Sequestration and Destruction of **Rinderpest Virus–Containing Material 10** Years after Eradication

Appendix

Appendix Table 1. Search terms used in the literature review to identify publications related to rinderpest virus research undertaken since 2011 among 21 databases searched			
Search terms	Results		
Global Health			
1910–2021 week 26			
exp Rinderpest morbillivirus/ or exp rinderpest/ or rinderpest*.ti.ab	432		
Limited to 2011–2022	81		
EMBASE			
QVID interface			
1974–2021 June 30			
exp Rinderpest virus/ or exp rinderpest/ or exp Cattle plaque virus/ or rinderpest* ti ab.	829		
Limited to 2011–2022	192		
CAB Abstracts			
OVID interface			
1910–2021 Week 26			
exp Rinderpest morbillivirus/ or exp rinderpest/ or rinderpest*.ti.ab.	4.340		
Limited to 2011–2022	274		
International Pharmaceutical Abstracts			
QVID interface			
1970-June 2021			
Rinderbest*.ti.ab.	1		
JBI EBP			
OVID interface			
current to June 23, 2021			
Rinderpest*.ti,ab.	1		
Northern Light Life Sciences Conference Abstracts			
OVID interface			
2010–2021 Week 25			
Rinderpest*.ti,ab.	6		
Limited to 2011–2022	5		
MEDLINE			
OVID interface			
OVID interface			
OVID interface exp Rinderpest virus/ or exp Rinderpest/ or rinderpest*.ti,ab.	1,186		
Limited to 2011–2022	162		
CINAHL Complete			
EBSCOhost interface			
rinderpest* in Title OR rinderpest* in Abstract OR rinderpest* as a word in subject heading	14		
Limited to 01/01/2011–12/31/2021	7		
Web of Science Collection			
Databases searched simultaneously via Web of Science interface			
Science Citation Index- 1900-present			
Social Science Citation Index 1900-present			
Arts & Humanities Citation Index 1975-present			
Conference Proceedings Citation Index-Science 1990-present			
Conference Proceedings Citation Index-Social Science & Humanities 1900-present			
Book Citation Index-Science 2005-present			
Book Citation Index-Social Science & Humanities 2005-present			
Emerging Sources Citation Index 2005-present			
Current Chemical Reactions 1985-present			
Index Chemicus 1993-present			
TI = (rinderpest*) OR AB = (rinderpest*) OR TS = (rinderpest)			

	Describe
Search terms	Results
Limited to 2011–2021	383
ABI INFORM	
ProQuest interface	
ab(rinderpest*) or ti(rinderpest*) or su(rinderpest*)	
Limited to 2011–2021	32
Academic Search Ultimate	
EBSCOhost interface	
Title = rinderpest* OR Subject Terms = rinderpest* OR Abstract = rinderpest*	
Limited to 01/01/2011–12/31/2021	176
NewsBank	
NewsBank interface	
Rinderpest in Headline OR rinderpest in Lead/First paragraph	
Limited to 2011–2021	274

Appendix Table 2. Summary of studies involving rinderpest virus published between 2011 and 2021.

Study category	Summary	Lab location	Reference
Vaccine	The crystal structure of MHC 1 N*01801 complexed to rinderpest derived	Beijing, China	1
development/	peptide IPA was evaluated and analysis revealed that the MHC groove can		
Immunity	assume different conformations to bind with the rinderpest viral peptide.	Dink visukat I huita al	0
	RPV was cultured by utilizing a vaccine strain of the virus and it was mutated	Pirbright, United	2
	C1 binding sites, it was discovered that the deletion or mutation of these sites	Kinguom	
	resulted in C1 not being able to bind to RPV.		
	Cattle were vaccinated with either wild-type or two established PPRV vaccine	Pirbright, United	3
	strains to determine the degree of protection to which individuals vaccinated for	Kingdom*,‡	
	PPR have against RPV. Only animals vaccinated with the wild-type PPRV were		
	protected from RPV challenge. These individuals were also able to neutralize		
D : "	RPV-pseudotyped vesicular stomatitis virus.	•	
Diagnostics	The goal of this study was to develop a one-step multiplex reverse transcription	Anyang,	4
	PCR assay for the simultaneous detection of Rift Valley Fever Virus, Bluetongue Virus, RPV, and PPRV, Dual, Priming Oligonucleotide was used to	Republic of Korea	
	develop the diagnostic test for the four viruses		
	This study used a replication-defective vesicular stomatitis virus based	Pirbright, United	5
	pseudotyping system to measure neutralizing antibodies against RPV and	Kingdom*,‡	
	PPR. This system does not require the use of live infectious viral materials and	•	
	thus mitigates the risk of accidental exposure. Analysis revealed that individuals		
	vaccinated for RPV also are protected against PPR infection. Individuals that		
	were vaccinated against PPR had lower antibody titers than those who were		
	naturally intected and in individuals intected with either PPR of RPV		
	indicates that retrospective analysis of serologic samples can be used to		
	determine the pathogen to which an infected individual was exposed.		
	This study focuses on the development of a multiplex RT-PCR and automated	Pirbright, United	6
	microarray assay for the simultaneous detection of eight important cattle	Kingdom*,‡	
	viruses: vesicular stomatitis virus, bluetongue virus, bovine viral diarrhea virus		
	type 1 and 2, malignant catarrhal fever virus, bovine herpesvirus-1, parapox		
	virus complex, and RPV.	Laborad	7
	diagnostic method must be developed that does not rely on RPV as a positive	Netherlands+	/
	material Newcastle Disease with small RNA inserts based on RPV or PPV was	Nethenanus	
	used as a positive control for extraction, reverse transcription, and		
	amplification.		
Enzyme activity	The V proteins of RPV, measles virus, PPR, and canine distemper were	Pirbright, UK*	8
	compared to determine which had the ability to block type 1 and type 2		
	interferon action. Analysis revealed that the V proteins of each morbillivirus		
	could block type 1 Interferon action but they had varying abilities to block type 2		
	V protein Eurther analysis revealed that all morbillivirus V proteins form a		
	complex with Tyk2 and Jak2 two interferon-receptor-associated kinases		
	The enzymatic role of RPV V protein was investigated to determine how it	Pirbright, United	9
	blocks interferon signaling. Analysis revealed that the morbillivirus V proteins	Kingdom*	
	have at least three functions that inhibit interferon signaling, the binding of		
	STAT1 also seen with P and W proteins) which enables the blockade of type 2		
	interteron signaling, the binding of STAT1 which requires the Vs domain and		

Study category	Summary	Lab location	Reference
	part of the W domain, and the association with interferon receptor-associated kinases which also requires the Vs domain.		
	Partially purified recombinant RNA polymerase complex of RPV was used to show in vitro methylation of capped mRNA. Analysis revealed that the catalytic module for cap 0 methyl transferase activity is located in domain 3 of the L protein whereas domain 2 stabilizes the enzyme and increases catalytic	Bangalore, India§	10
	efficiency. This provides support for the modular nation of the RPV L protein. <i>E. coli</i> was used to express the RTPase domain of RPV to investigate the RTPase activity of L protein. Analysis revealed that L protein exhibits RTPase and NTPase activities and that it has a two-metal mechanism similar to the RTPase domain of other viruses	Bangalore, India§	11
	<i>E. coli</i> was used to express the RTPase domain of RPV to investigate its enzymatic abilities. Analysis revealed that the L protein of RPV has RNA-dependent RNA polymerase, RTPase, Guanylyltransferase (GTase), and Methyltransferase activity in addition to pyrophosphatase (Ppase) and tripolynopshatase (Ppase) activity.	Bangalore, India§	12
Genome sequencing *Conducted in asso tPresented research	The B and L strains of RPV were sequenced to investigate host range and virulence factors. The stock B strain is pathogenic to cattle whereas the L strain is pathogenic to rabbits but not cattle and buffalo. Analysis revealed that differences in pathogenicity to cattle is caused by nt/aa substitution in P/C/V	Tokyo, Japan*	13
	The LATC06 strain of RPV was sequenced and compared to other rinderpest viral strains. Analysis revealed that the functions of the LATC06 (Korea) and LA (Japan) strains of RPV are similar with regards to immunodominance in humoral immunity	Anyang, Korea	14
	The genomes of three strains of RPV, L72, LA77, and LA96, were sequenced and analyzed to investigate their genetic variability. Analysis revealed that genetic variability occurs within the vaccine virus strain and that amino acid sequence similarity between Fusan and other strains was the lowest within the P, C, and V proteins. This indicated that the difference in pathogenicity of different strains may be Because of the V protein	Anyang, Korea	15
	The LA-AKO strain of the RPV vaccine was sequenced. Analysis revealed that the bulk vaccine comprises mixed viral populations with minor mutations at the nucleotide level	Ibaraki, Japan*,‡	16
	In preparation for the destruction of all RPV samples, the full genome sequence was determined of each distinct RPV sample housed at Pirbright. Analysis revealed that the African isolates form a single disparate clade as opposed to two separate clades and that the clade containing viruses developed in Korea were more similar to African viruses than Asian viruses. ociation with a current FAO-WOAH designated RHF ch conducted before 2011	Pirbright, United Kingdom*,‡	17

Supported by the FAO-WOAH Joint Advisory Committee for Rinderpest. §Rinderpest virus containing material (RVCM) was not used in these studies.

References

- 1. Li X, Liu J, Qi J, Gao F, Li Q, Li X, et al. Two distinct conformations of a rinderpest virus epitope presented by bovine major histocompatibility complex class I N*01801: a host strategy to present featured peptides. J Virol. 2011;85:6038-48. PubMed https://doi.org/10.1128/JVI.00030-11
- 2. Buczkowski H, Parida S, Bailey D, Barrett T, Banyard AC. A novel approach to generating morbillivirus vaccines: negatively marking the rinderpest vaccine. Vaccine. 2012;30:1927-35. PubMed https://doi.org/10.1016/j.vaccine.2012.01.029
- 3. Holzer B, Hodgson S, Logan N, Willett B, Baron MD. Protection of cattle against rinderpest by vaccination with wild-type but not attenuated strains of peste des petits ruminants virus. J Virol. 2016;90:5152-62. PubMed https://doi.org/10.1128/JVI.00040-16

- 4. Yeh JY, Lee JH, Seo HJ, Park JY, Moon JS, Cho IS, et al. Simultaneous detection of Rift Valley fever, bluetongue, rinderpest, and peste des petits ruminants viruses by a single-tube multiplex reverse transcriptase-PCR assay using a dual-priming oligonucleotide system. J Clin Microbial. 2011;49:1389–94.
- 5. Logan N, Dundon WG, Diallo A, Baron MD, James Nyarobi M, Cleaveland S, et al. Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes. Vaccine. 2016;34:5736–43. PubMed https://doi.org/10.1016/j.vaccine.2016.10.010
- Lung O, Furukawa-Stoffer T, Burton Hughes K, Pasick J, King DP, Hodko D. Multiplex RT-PCR and automated microarray for detection of eight bovine viruses. Transbound Emerg Dis. 2017;64:1929–34. PubMed https://doi.org/10.1111/tbed.12591
- 7. van Rijn PA, Boonstra J, van Gennip HGP. Recombinant Newcastle disease viruses with targets for PCR diagnostics for rinderpest and peste des petits ruminants. J Virol Methods. 2018;259:50–3. PubMed https://doi.org/10.1016/j.jviromet.2018.06.007
- Chinnakannan SK, Nanda SK, Baron MD. Morbillivirus V proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways. PLoS One. 2013;8:e57063. PubMed https://doi.org/10.1371/journal.pone.0057063
- 9. Chinnakannan SK, Holzer B, Bernardo BS, Nanda SK, Baron MD. Different functions of the common P/V/W and V-specific domains of rinderpest virus V protein in blocking IFN signalling. J Gen Virol. 2014;95:44–51. PubMed https://doi.org/10.1099/vir.0.056739-0
- Gopinath M, Shaila MS. Evidence for N⁷ guanine methyl transferase activity encoded within the modular domain of RNA-dependent RNA polymerase L of a morbillivirus. Virus Genes. 2015;51:356–60. PubMed https://doi.org/10.1007/s11262-015-1252-3
- 11. Singh PK, Ratnam N, Narayanarao KB, Bugatha H, Karande AA, Melkote Subbarao S. A carboxy terminal domain of the L protein of rinderpest virus possesses RNA triphosphatase activity—the first enzyme in the viral mRNA capping pathway. Biochem Biophys Res Commun. 2015;464:629–34. PubMed https://doi.org/10.1016/j.bbrc.2015.07.026
- 12. Singh PK, Subbarao SM. The RNA triphosphatase domain of L protein of rinderpest virus exhibits pyrophosphatase and tripolyphosphatase activities. Virus Genes. 2016;52:743–7. PubMed https://doi.org/10.1007/s11262-016-1353-7

- 13. Fukai K, Morioka K, Sakamoto K, Yoshida K. Characterization of the complete genomic sequence of the rinderpest virus Fusan strain cattle type, which is the most classical isolate in Asia and comparison with its lapinized strain. Virus Genes. 2011;43:249–53. PubMed https://doi.org/10.1007/s11262-011-0630-8
- 14. Yeh JY, Kwoen CH, Jeong W, Jeoung HY, Lee HS, An DJ. Genetic characterization of the Korean LATC06 rinderpest vaccine strain. Virus Genes. 2011;42:71–5. PubMed https://doi.org/10.1007/s11262-010-0543-y
- 15. Jeoung HY, Lee MH, Yeh JY, Lim JA, Lim SI, Oem JK, et al. Complete genome analysis of three live attenuated rinderpest virus vaccine strains derived through serial passages in different culture systems. J Virol. 2012;86:13115–6. PubMed https://doi.org/10.1128/JVI.02362-12
- 16. Takamatsu H, Terui K, Kokuho T. Complete genome sequence of Japanese vaccine strain LA-AKO of rinderpest virus. Genome Announc. 2015;3:e00976–15. PubMed https://doi.org/10.1128/genomeA.00976-15
- King S, Rajko-Nenow P, Ropiak HM, Ribeca P, Batten C, Baron MD. Full genome sequencing of archived wild type and vaccine rinderpest virus isolates prior to their destruction. Sci Rep. 2020;10:6563. PubMed https://doi.org/10.1038/s41598-020-63707-z