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The real-time evaluation of the effectiveness of 
vaccination campaigns at the population level 

is essential for public health policy makers and sci-
entists working toward successful mitigation of the 
COVID-19 pandemic. Vaccination coverage against 
SARS-CoV-2 has increased globally and become 
even more crucial because of the emergence of vari-
ants of concern that have increased transmissibil-
ity and lethality (1). We assessed population-level 
effects of the COVID-19 vaccination campaign in 
12 countries worldwide before November 14, 2021. 
Our modeling framework enabled us to disentan-
gle the effects of vaccination and a time-varying 
transmission rate. We also fit the model to multiple 
waves of death in these countries before the Omi-
cron variant was detected.

The Study
We developed a transmission modeling approach to 
analyze diverse spatiotemporal datasets from differ-
ent countries and attempted to evaluate the COVID-19 
vaccination campaign in real time by adapting our re-
lated earlier work (2). The COVID-19 pandemic con-
tinues to be complex because of various short-term en-
forcements of public health and social measures (e.g., 
lockdowns), emergence of new virus variants, shifts in 
age profiles of infected persons, availability of multiple 
vaccines with different effectiveness, reinfection, and 
other factors. However, many of these factors are re-
flected in the key measure, the time-varying transmis-
sion rate, β(t), which characterizes the changes in con-
tact pattern in the population over time. Vaccination 
is intended to reduce the susceptibility of the popula-
tion to the disease. Disentangling real-time variation in 
β(t) and the effectiveness of vaccination is crucial for 
assessing the vaccination program and might only be 
achievable through mathematical modeling.

Country-specific mortality data generally pro-
vide a more reliable characterization of the key epi-
demic dynamics than data on reported confirmed 
COVID-19 cases, which rely on widely different test-
ing and reporting systems that can vary temporally 
and spatially and be subject to various ascertainment 
rates. For our analysis, we obtained data from the 
World Health Organization, including daily con-
firmed COVID-19 death numbers (3,4) and the pro-
portion of the population fully vaccinated (2 doses) 
for 12 countries: the United Kingdom, Italy, the 
United States, Spain, Russia, France, India, Brazil, Co-
lombia, Mexico, Germany, and Canada (5). We used 
a partially observed Markov process (6) model and 
maximum-likelihood–based iterative filtering tech-
nique to fit and make predictions on the mortality 
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To model estimated deaths averted by COVID-19 vac-
cines, we used state-of-the-art mathematical model-
ing, likelihood-based inference, and reported CO-
VID-19 death and vaccination data. We estimated 
that >1.5 million deaths were averted in 12 countries. 
Our model can help assess effectiveness of the vac-
cination program, which is crucial for curbing the  
COVID-19 pandemic. 
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data by susceptible-exposed-infectious-recovered–
type models (Appendix, https://wwwnc.cdc.gov/
EID/article/28/9/21-2226-App1.pdf). 

We estimated the transmission rate, β(t), which 
reflects the simultaneous effect of all possible inter-
ventions, excluding vaccination, over the study pe-
riod. The model assumed a 14-day delay between 
the 2 vaccine doses and the time for the vaccine to 
take effect. We set the unified vaccine efficacy (VE; 
represented by η) at 85% and examined vaccine effec-
tiveness from 75% to 95% (Appendix). The COVID-19 
surveillance data we used were originally collected 
from public domains; thus, neither ethical approval 
nor patient consent was applicable. 

To evaluate effectiveness of vaccination and the 
lives saved, we compared the final model fit and sim-
ulations of the baseline scenario of vaccination to the 
counterfactual scenario of without vaccination by set-
ting VE to η = 0. Vaccination coverage was defined as 
the proportion of the country’s population that was 
fully vaccinated (i.e., either receiving 2 vaccine doses 

or receiving 1 vaccine dose after infection). We plot-
ted vaccination coverage as a function of time for the 
12 countries (Appendix Figure 1).

We compared and fitted the model to data on 
weekly confirmed waves of COVID-19 deaths in the 
12 countries during 2020–2021 and reconstructed 
transmission rates (Appendix Figure 1, panels A–I). 
We then used the model to reconstruct COVID-19 
deaths that would have occurred in these countries in 
the hypothetical without-vaccination counterfactual 
scenario (i.e., in complete absence of vaccination). 
Thus, we could compare the observed mortality rate 
against that of the model’s without-vaccination sce-
nario (Appendix Figure 1).

We found that vaccination campaigns saved the 
lives of up to 1,822,670 (0.069% of the total popula-
tion) persons in these 12 countries (Appendix Table 
2). For instance, the United States reported 416,842 
confirmed deaths during January 1–November 14, 
2021 (Appendix Figure 1, panel E). According to the 
model’s without-vaccination predictions, had the 
United States not initiated a vaccination program, 
1,102,958 deaths would have occurred there during 
the same time frame. Thus, vaccination saved 686,115 
lives (0.2% of the population) in the United States 
during the study period. The model estimated that 
vaccination averted 182,464 (0.27% of the population) 
deaths in the United Kingdom; 109,367 (0.23% of the 
population) deaths in Spain; 78,969 (0.2% of the pop-
ulation) deaths in Canada; and 96,008 (0.16% of the 
population) deaths in Italy. Vaccination coverage in 
each of these countries was >60% (Appendix Table 2).

Vaccination seems to have prevented severe Del-
ta waves in Italy, France, Germany, and Canada dur-
ing the second half of 2021 (Appendix Figure 1). For 
Russia, India, Brazil, Colombia, and Mexico, where 
vaccine coverage was relatively low or delayed, vac-
cination had only a mild effect on the epidemic dy-
namics and mortality rates (Appendix Table 2).

 Widely available vaccines might encourage 
risky behavioral practices among the population, 
which might be less prevalent in the absence of a 
countrywide vaccination campaign. Our idealized 
reconstruction method ignores this possibility and 
might have led to overestimation of both the trans-
mission rate in the without-vaccination scenario and 
the number of deaths averted (7). To examine this 
possibility further, we plotted the changes in deaths 
averted by vaccination as a percentage of the popu-
lation as calculated for 5 levels of transmission rate 
reduction (Figure). The reductions are intended to 
compensate for risky behaviors persons might en-
gage in when vaccinated. We considered these as 

Figure. Deaths averted because of vaccination according to 
a model used to evaluate effectiveness of global COVID-19 
vaccination campaign. The graph represents the difference in total 
deaths under the counterfactual scenario (without vaccination) and 
under the baseline scenario (with vaccination) as a percentage 
of the population. We compared 5 counterfactual scenarios 
under without-vaccination in which we set the transmission rates 
after April 16, 2021, to reduce by 0, 10%, 15%, 20%, and 50% 
compared with the baseline scenario. The y-axis 0.3% means 3 
persons per 1,000 population were saved from COVID-19–related 
death because of vaccination. The absolute value of negative 
deaths averted results from substantial reduction in transmission 
rate, rather than vaccination. β(t), time-varying transmission rate; 
BRA, Brazil; CAN, Canada; COL, Colombia; DEU, Germany; ESP, 
Spain; FRA, France; GBR, Great Britain (United Kingdom); IND, 
India; ITA, Italy; MEX, Mexico; RUS, Russia; USA, United States.
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5 counterfactual without-vaccination scenarios in 
which transmission rates after April 16, 2021, were 
reduced to 0 (scenario 1), 10% (scenario 2), 15% (sce-
nario 3), 20% (scenario 4), and 50% (scenario 5) of 
the level of transmissibility in the baseline scenar-
io. These counterfactual scenarios were intended 
to show that any overestimation of deaths averted 
based on the idealized counterfactual scenario 1 (0 
reduction) was generally minimal unless the trans-
mission rate was reduced by >25% (Appendix).

We conducted additional sensitivity analyses on 
the model performance and counterfactual scenarios 
to explore parameter ranges and several different 
model structures, constructing more complex models 
of imperfect vaccination (Appendix Tables 1–3, Fig-
ures 2, 3). Our estimates of deaths averted show rea-
sonable robustness to changes in the model structure 
and parameters.

Conclusions
We used a disease transmission model and likeli-
hood-based inference approach to evaluate effective-
ness of COVID-19 vaccination in 12 countries. Our 
analysis indicated that vaccination averted >1.5 mil-
lion deaths in the studied countries until November 
14, 2021, or at least precluded the need to reintroduce 
more stringent public health and social measures to 
control transmission. 

Of our several assumptions for this evaluation, we 
first assumed the infection fatality ratio was roughly 
constant over time (1,8,9). We evaluated a second 
model in which we allowed the infection fatality ratio 
to decrease because of vaccination (Appendix). In ad-
dition, we used a unified constant VE although VE 
differs across countries, demographic characteristics 
(10), and type of vaccine and its coverage (11). None-
theless, our modeling framework enabled us to assess 
the effect of vaccination on a time-varying transmis-
sion rate. Our model can help assess effectiveness of 
the COVID-19 vaccination program, which is crucial 
for curbing the COVID-19 pandemic. 
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Appendix 

Additional Methods 

Transmission Models and Fitting 

We make use of the classic susceptible-exposed-infectious-recovered (SEIR) model. The 

rate at which the susceptible population is vaccinated is denoted by ṽ(t). Studies note that 

vaccination induces different levels of protection, which are associated with different risks of 

breakthrough infection. For simplicity, we assume that vaccinated susceptible persons can be 

divided into 2 groups: a high protection group and a low protection group. The high protection 

group is assumed to enter the recovered class (R) and gain long-term full protection after 

vaccination. There are different approaches to deal with the low protection group. Thus, we 

analyzed 2 different models based on the 2 different ways to deal with the low protection group. 

In model 1, the low protection group comprises persons who remain in the Susceptible (S) class 

after vaccination and are available for infection and possibly revaccination; in model 2, the low 

protection group comprises persons who enter the V class after vaccination, where they become 

available for infection at reduced susceptibility. 

Model 1 

The equations of model 1 are derived from previous studies (1–3). Model 1 is: 

https://doi.org/10.3201/eid2809.212226


 

Page 2 of 13 

 𝑆̇𝑆 = −
𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁

− 𝜂𝜂𝑣𝑣�𝑆𝑆,

𝐸̇𝐸 =
𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁

− σE,

𝐼𝐼̇ = 𝜎𝜎𝜎𝜎 − γI,
𝐻̇𝐻 = 𝜋𝜋𝜋𝜋𝜋𝜋 − κH,
𝐷̇𝐷 = θκH,

𝑅̇𝑅 = 𝜂𝜂𝑣𝑣�S + (1 − 𝜋𝜋)γI + (1 − 𝜃𝜃)κH.

 

where S, E, I, H, D, and R denote the mean number of the population that are susceptible 

(S), exposed (E), infectious (I), a delayed class of hospitalized (H) persons between infectious (I) 

and dead (D) and recovered (R), respectively. η is the proportion that become fully protected 

after vaccination (a proxy measure of vaccine efficacy). β is the transmission rate, σ is the rate at 

which exposed persons become infectious, γ is the recovery rate, π is the proportion of infectious 

persons that enter the delayed class H, κ the rate persons discharged from the delayed H class, 

and θ the proportion of deaths of the discharged persons. We suppose that reinfection and 

breakthrough infections are not significant in terms of contributing to deaths, which is a 

reasonable first approximation. 

Following the literature, σ = 0.5 per day, γ = 0.33 per day and κ = 0.0833 per day, such 

that the mean generation time (sum of mean latent period and mean infectious period) is 5 days 

(4,5), and the mean duration from infection to death is 17 days, which are largely in line with 

observations (6). It is assumed that π = 0.15 for countries other than India where π = 0.03 (7,8), 

and 𝛽𝛽 and 𝜃𝜃 are estimated through fitting. The choice of π is not our immediate interest because 

we do not fit data for 𝐻𝐻; hence it is not dealt with in our fitting exercise. The infection fatality 

rate (IFR) = θπ. The choice of π = 0.03 in India was based on considerations of the infection to 

case ratio there (as high as 24:1), low reported deaths and high estimates of seroprevalence in 

India (8). Namely the reported deaths are relatively low per capita and all serologic studies in 

India suggest a large proportion of the population have been infected. We assume θ is in the 

range of 0.02–0.04, which means an IFR in the range of 0.3%–0.6% in the 11 countries except 

for India, which is reasonable (7). The IFR in India is 1/5 of that in the other 11 countries (8). 

We allowed the time-dependent transmission rate, β(t), to be estimated by an exponential 

cubic spline (9) with several nodes nβ = 10 and an upper limit of 608, such that the reproduction 

number (without vaccine) is in a reasonable range with an upper limit of 5. The choice of cubic 
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spline was the same as in our previous studies in modeling multiple waves of infections (10–12). 

Alternatively, one could use the mobility index data in the transmission instead of cubic spline. 

However, the mobility index data alone are insufficient (7,13,14). The emergence of new 

variants with increased transmissibility will increase the overall transmissibility in our 1-strain 

model. 

Because the risk for infection is not uniform in the population and some persons might 

have strong protection compared with others, we assumed for initial conditions that 5% of the 

population were somehow protected or possibly had pre-existing cross-immunity from other 

coronaviruses (15). The initial E and I populations were equal and randomly chosen in the range 

of 0–10,000. The H class was given 1/10 the population of the I class, and the D class had 1/10 

the population in the H class. 

A partially observed Markov process (POMP) model with a maximum likelihood based 

iterated filtering technique was used to fit the mortality data (11). As mentioned, the transmission 

rate, β(t), was taken as an exponential cubic spline (9) to account for the simultaneous impact of 

all possible interventions excluding vaccination. The fitting procedure can be found at 

https://kingaa.github.io/sbied. Appendix Figure 1 shows the fitting and simulation results of 

model 1 with vaccine efficacy (VE) set at 85%. 

Model 2 

In model 2, we extended model 1 by including an additional vaccinated compartment (V) 

for tracking the dynamics of vaccinated but only partially susceptible persons (16). Thus, we 

further consider reduced susceptibility, reduced fatality rate due to vaccination, or both. The 

equations for model 2 are: 

𝑆̇𝑆 = −
𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁 − 𝑣𝑣�𝑆𝑆, 

𝑉̇𝑉 = (1− 𝜂𝜂)𝑣𝑣�𝑆𝑆 −
𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓
𝑁𝑁 , 

𝐸̇𝐸 =
𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁 +

𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓
𝑁𝑁 − 𝜎𝜎𝜎𝜎, 

𝐼̇𝐼 = 𝜎𝜎𝜎𝜎 − 𝛾𝛾𝛾𝛾, 

𝐻̇𝐻 = 𝜋𝜋𝜋𝜋𝜋𝜋 − 𝜅𝜅𝜅𝜅, 
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𝐷̇𝐷 = 𝜃𝜃𝜃𝜃𝜃𝜃, 

𝑅̇𝑅 = 𝜂𝜂𝑣𝑣�𝑆𝑆+ (1− 𝜋𝜋)𝛾𝛾𝛾𝛾+ (1− 𝜃𝜃)𝜅𝜅𝜅𝜅, 

Here, ψ is the parameter that accounts for the reduced susceptibility of vaccinated 

persons, where 0<ψ<1. We show fitting results of model 2 with ψ = 0.6 (Appendix Figure 2). 

Vaccination Rate 

We downloaded data for the vaccination rate, v(t), from the Our World in Data Web site 

(17,18), which is the proportion of the whole population vaccinated per unit of time. First, we 

calculated ṽ(t), the proportion of susceptible persons vaccinated per unit of time. The population 

is divided into 2 groups, vaccinated and unvaccinated; vaccination is only delivered to the 

unvaccinated group, which includes both susceptible and recovered persons. The rate at which 

susceptible persons are vaccinated is given as 

 𝑣𝑣�(𝑡𝑡) = 𝑣𝑣(𝑡𝑡)/(1 − ∫ 𝑣𝑣(𝑠𝑠)ds)𝑡𝑡−1
0   

where 𝑡𝑡 is in units of days (1–3,16). We assume a delay of 14 days between the delivery 

of the second vaccine dose and the onset of protection, thus:  

𝑣𝑣�(𝑡𝑡+ 14) = 𝑣𝑣(𝑡𝑡)/(1 − ∫ 𝑣𝑣(𝑠𝑠)ds)𝑡𝑡−1
0 . 

Asymptomatic Cases 

A large proportion of infections are asymptomatic and less infectious than symptomatic 

cases, as reported in our earlier works (19,20). However, we adopted a simple homogeneous 

model that aggregates both the symptomatic and asymptomatic cases following other previous 

studies, such as Yang and Shaman (13). 

Discussion 

It is possible that population behavioral patterns become more careless and unstable due 

the widespread availability of vaccines over time (21). This might modulate the transmissibility 

across the epidemic and consequently cause us to overestimate the total deaths averted because 

of a vaccination campaign. To assess the effects of the vaccination, we compared the scenarios 

of with-vaccination (baseline scenario) and without-vaccination (counterfactual scenario). To test 

the sensitivity of varied transmissibility, we considered 5 sets of simulations all without-
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vaccination (v(t) = 0), but the transmission rate after April 16, 2021 was reduced by 0%, 10%, 

15%, 20%, and 50% of the baseline scenario’s level (reconstructed transmissibility from data 

with vaccination). We plotted the number of deaths that would have been averted as a percentage 

of the total population of each country with model 1 (VE = 85%) and these 5 counterfactual 

scenarios on transmissibility (Figure in main text). 

Thus, if the reduction in model transmissibility is very large, say 50%, the disease will go 

extinct and few persons will die, which is not so different to the scenario under a successful 

vaccination policy. As such, we saw virtually no difference between the model simulations with 

50% transmission reduction and what happened in all vaccinated countries (Figure in main text), 

because the vaccinations averted many of the possible deaths. Thus, the difference in deaths 

averted for the 2 scenarios appears as ≈0%. 

If no reduction in transmission occurs (i.e., 0% reduction graph in Figure in main text) 

but vaccination is switched off, then most countries have major epidemics in this scenario and 

the differences in deaths averted is major compared to the vaccinated baseline. This is the 

scenario we discuss in the main text and which we are testing for possible overestimation. 

We examined what happens in between those 2 extremes. Of note, according to Figure in 

main text, a 20% transmission reduction is not enough to bring about disease extinction and the I 

class is still able to grow exponentially in some phases for many countries. As such, we saw that 

for many countries, such as the United Kingdom, Spain, Germany, the United States, Italy, and 

France, this 20% reduction in transmission is not very different in terms of deaths averted than 

the 0% transmission reduction, and implies our overestimation not too large. We saw <15% 

difference in the deaths averted in 8 of the 12 countries, namely the United Kingdom, Italy, 

Russia, France, the United States, Spain, Germany, and Canada. On the other hand, with the 20% 

transmission reduction in 2 countries, Mexico and Columbia, the herd immunity threshold was 

crossed and the disease rapidly became extinct. This indicates that a 20% reduction in the 

transmission rate is probably too large to be reasonable, and that level of reckless behavior is 

unrealistic, which was confirmed by examining a scenario of 25% transmission reduction, which 

led to disease extinction in most countries. 
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Other than the above, we know of no other method to explore the effects of reckless 

behavior that might lead to overestimations but recognize this as a possible limitation of the 

method. 

Sensitivity Analysis 

In the above, we consider model 1 with VE = 85% and model 2 with susceptibility 

reduction ψ = 0.6. Here, we consider variations in the model. We consider model 1 with 

VE = 75% and VE = 95%. We consider model 2 with ψ = 0.8. In model 2, we further replace θ 

with the following equation: 

 𝜃𝜃� = �1− ε∫ 𝑣𝑣(𝑠𝑠)𝑡𝑡
0 𝑑𝑑𝑑𝑑�𝜃𝜃 

Namely, we assume that the death rate, θ̃, drops while the proportion of vaccinated 

persons increases at a rate of the following: 

∫ 𝑣𝑣(𝑠𝑠)𝑡𝑡
0 𝑑𝑑𝑑𝑑, in which limit ∫ 𝑣𝑣(𝑠𝑠)𝑇𝑇

0 𝑑𝑑𝑑𝑑 = 1 

and the death rate, θ̃, could drop by ε = 25%. All together, we have 6 model variations 

(Appendix Table 1).  

We fit these 6 model variations (including our baseline model, which is model 1 version 

1 with VE = 85%) to the respective data to find the maximum-likelihood parameter estimates. 

All model variations fit the data reasonably well (Appendix Figure 2). We compared the model-

estimated deaths in 2021 (up to November 14, 2021) in 12 countries under the 6 model variations 

(Appendix Tables 2, 3; Appendix Figure 3), together with the first counterfactual scenario of 

without-vaccination, v(t) = 0.  

We found that the 12 countries fall in 2 groups, the first group of counties (including the 

United Kingdom, Spain, Canada, the United States, Germany, and Italy), had 0.1%–0.3% of their 

population saved from death while the second group of countries (including Mexico, Brazil, 

France, Colombia, Russia, and India) had <0.1% of their population saved. This pattern is 

insensitive to parameter values we considered, despite substantial changes across 6 model 

variations. 

From this and a closer examination (Appendix Tables 2, 3), we concluded that our 

estimates of deaths averted show reasonable robustness to changes in the model structure and 



 

Page 7 of 13 

parameters. We have further confirmed this with a study of much larger number of model 

variations than reported here. 
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Appendix Table 1. Variations in parameter settings for models used to evaluate of effectiveness of global COVID-19 vaccination 
campaign*  

Model Variation 𝜂𝜂 𝜓𝜓 𝜀𝜀 
Model 1 1 0.85 – – 
 2 0.75 – – 
 3 0.95 – – 
Model 2 1 0.85 0.6 0 
 2 0.85 0.8 0 
 3 0.85 0.8 0.25 
*Model 1 is a Susceptible-Exposed-Infectious-Hospitalized-Died-Recovered (SEIHDR) model; model 
2 is an extension of model 1 in which the vaccinated group (V) has reduced susceptibility (controlled 
by ψ) and reduced death rates (controlled by ε). η is the proportion of the population that becomes 
fully protected after vaccination, a proxy measure of vaccine efficacy. 

 
 
Appendix Table 2. Estimated effects of vaccination on COVID-19 mortality in 12 countries during period January 1–November 14, 
2021, according to model 1 used to evaluate of effectiveness of global COVID-19 vaccination campaign*  

Countries 

Version 1  Version 2  Version 3 
Estimated deaths Lives 

saved, 
%† 

 Estimated deaths Lives 
saved, 

%† 

 Estimated deaths Lives 
saved, 

%† 
With 

vaccination 
Without 

vaccination 
 With 

vaccination 
Without 

vaccination 
 With 

vaccination 
Without 

vaccination 
United 
Kingdom 

60,866 243,330 0.268  60,486 232,982 0.253  59,432 249,693 0.279 

Spain 32,937 142,304 0.234  32,944 118,640 0.183  32,712 166,732 0.287 
Canada 13,561 92,530 0.208  13,122 91,132 0.205  11,929 105,212 0.246 
United 
States 

416,842 1,102,958 0.206  415,762 902,871 0.147  418,884 828,990 0.123 

Germany 65,806 229,486 0.195  65,742 241,046 0.209  65,176 198,762 0.159 
Italy 59,262 155,270 0.159  59,400 136,902 0.128  58,641 162,886 0.173 
Mexico 170,352 289,428 0.092  136,645 234,134 0.075  129,716 240,521 0.085 
Brazil 404,648 593,256 0.088  408,048 552,938 0.068  407,292 582,875 0.082 
France 46,446 100,016 0.082  46,829 93,682 0.072  46,746 104,241 0.088 
Colombia 85,132 122,628 0.073  86,039 115,024 0.057  85,350 127,294 0.082 
Russia 201,322 269,720 0.047  199,641 261,862 0.043  203,734 281,979 0.054 
India 297,380 336,300 0.003  299,676 329,029 0.002  301,682 339,829 0.003 
*Model-simulated COVID-19 deaths under the the actual, with vaccination, and the first counterfactual scenarios with different parameter choices. In 
version 1, η = 0.85; in version 2, η = 0.75; and in version 3, η = 0.95, in which η is the proportion of the population that becomes fully protected after 
vaccination, a proxy measure of vaccine efficacy. 
†Deaths averted as a percentage of country’s population. 

 
 
Appendix Table 3. Estimated effects of vaccination on COVID-19 mortality in 12 countries during period January 1–November 14, 
2021, according to model 2 used to evaluate of effectiveness of global COVID-19 vaccination campaign* 

Country 

Version 1  Version 2  Version 3 
Estimated deaths Lives 

saved, 
%† 

 Estimated deaths Lives 
saved, 

%† 

 Estimated deaths Lives 
saved, 

%† 
With 

vaccination 
Without 

vaccination  
With 

vaccination 
Without 

vaccination  
With 

vaccination 
Without 

vaccination 
United 
Kingdom 

60,590 244,324 0.27  59,600 238,503 0.262  60,782 238,922 0.261 

Spain 32,969 136,104 0.221  33,112 115,904 0.177  32,836 126,252 0.2 
Canada 9,796 126,618 0.307  12,683 108,428 0.252  10,314 160,966 0.397 
United 
States 

421,184 784,416 0.109  418,939 982,228 0.169  411,548 1,177,809 0.23 

Germany 67,052 282,824 0.257  65,364 238,346 0.206  66,072 291,765 0.269 
Italy 59,604 139,901 0.133  59,532 177,586 0.195  59,624 151,994 0.153 
Mexico 133,740 230,597 0.075  153,000 260,745 0.083  142,408 244,554 0.079 
Brazil 408,042 522,342 0.053  407,606 583,784 0.082  407,471 573,858 0.078 
France 47,396 111,377 0.098  46,915 102,264 0.085  47,588 96,064 0.074 
Colombia 85,752 123,214 0.073  85,079 119,061 0.066  84,812 119,596 0.068 
Russia 201,765 271,726 0.048  202,200 275,159 0.05  204,876 279,038 0.051 
India 322,055 356,146 0.002  292,800 327,646 0.003  296,065 336,642 0.003 
*Model-simulated COVID-19 deaths under the actual, with vaccination, and the first counterfactual scenarios with different parameter choices. In 
version 1, ψ = 0.6; in version 2, ψ = 0.8; in version 3, ψ = 0.8, and θ  ̃replaces θ. ψ, model parameter that accounts for the reduced susceptibility of 
vaccinated persons; θ, proportion of deaths of persons discharged from hospitals. 
†Deaths averted as a percentage of country’s population. 
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Appendix Figure 1. Modeled assessment of effectiveness of global COVID-19 vaccination campaign for 

12 countries. We fit a state-space extended susceptible-exposed-infectious-recovered–type model (model 

1) with a delayed class between infectious status to death and a death class in which η = 0.85, nβ = 10 to 

reported mortality data. Upper part of each panel shows the vaccination timing and real-time coverage 

(brown curve). Lower part of each panel shows reported COVID-19 deaths (red circles). Green curves 

indicated the median of 1,000 model simulations when vaccination was included in the model. Blue 

dashed curve shows the time varying transmission rate, β(t)/γ, as reconstructed by the model. Black 

curves show the counterfactual model simulations under the without-vaccination scenario when all other 

parameters are unchanged. Gray region indicates 95% CI of the simulations. The difference between 

green and black curves indicates the effects of vaccination in terms of saving lives (i.e., reduction in 

mortality) for these countries. Scales for the y-axes differ substantially to underscore patterns but do not 

permit direct comparisons. UK, United Kingdom; USA, United States. 
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Appendix Figure 2. Modeled assessment of effectiveness of global COVID-19 vaccination campaign for 

12 countries. We fit a state-space model to weekly reported mortality data. Results represent model 2 

version 1 in which η = 0.85, ψ =0.6, and nβ = 10. Red circles are reported COVID-19 deaths. Brown curve 

shows the vaccination timing and real-time coverage. Green curve shows the median of 1,000 model 

simulations when vaccination is included in the model. Black curve shows the outcome under the first 

counterfactual scenario (i.e., v(t) = 0); The gray region is the 95% confidence range of the simulations. 

The difference between green and black curves indicates the effects of vaccination in terms of deaths 

averted for these countries. Blue dashed curve shows the time varying transmission rate, β(t)/γ, as 

reconstructed by the model. 
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Appendix Figure 3. Death averted due to vaccination as a percentage of country’s population as 

modeled assessment of effectiveness of global COVID-19 vaccination campaign for 12 countries. Against 

the first counterfactual scenario, we compare 6 model variations including the baseline model (model 1 

version 1. UK, United Kingdom; USA, United States; V, version. 


