd = 1/sqrt(obj$n.used))) %>% 

    round(4) 

  ret <- data.frame(lag = −6:6, coeff = round(obj$acf, 4), p.value) 

   

  ret 

} 

 

 

## Check if date is in a calendar year 

checkDate <- function(x, req.year = 2020){ 

  year(as.Date(x[, 1], '1970–01–01')) =  = req.year 

} 

## Load mortality and hospitalization data from Our World in Data and 

## aggregate daily data to week 

<- readRDS(paste0(baseDir, 'owid-covid-data_v2.Rds')) 

mort <- mort[date < = '2022–12–31',  

             j = .(region = location, date, deaths = new_deaths, hosp = hosp_patients, 

pop = population)] %>% 

  aggregateToWeek() 

 

 

 

## Load trends from Google Health Trends API 

d <- readRDS(paste0(baseDir, 'Trends_v2.Rds')) 

setnames(d, c('region', 'date', 'smell', 'taste')) 

d$date <- as.Date(d$date) 

d <- melt(d[date> = '2020–01–01' and date < = '2022–12–31'], id.vars = c('region', 'date'), 

variable.factor = F) 

 

 

##  Stack datasets 
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temp <- rbind(mort[,.(variable = 'mort', region, date, value = deaths)],  

              mort[,.(variable = 'hosp', region, date, value = hosp)], d, use.names = T) 

temp$variable <- factor(temp$variable,  

                        levels = c('mort', 'hosp', 'smell', 'taste'),  

                        labels = c('Mortality', 'Hospitalization', 'Loss of smell', 'Loss of taste')) 

 

 

 

### Calculate correlations 

ret <- lapply(unique(temp$region),  

              doCountry) 

 

## post process to clean outcomes and trend labels 

names(ret) <- unique(temp$region) 

ccf.pairs <- rbindlist(ret, idcol = 'region') 

 

ccf.pairs$var1 <- factor(ccf.pairs$var1,  

                         levels = c('smell', 'taste'),  

                         labels = c('loss of smell', 'loss of taste')) 

ccf.pairs$var2 <- factor(ccf.pairs$var2,  

                         levels = c('mort', 'hosp'),  

                         labels = c('Mortality', 'Hospitalization')) 


