
In tropical and subtropical regions, especially in Africa and 
Southeast Asia, T. viturolum roundworms infect suckling 
bovine calves (6). T. viturolum roundworms have been 
identified in Florida, USA, in 2010 (7) and Canada in 2012 
(8). Although T. viturolum roundworms cause diarrhea and 
weight loss in calves <3 months of age, infection with these 
roundworms is largely asymptomatic in adults.

Further investigation indicated that the source of infec-
tion was a pair of young-adult, free-range pigs living along-
side the affected cattle. The cattle had been fed a round 
bale of hay to which the pigs had access. Parasitologic ex-
amination of the hay bale showed contamination with A. 
suum nematode eggs, indicating that the hay bale was prob-
ably exposed to pig feces. The hay bale was removed from 
the remaining cattle, and clinical signs gradually resolved 
without additional loss.

To unambiguously identify the nematodes, genomic 
DNA was extracted from formalin-fixed, paraffin-embedded 
tissue of infected lung. On the basis of the mitochondrial 
DNA sequence of A. suum, primers were designed to am-
plify a partial sequence encoding NADH dehydrogenase 
subunit 5: VMDL-F2 (5′-TGCTAAAGGTTGGGTTTATG-
GA-3′) and M3-R (5′-CCTACTGCGTAGAGCCAGA-3′). 
PCR was performed by using the GoTaq Hot Start Green 
Master Mix (Promega, Madison, WI, USA) under the fol-
lowing conditions: 95°C for 4 min; 45 cycles of 94°C for 45 
sec, 52°C for 45 sec, and 72°C for 1 min; and final extension 
at 72°C for 5 min.

The resulting amplicon was purified by using spin 
chromatography (QIAGEN, Valencia, CA, USA) and se-
quenced with amplification primers at the University of 
Missouri DNA Core Facility. The resulting 354-bp se-
quence (GenBank accession no. KT808321) was compared 
with sequences in GenBank by using blastn (https://blast.
ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch) 
and found to be 100% identical with that of  
A. suum nematode, thus confirming the identity. The se-
quence was only 98.3% identical with that of A. lumbri-
coides nematode, the species that had the next closest 
match (6 polymorphisms).

Increasing interest in and demand for organic meat 
results in proliferation of small, suburban farms that raise 
free-range animals. Reports have warned the community 
about major increases in zoonotic parasitic infections in 
organically raised pigs compared with animals raised un-
der modern husbandry practices (9,10). The recent zoo-
notic case in Maine also involved a farm that grew and 
sold organic vegetables and organic livestock, including 
pigs (4). Until new proven preventive protocols are estab-
lished, health personnel and veterinarians should be well 
informed about the risk for aberrant parasitic infections in 
pigs and possible transmission to humans and other do-
mestic animals.
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To the Editor: As in many West Africa nations, vec-
torborne diseases represent a substantial health burden in 
Mali; however, beyond malaria, the incidence and etiol-
ogy of many of these diseases is poorly understood. Of 
the estimated 14.1 million persons living in sub-Saharan 
Mali, ≈70% live in remote rural settings with an ecolog-
ic landscape that puts inhabitants at an increased risk for 
contact with rodent and arthropodborne diseases. We ret-
rospectively analyzed serum samples for evidence of re-
cent (IgM+) and previous (IgG+) infection with chikungu-
nya (CHIKV), dengue (DENV), West Nile (WNV), Lassa 
(LASV), Crimean-Congo hemorrhagic fever (CCHFV), 
and Ebola (EBOV) virus, as well as Old World hantavi-
ruses (OW-HANV) and Leptospira spp., which is regularly 
misdiagnosed as an acute viral infection.

We tested 376 deidentified serum samples collect-
ed from acutely ill patients who had a history of fever 
and hemorrhagic, diarrheal, or icteric syndromes (online 
Technical Appendix Figure, http://wwwnc.cdc.gov/EID/

article/22/2/15-0688-Techapp1.pdf). Research on samples 
from humans was conducted in accordance with the poli-
cies and regulations of the National Institutes of Health 
and adhered to the principles of the Belmont Report (1979) 
(http://www.hhs.gov/ohrp/humansubjects/guidance/bel-
mont.html). This research was conducted under an institu-
tional review board–approved document.

Samples had previously tested negative for acute 
Plasmodium falciparum malaria and yellow fever virus 
infections. Commercially available IgM capture and con-
ventional IgG ELISAs were used for serologic testing for 
CHIKV (GenWay Biotech, San Diego, CA, USA); DENV 
(all four serotypes) and WNV (both from Focus Diagnos-
tics, Cypress, CA, USA); OW-HANVs (Euroimmun, Lu-
ebeck, Germany); and Leptospira spp. (Abnova, Taipei 
City, Taiwan). Conventional IgM/IgG ELISAs were used 
for LASV (Corgenix, Broomfield, CO, USA) and CCHFV 
(Vector-Best, Novosibirsk, Russia), and reagents for the 
EBOV IgM/IgG ELISA (infected/uninfected cell lysates) 
were prepared at the Rocky Mountain Laboratories (Hamil-
ton, MT, USA) and validated with serum from experimen-
tally infected monkeys. With the exception of the CHIKV, 
Leptospira spp., and in-house EBOV assays, the tests con-
ducted in this study are under preclinical development for 
human diagnostic assays.

Samples were tested at a 1:100 dilution accord-
ing to manufacturer specifications (CHIKV, CCHFV, 
WNV, DENV, OW-HANVs, LASV, and Leptospira spp.) 
or in-house quality-control assessments (EBOV), in a  
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Table. IgM and IgG seroprevalence rates of selected vectorborne pathogens in samples submitted from suspected yellow fever cases 
in Mali, 2009–2013* 

Pathogen 
IgM/IgG 
positivity 

No. (%) samples 
2009, n = 77 2010, n = 107 2011, n = 71 2012, n = 34 2013, n = 87 Total, N = 376 

Chikungunya 
virus 

IgM+ 4 (5.2) 4 (3.7) 5 (7.0) 2 (5.9) 5 (5.7) 20 (5.3) 
IgG+ 5 (6.5) 9 (8.4) 2 (2.8) 2 (5.9) 7 (8.0) 25 (6.6) 

IgG+/IgM+ 0 1 0 0 0 1 
West Nile virus IgM+ 0 0 0 0 1 (1.1) 1 (0.27) 

IgG+ 33 (42.9) 46 (43.0) 28 (39.4) 13 (38.2) 27 (31.0) 147 (39.1) 
IgG+/IgM+ 0 0 0 0 0 0 

Dengue virus  IgM+ 6 (7.8) 11 (10.3) 4 (5.6) 4 (11.8) 4 (4.6) 29 (7.7) 
IgG+ 32 (41.6) 46 (43.0) 31 (43.7) 13 (38.2) 28 (32.2) 150 (40.0) 

IgG+/IgM+ 3 6 1 1 2 13 
Leptospira 
spp. 

IgM+ 7 (9.1) 23 (21.5) 1 (1.4) 3 (8.8) 20 (23.0) 54 (14.4) 
IgG+ 12 (15.6) 19 (17.8) 15 (21.1) 8 (23.5) 20 (23.0) 74 (19.7) 

IgG/IgM+ 1 2 1 0 3 7 
OW-HANV IgM+ 5 (6.5) 6 (6.5) 5 (7.0) 2 (6.7) 7 (8.0) 27 (7.2) 

IgG+ 2 (2.6) 8 (7.5) 6 (8.5) 2 (6.7) 3 (3.4) 21 (5.6) 
IgG+/IgM+ 0 0 0 0 0 0 

Lassa virus IgM+ 0 0 0 0 1 (1.1) 1 (0.27) 
IgG+ 0 0 0 0 0 0 

IgG+/IgM+ 0 0 0 0 0 0 
CCHFV IgM+ 5 (6.5) 5 (4.7) 2 (2.8) 0 6 (6.9) 18 (4.8) 

IgG+ 2 (2.6) 3 (2.8) 2 (2.8) 1 (2.9) 3 (3.4) 11 (2.9) 
IgG+/IgM+ 0 0 0 0 0 0 

Ebola virus IgM+ 0 0 0 0 0 0 
IgG+ 0 0 0 0 0 0 

IgG+/IgM+ 0 0 0 0 0 0 
*OW-HANV, Old World hantavirus; CCHFV, Crimean-Congo hemorrhagic fever virus. 

 



blinded fashion. Serologic reactivity was assessed accord-
ing to manufacturer recommendations. For the EBOV  
ELISA, samples were deemed positive if optical density 
at 405 nm was >3 SD above that of the average of known 
negative samples.

Serologic evidence suggestive of acute infection 
(IgM+) with 1 of the pathogens tested for was observed 
for 39.9% of samples (Table). At 14.4%, Leptospira 
spp. was the most prevalent probable etiologic agent of 
acute disease identified. Of mosquitoborne viruses test-
ed, DENV had the highest prevalence at 7.7%, followed 
by CHIKV (5.3%) and WNV (0.27%). Of rodentborne 
pathogens, OW-HANVs had a seroprevalence of 7.2%, 
whereas LASV was considerably lower (0.27%). CCHFV 
IgM was documented in 4.8% of samples. Overall, little 
annual variation in the IgM seroprevalence was noted, ex-
cept for Leptospira spp., for which 2 obvious peaks in 
seroprevalence were observed (Table).

Most IgM+ samples demonstrated serologic reactivity 
in only 1 assay. The exception was 2 samples that were 
IgM+ for hantaviruses and Leptospira spp., an acute dual 
infection that might be underrecognized (1). With the ex-
ception of DENV, few samples were both IgM+ and IgG+, 
suggesting the results were not attributable to IgM persis-
tence. The DENV IgM+/IgG+ results might represent IgM 
persistence. However, because the ELISA detected all 4 
serotypes, it is plausible that some results represent recent 
infection with DENV in the presence of IgG reactive with 
a different serotype. 

The relatively high IgG seroprevalence for most of 
the pathogens tested supports the findings of the IgM as-
says and further suggest the circulation of and potential 
for human exposure to these agents in Mali (Table). Geo-
graphically, serologic evidence of infections with Lepto-
spira spp., DENV, WNV, OW-HANVs, and CHIKV was 
observed throughout Mali (online Technical Appendix). No 
samples were reactive with EBOV, and the low incidence 
of LASV infection is not surprising because the samples 
analyzed here were collected outside of the 1 documented 
LASV-endemic region in Mali (2).

We used commercially available diagnostic plat-
forms, primarily IgM capture and conventional IgG ELI-
SAs, many of which are validated for human diagnostics. 
Ideally, diagnostics for zoonotic diseases would not rely 
on IgM/IgG serologic analysis because of caveats includ-
ing IgM persistence and cross-reactivity between closely 
related pathogens (3,4). In the industrialized world, as 
well as in several countries throughout Africa, molecular 
approaches are often used to genetically identify patho-
gens, or follow-up convalescent-phase serum samples 
are collected to determine seroconversion or increased 
antibody titers or to conduct plaque reduction neutraliza-
tion assays. Unfortunately, because of the nature of the 

samples available, including time of collection, storage 
history, and remaining volume, many of these tests were 
not feasible for our study.

Despite these limitations, these serologic findings in-
dicate that flaviviruses, bunyaviruses, and togaviruses, as 
well as Leptospira spp., are contributing to human illness 
in Mali. These results add to those recently documented in 
studies conducted in Sierra Leone, implying that several of 
these zoonotic pathogens are widely distributed yet under-
reported throughout West Africa (5,6).
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Technical Appendix Figure. Distribution of samples tested (N = 376), by region and year, Mali. Samples 

from Kayes (n = 66), Koulikoro (n = 166), Sikasso (n = 61), Segou (n = 28), Mopti (n = 18), Timbuktu (n = 

12), Gao (n = 21), and Kidal (n = 4) were tested for serologic evidence of infection with 8 zoonotic 

pathogens. 
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Technical Appendix Table. IgM and IgG seroprevalence rates of selected vectorborne pathogens, by region of sample collection, 
Mali* 

Pathogen Assay 

No. (%) sample 

Kayes,  
n = 66 

Koulikoro,  
n = 166 

Sikasso,  
n = 61 

Segou,  
n = 28 

Mopti,  
n = 18 

Timbuktu,  
n = 12 

Gao,  
n = 21 

Kidal,  
n = 4 

Chikungunya 
virus 

IgM 4 (6.1) 9 (6.0) 2 (3.3) 2 (7.1) 1 (5.6) 1 (8.3) 1 (4.8) 0 
IgG 10 (15.2) 11 (6.6) 2 (3.3) 2 (7.1) 0 0 0 0 

West Nile virus IgM 0 0 0 0 1 (5.6) 0 0 0 
IgG 40 (60.6) 51 (30.7) 8 (13.1) 12 (43) 11 (61.1) 8 (66.7) 17 (81) 0 

Dengue virus IgM 7 (10.1) 11 (6.6) 6 (9.8) 1 (3.6) 1 (5.6) 1 (8.3) 1 (4.8) 1 (25) 
IgG 41 (62.1) 56 (33.7) 10 (16.4) 12 (42.9) 10 (55.6) 3 (25) 16 (72.7) 2 (50) 

Leptospira spp. IgM 10 (15.2) 23 (13.9) 9 (14.8) 7 (25.0) 1 (5.6) 3 (25.0) 1 (4.8) 0 
IgG 12 (18.2) 40 (24.1) 7 (11.5) 6 (21.4) 3 (16.7) 2 (16.7) 4 (19) 0 

OW-HANV IgM 5 (7.6) 12 (7.2) 5 (8.2) 1 (3.6) 0 1 (8.3) 3 (14.3) 0 
IgG 1 (<0.01) 11 (6.6) 4 (6.6) 4 (14.3) 0 0 0 1 (25) 

Lassa virus IgM 0 0 0 0 0 1 (8.3) 0 0 
IgG 0 0 0 0 0 0 0 0 

CCHFV IgM 4 (6.1) 9 (5.4) 1 (1.6) 3 (10.7) 0 1 (8.3) 0 0 
IgG 5 (7.6) 1 (0.6) 1 (1.6) 1 (3.6) 0 3 (25) 0 0 

Ebola virus IgM 0 0 0 0 0 0 0 0 
IgG 0 0 0 0 0 0 0 0 

*OW-HANV, Old World hantavirus; CCHFV, Crimean-Congo hemorrhagic fever virus. 

 


