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Model Types Used to Make Estimates 

The process of estimating the burden of waterborne illness requires the use of disparate 

data sources and making subjective decisions on how to combine them. Briefly, after we 

identified our illnesses of interest, we combined data from available data sources (surveillance 

data systems, administrative data, or data from the literature) and applied multipliers to account 

for population standardization, underreporting, underdiagnosis, proportion domestically 

acquired, and proportion attributable to waterborne transmission. For pathogens with 

surveillance data, we adapted an approach laid out previously to estimate the burden of 

foodborne illness (1), with some modifications and differences, detailed in this appendix. For 

pathogens with administrative or literature data only, we developed new models to estimate the 

burden of waterborne illness. The summary statistics are based on distributions constructed from 

Monte Carlo simulation records. We report the mean and 95% credible interval (CrI), a range 

that covers 95% of the sample. 

Burden Outcomes 

We used the estimated annual total number of illnesses, hospitalizations, deaths, 

emergency department (ED) visits, total health care cost for hospitalizations, and total health 

care cost for ED visits to measure the burden of waterborne diseases in the United States. 

Model Structures 

We used 3 broad model types to estimate the burden outcomes, except health care cost 

burdens, for 17 known waterborne pathogens. Variations exist within each model type depending 
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on the pathogen, the diagnostic test type, severity of the disease, availability of input data, and 

choices made on multiplier values. Details on the variations by pathogen are available in 

Appendix 1. 

Model type A was used for surveillance data. This model scales counts of laboratory-

confirmed (reported) illnesses up to an estimated number of illnesses, accounting for both 

underreporting and underdiagnosis factors that contribute to illnesses not being reported to 

surveillance systems. This model was applied to both active and passive surveillance data 

(Appendix 2 Table). 

Model type B was used for administrative data. This model scales hospitalization counts 

reported in administrative datasets up to an estimated number of illness, accounting for both 

hospitalization rate and underreporting and underdiagnosis factors that contribute to an illness 

not being seen in a hospital or reported to hospital discharge databases (Appendix 2 Table). 

Model type C was used for publication-based data. This model scales populations at risk 

down to an estimated number of illnesses using publication reported incidence rates (Appendix 2 

Table). 

Model Type A: Burden Estimate for Pathogens Reported from Surveillance Systems 

Model inputs (illnesses, hospitalizations, and deaths) were assigned distributions using 

previously defined methods (1). For pathogens reported in the active surveillance system 

(FoodNet) (2), data from different sites or years were treated as representatives from distinct 

populations. We chose to treat, for example, FoodNet confirmed case counts from 10 sites over 4 

years (2012–2015) as representing 40 distinct population means. Each population contributes to 

the empirical distribution with equal probability. For pathogens reported in the passive 

surveillance systems, linear regression was applied to fit multiyear (2008–2014) national data 

and to estimate the average burden count for the reference year 2014. Residuals from all 7 years 

were randomly sampled with equal chance and then used in the calculation of the uncertainty of 

the predicted count, simulating the distribution of reported count. 

All model inputs are multiplicative. Each multiplier either expands or contracts the 

observed/reported burden counts to produce the final burden estimate. We assume all multipliers 

in model type A to be mutually independent except for the ones associated with the 
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underdiagnosis of illness, where the multipliers associated with care-seeking and specimen 

submission rate depend on the severity of cases. 

The distributions of model outputs were obtained via Monte Carlo simulation. During 

each simulation run, a random sample was drawn from the theoretical/empirical distribution of 

each model input; then they were multiplied sequentially depending on their positions in the 

model. The final product of all factors yielded the burden estimate. The empirical distribution 

pooled from a large number of simulated records (100,000 iterations) allowed us to estimate the 

uncertainty of the burden outcomes. 

Only a fraction of cases whose records passed a series of stages in the reporting process 

could be seen in our surveillance system. Each multiplier value refers to the proportion of case 

records advancing to the next stage (e.g., the proportion of patients seeking medical care), and 

these multiplier values are all <1. To estimate the burden of illness, we use the reciprocal of 

these multiplier values, called expansive factors, to scale up the number of reported cases from 

the surveillance system (Appendix 2 Figure 1 and Figure 2, panel B). Appendix 2 Figure 1 

describes the modeling process of scaling up reported confirmed cases by surveillance system up 

(model type A) in a mathematical format. The order of the multiplication does not matter, as the 

factors are commutative. The diagram shows 9 primary model outputs, identified in the box in 

the middle and obtained by inclusion of elements from vectors (column [1 or H or D] and row [1 

or Dom or W]). For example, a combination of choosing D, Dom, and W yields the output for 

domestic waterborne deaths. Each of these factors is either a random variable, following an 

empirical distribution constructed from observed or estimated data or a parametric distribution, 

or a constant, such as the year adjustment factor to the 2014 population size. As illustrated in 

Appendix 2 Figures 2 and 3, the central location and spread of each model output reflects not 

only the multiplicative effect of its components but also the cumulative and joint effect of their 

uncertainties. 

For all multipliers except the water attribution rate, we assumed the same distribution 

properties as those in the foodborne burden paper (1). We updated the distribution parameters 

whenever new data or information were available. For the waterborne attribution proportion, a 

calibrated and synthesized distribution for each pathogen was obtained from elicitation results of 

a panel of experts (3). The same assumptions about multiplier distributions were made among all 
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model types (A, B, and C). The underdiagnosis/underreporting factors for ED visits, 

hospitalizations, and deaths were set as beta/PERT distributions (4) with values of (min, mode, 

max)= (1, 2, 3). This rule was applied to all pathogens in the surveillance systems unless 

otherwise stated. Details of the choices made to define the distributions of model inputs by 

pathogen are available in Appendix 1. 

Appendix 2 Figures 2 and 3 demonstrate the distributions involved in constructing 

estimates for Shigella, including the annual illness estimate (Appendix 2 Figure 2, panel A), the 

underdiagnosis multiplier (Appendix 2 Figure 2, panel B) and the hospitalization estimate 

(Appendix 2 Figure 3). The empirical and discrete nature of the source data is apparent in the 

first panel of Appendix 2 Figure 2, panel A. The right skewness in the water attribution rate 

dominates the distribution of the domestic waterborne illness. As shown in Appendix 2 Figure 2, 

panel B, a series of multipliers contributed to illnesses not being seen or verified or reported. 

These multipliers expanded the laboratory reported case counts in a multiplicative fashion and 

their impacts were passed onto the combined underdiagnosis multiplier in the main model 

(Appendix 2 Figure 2, panel A). The hospitalization estimate, as shown in Appendix 2 Figure 3, 

was similar to the illness estimate. 

Model Type B: Burden Estimate for Pathogens/Data Reported from Administrative Systems and 
ED Visits for All Pathogens 

Pathogens for which model type B was used did not have data available from national 

surveillance systems. Instead, data from the Agency for Healthcare Research and Quality Health 

Care Utilization Project’s National Inpatient Sample (HCUP NIS) (5) and National Emergency 

Department Sample (HCUP NEDS) (6) were used. The NIS is the largest publicly available US 

hospital discharge database that includes all sources of payment (i.e., private insurance, public 

insurance, and the uninsured). HCUP NIS is a complex sample survey that produces weighted 

national estimates from a stratified sample of about 20% of hospital stays from community 

hospitals in the United States. Similarly, HCUP NEDS is a complex sample survey that produces 

weighted national estimates of emergency department visits. Appendix 2 Figure 4 shows the 

estimation steps for model type B pathogens. Each of these factors is either a random variable, 

following a parametric distribution (e.g., normal distribution or beta/PERT distribution), or a 

constant (year adjustment factor). Unlike pathogens in surveillance systems (model type A), here 
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hospitalization counts served as the initial model input. They were scaled up to estimate the 

number of illnesses by dividing by the hospitalization rate. 

For ED visits, hospitalizations, and death counts reported in HCUP datasets, we assumed 

a mixture of 3 normal distributions with equal probability, with each year of data providing the 

parameters of a mixture component. Each individual year represented 1 normal population. The 

associated parameter mean was taken from the weighted nationwide frequency count and the 

standard deviation was calculated from the lower and upper limits assuming a normal 

distribution was used in the confidence interval construction. 

The death counts were derived from 2 sources. The total death count is the sum of in-

hospital deaths and out-of-hospital deaths, as described by Gargano et al. (7). In-hospital deaths 

were obtained using the number of hospitalizations for a particular illness in the HCUP NIS 

database that ended in death. Out-of-hospital deaths were obtained from out-of-hospital deaths 

reported for a particular illness in the National Vital Statistics System (NVSS) (8), which 

contains information on all death certificates filed in the United States. No uncertainty was 

reported for the out-of-hospital death count. Here we used it as a constant rather than a 

distribution. The model outputs and the distributions were quantified via Monte Carlo 

simulation. 

Special treatments were employed in the simulation algorithms to ensure that the 

biological or clinical constraints of the model outputs were met. First, when a negative number 

occurred in the simulation under a normal distribution, it was replaced with zero. Second, for 

pathogens with high hospitalization rates (>75%), the 3 underdiagnosis factors (for illnesses, 

hospitalizations, and deaths) were set to be the same for each simulated record. This treatment 

ensured that the number of illness was greater than the number of hospitalizations and the 

number of deaths, true not only for the mean value but also for each simulated individual record. 

The multiplicative impact of each factor on the final burden estimate was illustrated in 

Appendix 2 Figure 5. Details of the choices made on the multipliers and their parameters are 

provided in Appendix 1. 

Appendix 2 Figure 5 demonstrates the distributions involved in constructing estimates of 

annual illnesses for Pseudomonas pneumonia. As shown previously, the hospitalization was a 

mixture of 3 normal distributions with variable mean values. Although the annual illness was 
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multimodal, the other multipliers followed 1-mode beta/PERT-distribution, spreading narrowly 

around their modes. The resulting smoothed distribution of domestically acquired waterborne 

illness was unimodal. The estimations for hospitalizations, deaths, and ED visits were modeled 

in a similar way except that the hospitalization rate component (the third panel) was removed 

from the equation. 

Model Type C: Burden Estimate for Pathogen Reported from Literature Data 

Model type C was used for 1 pathogen, norovirus. For norovirus, instead of using acute 

gastrointestinal illness (AGI) as a starting point for the estimate (1), we used incidence estimates 

(already adjusted for underdiagnosis) from 2 studies (9,10). The Hall et al. study (9) was 

conducted at 1 site of the Kaiser Permanente health care system. The Grytdal et al. study (10) 

was conducted at 2 additional sites of the Kaiser Permanente health care system. To combine the 

studies, the reported 3-number summary statistics (mean, lower, and upper limit) for incidence 

rate at each site were fit to a 4-parameter PERT distribution with the variation parameter fixed, 

while minimizing the overall distance between the 3 summary statistics and the model predicted 

values. The process was repeated for different values of the variation parameter. The 

corresponding parameter combination under the best fit, verified by subject matter experts via 

visual examinations, was assigned as the PERT distribution parameters for that site. The 

sampling distribution for the annual incidence rate was a mixture of the 3 beta distributions with 

1 distribution representing 1 site. Each site had an equal probability of being drawn. We chose 

beta/PERT distribution to describe the incidence rate for the following reasons. First, the 

reported confidence intervals were asymmetric, making the normal distribution not immediately 

applicable. Second, the original datasets used to produce CIs in the publications were not 

available to us. Third, the beta distribution family has the capacity to accommodate left-skewed, 

right-skewed, and symmetric confidence intervals or distributions. Fourth, incidence rate takes 

values on a range with an upper and lower bound. The generalized beta/PERT distribution has 

the flexibility to set a range on incidence rates. In addition, we selected a different value from the 

default setup for the variation parameter of the PERT distribution, the same strategy used in the 

previous foodborne burden paper (11) because it gave us a fit with a narrower range and a more 

realistic distribution spread than the fit under the default value. 

The most recent published norovirus hospitalization rate estimates were obtained by 

fitting a complex statistical model to multiyear (1996–2007) HCUP data (12). Although the data 
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showed a trend of increase in hospitalization rates during 1996–2007, we cannot say whether this 

trend continued or not, nor can we estimate the hospitalization rate in the reference year 2014 

without additional data. Instead, we assumed that the reported multiyear hospitalization rates 

were a random sample from 1 homogeneous population following a beta/PERT distribution. The 

minimum, maximum, and mode of the multiyear rates were assigned as the input parameters for 

the PERT distribution. The same strategy was applied to death rates (13) and ED visits (14). 

Appendix 2 Figure 6 describes the modeling process for norovirus for which populations 

at risk of illness were scaled down to estimate burden outcomes. As in model type A and B, all 

model inputs are assumed to be independent and multiplicative. 

Appendix 2 Figures 7 and 8 demonstrate the distributions involved in constructing 

estimates for norovirus including the annual illness estimate (Appendix 2 Figure 7) and the 

annual hospitalization estimation (Appendix 2 Figure 8). The deaths and ED visits were 

estimated in the same way as hospitalizations. The norovirus model estimates start with 

population size and incidence rate. As shown in Appendix 2 Figure 7, a mixture of 3 beta/PERT-

distributions from 3 sites of the Kaiser studies was used to describe the incidence rate for 

illnesses. Consequently, the multimodal feature was presented in the annual illness estimate 

(second panel in Appendix 2 Figure 7). There was no underdiagnosis adjustment for illness, as 

the publication already took that into account. Although the estimated annual illness distribution 

was multimodal, the long tail of the water attribution rate dominated in the final output. The 

resulting distribution of domestic waterborne illness was right-skewed with an extended right 

tail. The only difference in the estimation equation between hospitalizations (Appendix 2 Figure 

8), deaths, or ED visits and the illnesses was that the incidence rate consisted of only 1 

beta/PERT distribution instead of a mixture of PERT distributions. 

Discussion 

In selecting data sources for the burden estimate, we chose an active surveillance system 

over a passive one when both were available, as there is a greater nonstatistical uncertainty 

around passive estimates. In the case of Vibrio estimates, we used data reported in Cholera and 

Other Vibrio Illness Surveillance (COVIS) (15) instead of FoodNet because most Vibrio cases 

occur in Gulf states, and FoodNet sites do not include any of those states. 
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Previously, 90% CrIs were reported in the foodborne burden paper (1,11). A 90% CrI 

adds less uncertainty in more extreme quantile distributions, is a more robust estimate, and is 

narrower compared with a 95% CrI. Here, we chose to report 95% CrIs to be consistent with the 

coverable probability (95%) commonly used in publications. In all models, we assumed that the 

factors are stochastically independent. In some circumstances, this assumption may not hold. 

In the determination of distribution parameters for multipliers, we relied on statistics 

reported in previous publications or statistics calculated based on updated data. In the absence of 

new data, we applied the same parameter values as those used in the foodborne burden paper (1). 

When only a point estimate was available for PERT distribution (e.g., international travel rate), 

we estimated the range based on a 50% relative increase/decrease from the mode/point estimate 

on an odds scale for proportion parameters. In general, the information on 

underdiagnosis/underreporting for hospitalizations, deaths, and ED visits is lacking. A factor of 2 

was assumed in previous publications on burden estimation (1,16). We applied the factor of 2 

and expanded the range by 1 (i.e., 2 + 1). There are alternatives of modeling uncertainty, such as 

using multiplicative models or/and applying different magnitudes of variability. We chose the 

aforementioned strategies because, overall, the approach produced reasonable estimates. 

In model B, we treated the out-of-hospital death count as a constant because the 

variability associated with the point estimate was not available. Because the number of out-of-

hospital deaths is much smaller than number of in-hospital deaths, the contribution of its 

uncertainty to the uncertainty of total number of deaths is negligible. During the simulation of all 

4 burden outcomes, we took special measures to ensure the counts to be nonnegative by 

assigning zeros to negative values. Most of the simulated counts were >0, with a few exceptions 

that occurred in the ED visit simulation. Overall, the proportion of negative values was very 

small (<0.81%). Therefore, the impact of truncating a normal distribution is considered 

negligible. 

In this study, we took a different approach for norovirus from the one employed in the 

foodborne disease burden study (1) by modeling the incidence rates, hospitalization rates, death 

rates, and ED rates as following a PERT distribution. The distribution parameters were extracted 

from statistics reported in recent publications. Despite the differences in the modeling process, 
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data sources, time coverage, population coverage of the data, and the nonstatistical uncertainties 

(11) compared with our estimate, the burden estimates for norovirus illnesses were comparable. 
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Appendix 2 Figure 1. Schematic illustration of model type A, which scales case counts up, and is based 

on surveillance data (11). Count refers to data in the form of cases of reported illnesses. Year is a 

deterministic factor to standardize non-2014 counts to 2014 (applied as needed). Geo is a deterministic 

expansive factor to scale FoodNet counts up to the entire US population (applied as needed). UR is an 

expansive factor to scale passive surveillance case counts up to active surveillance counts to account for 

underreporting (applied as needed). UD is an expansive factor to scale laboratory-confirmed cases to 

illnesses not being reported to the surveillance system to account for underdiagnosis. †UR and UD: for 

hospitalization or death or ED visits, there was only 1 factor accounting for both underreporting and 

underdiagnosis. This multiplier follows PERT distribution with mode 2. CS is an expansive factor to scale 

care seekers up to all ill, with severe and mild illness versions. It is the reciprocal of the proportion of 

cases seeking care. SS is an expansive factor to scale submitted samples up to all ill visits, with severe 

and mild illness versions. It is the reciprocal of the proportion of specimen submitted for laboratory testing. 

P(S) is the proportion of actual illness that is severe. LT is an expansive factor to scale tests performed 

up to samples submitted. It is the reciprocal of the proportion of specimen being tested. LS is an 

expansive factor to scale positive tests up to true positive specimens. It is the reciprocal of sensitivity. H is 

a contractive factor to scale illnesses down to hospitalized illnesses. D is a contractive factor to scale 

illnesses down to deaths. Dom is a contractive factor to scale total counts down to counts that are 

domestically acquired (applied as needed). W is a contractive factor to scale overall counts down to 

counts that are waterborne. 
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Appendix 2 Figure 2. A) Schematic diagram of the estimation of annual illnesses for Shigella. X axes 

show the relative frequency of observed or simulated values for each input or multiplier. Year is a 

deterministic factor to standardize non-2014 counts to 2014 (applied as needed). Geo is a deterministic 

expansive factor to scale FoodNet counts up to the entire U.S. population (applied as needed). B) 
Schematic diagram of underdiagnosis of illnesses for Shigella. X axes show the relative frequency of 

observed or simulated values for each input or multiplier. 
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Appendix 2 Figure 3. Schematic diagram of the estimation of hospitalizations for Shigella. X axes show 

the relative frequency of observed or simulated values for each input or multiplier. 
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Appendix 2 Figure 4. Schematic illustration of model type B, which scales hospitalization counts up, and 

is based on administrative data. Hospitalization count, death counts, and ED visit counts refer to counts 

reported in HCUP NIS or HCUP NEDS datasets. Year is a deterministic factor to standardize non-2014 

counts to 2014 (applied as needed). 1/Hospitalization rate is an expansive factor to scale the 

hospitalization count up to the illness count. UR is an expansive factor to scale passive surveillance case 

counts up to active surveillance counts to account for underreporting (applied as needed). UD is an 

expansive factor to scale laboratory-confirmed cases to illnesses not being reported to the surveillance 

system to account for underdiagnosis. UR and UD: for hospitalization or death or ED visits, only 1 factor 

accounted for both underreporting and underdiagnosis. This multiplier follows PERT distribution with 

mode 2. Dom is a contractive factor to scale total counts down to counts that are domestically acquired 

(applied as needed). W is a contractive factor to scale overall counts down to counts that are waterborne. 
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Appendix 2 Figure 5. Schematic diagram of the estimation of annual illness for Pseudomonas 

pneumonia. X axes show the relative frequency of observed or simulated values for each input or 

multiplier. Year adj is a deterministic factor to standardize non-2014 counts to 2014 (applied as needed).  
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Appendix 2 Figure 6. Schematic illustration of model type C, which scales the population at risk down, 

and is based on literature reported summary statistics. Illness incidence rate: the proportion of ill persons 

relative to the whole population at risk. Hospitalization incidence rate and Death incidence rate are the 

proportion of patients who were hospitalized or died relative to the whole population at risk. ED visit 

incidence rate is the proportion of patients who had ED visits (including both treated-and-released and 

admitted) relative to the whole population at risk. Dom is a contractive factor to scale total counts down to 

counts that are domestically acquired (applied as needed). W is a contractive factor to scale overall 

counts down to counts that are waterborne. 
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Appendix 2 Figure 7. Schematic diagram of the estimation of annual illnesses for norovirus. X axes 

show the relative frequency of observed or simulated values for each input or multiplier. 
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Appendix 2 Figure 8. Schematic diagram of the estimation of hospitalizations for norovirus. X axes show 

the relative frequency of observed or simulated values for each input or multiplier. 


	Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States
	Appendix 2
	Model Types Used to Make Estimates
	Burden Outcomes
	Model Structures
	Model Type A: Burden Estimate for Pathogens Reported from Surveillance Systems
	Model Type B: Burden Estimate for Pathogens/Data Reported from Administrative Systems and ED Visits for All Pathogens
	Model Type C: Burden Estimate for Pathogen Reported from Literature Data

	Discussion
	References
	Appendix 2 Table. Model types for burden estimate of waterborne diseases, by pathogen
	Appendix 2 Figure 1. Schematic illustration of model type A, which scales case counts up, and is based on surveillance data (11). Count refers to data in the form of cases of reported illnesses. Year is a deterministic factor to standardize non-2014 c...
	Appendix 2 Figure 2. A) Schematic diagram of the estimation of annual illnesses for Shigella. X axes show the relative frequency of observed or simulated values for each input or multiplier. Year is a deterministic factor to standardize non-2014 count...
	Appendix 2 Figure 3. Schematic diagram of the estimation of hospitalizations for Shigella. X axes show the relative frequency of observed or simulated values for each input or multiplier.
	Appendix 2 Figure 4. Schematic illustration of model type B, which scales hospitalization counts up, and is based on administrative data. Hospitalization count, death counts, and ED visit counts refer to counts reported in HCUP NIS or HCUP NEDS datase...
	Appendix 2 Figure 5. Schematic diagram of the estimation of annual illness for Pseudomonas pneumonia. X axes show the relative frequency of observed or simulated values for each input or multiplier. Year adj is a deterministic factor to standardize no...
	Appendix 2 Figure 6. Schematic illustration of model type C, which scales the population at risk down, and is based on literature reported summary statistics. Illness incidence rate: the proportion of ill persons relative to the whole population at ri...
	Appendix 2 Figure 7. Schematic diagram of the estimation of annual illnesses for norovirus. X axes show the relative frequency of observed or simulated values for each input or multiplier.
	Appendix 2 Figure 8. Schematic diagram of the estimation of hospitalizations for norovirus. X axes show the relative frequency of observed or simulated values for each input or multiplier.

