
While the ongoing Ebola outbreak continues in the West Af-
rica countries of Guinea, Sierra Leone, and Liberia, health 
officials elsewhere prepare for new introductions of Ebola 
from infected evacuees or travelers. We analyzed transmis-
sion data from patients (i.e., evacuees, international trav-
elers, and those with locally acquired illness) in countries 
other than the 3 with continuing Ebola epidemics and quan-
titatively assessed the outbreak risk from new introductions 
by using different assumptions for transmission control (i.e., 
immediate and delayed). Results showed that, even in coun-
tries that can quickly limit expected number of transmissions 
per case to <1, the probability that a single introduction will 
lead to a substantial number of transmissions is not negli-
gible, particularly if transmission variability is high. Identify-
ing incoming infected travelers before symptom onset can 
decrease worst-case outbreak sizes more than reducing 
transmissions from patients with locally acquired cases, but 
performing both actions can have a synergistic effect.

The ongoing Ebola outbreak in West Africa, thought 
to have begun from a single index case in Guinea in 

December 2013 (1), has produced thousands of cases in 
Guinea, Sierra Leone, and Liberia (2). This Ebola outbreak 
is the largest and most widespread since the Ebola virus 
was discovered in 1976 (3), and the probability of inter-
national spread outside of West Africa is not negligible 
(4). By late April 2015, the virus had been introduced by 7 
infected people traveling during their incubation or symp-
tomatic periods to a country other than Guinea, Sierra Le-
one, or Liberia. Of these 7 cases, 1 led to an outbreak with 
19 transmissions in Nigeria (5,6); 1 led to 2 transmissions 
in the United States (7,8); 1 led to 7 transmissions in Mali 
(9,10); and 4 led to no transmissions in Mali (11), Senegal 

(12), the United States (13), and the United Kingdom (14). 
Additionally, 20 persons who acquired infection in Africa 
were transferred to the United States and several European 
countries for treatment (15), leading to 1 transmission in 
Spain (16).

Although none of these introductions led to a long 
chain of transmissions, even a small outbreak in a new 
country can cause societal disruption and disproportion-
ate costs (17). Furthermore, how likely it is that an intro-
duced case will lead to a substantial number of transmis-
sions is unclear, even in settings with a quick and vigorous 
public health response to new outbreaks. Gomes et al. (4) 
performed simulations of Ebola outbreaks in each of 220 
countries by first estimating the risk of Ebola being export-
ed from Guinea, Liberia, or Sierra Leone by international 
travelers and then simulating a stochastic Ebola transmis-
sion model conditioned on an importation. The model in-
corporated Ebola transmission from infected persons in 
the community and hospital settings and from recently de-
ceased Ebola patients. Assumptions used in the model were 
that only community transmissions are relevant outside of 
Africa and that transmissions occur at rates correspond-
ing to containment measures already in place. Gomes et 
al. provided no explicitly numerical probabilities of large 
outbreaks per importation, but their simulations apparently 
produced <100 cases in each country. 

In another study, Rainisch et al. (18) calculated the 
estimated number of beds required to treat Ebola patients 
in the United States by using estimates of importation fre-
quency and subsequent transmission. These researchers re-
ported a high estimate of 7 beds (95% CI 2–13) required at 
any 1 time; they also provided no numerical probabilities 
for their estimates.

In our study, we use a branching process model to esti-
mate the probability distribution of outbreak sizes resulting 
from the introduction of an Ebola case to a new country 
where the reproductive number R (i.e., expected number 
of transmissions per case) would likely be quickly, if not 
immediately, reduced to <1. In this scenario, theory from 
subcritical branching processes (19), also known as mortal  
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branching processes (20), guarantees that an outbreak will 
eventually die out, although perhaps not before a substantial 
number of transmissions occur. In the modeling literature, 
outbreaks that die out on their own have been called minor 
outbreaks (21) or stuttering chains (22). Such branching 
process models have been used to estimate transmission 
parameters in the context of emerging (22,23) or reemerg-
ing (19–21,24) infectious diseases. However, unlike other 
studies, we used the outbreak final size distribution equa-
tions derived from branching process theory to calculate 
the risk for a large Ebola outbreak under the assump-
tions of immediate and delayed transmission control after  
an importation.

Materials and Methods
We first gathered transmission data for all Ebola patients 
who were documented in the ongoing West Africa out-
break and who spent all or part of their infectious periods in 
a country other than Guinea, Sierra Leone, or Liberia. We 
next fit the negative binomial distribution to the transmis-
sion data and to various data subsets according to patients’ 
circumstances. We also applied the theory of branching 
processes with a negative binomial offspring distribution to 
estimate the probability that new introductions would lead 
to outbreaks exceeding various sizes. We then organized 
these estimates under 2 scenarios of transmission control: 
immediate and delayed. For each scenario, we tested the 
effects of different levels of variability in transmission.

In the data-gathering step, we compiled information 
for 56 documented Ebola patients (Table 1) who spent all 
or part of their infectious period in 1 of 12 countries oth-
er than Guinea, Sierra Leone, or Liberia. We broke these 
data into 3 subgroups: patients who traveled to 1 of the 12 
countries during their incubation or symptomatic period, 
patients deliberately evacuated from West Africa for treat-
ment, and patients who acquired infection in the new coun-
try after an introduction of the virus.

We fit the transmission data from patients within sub-
groups to the negative binomial distribution with mean R 
and dispersion parameter k, which characterizes individual 
variation in transmission, including the likelihood of su-
perspreading events (i.e., when infected persons dispropor-
tionately transmit the virus to others) (25). High values of 
k produce low variability and a low probability of super-
spreading; k approaching infinity leads to a Poisson dis-
tribution, which arises when all infected persons have an 
equal expected number of contacts and an equal probability 
of transmission per contact. The value k = 1 corresponds to 
a geometric distribution, which arises when the duration 
of the infectious period varies among infected persons ac-
cording to an exponential distribution, as is generally as-
sumed by differential equation models; otherwise, the in-
fected persons are homogeneous. Values of k <1 produce 

more highly dispersed models, which occur when infected 
persons vary substantially in numbers of susceptible con-
tacts or in probabilities of transmission per contact (25). 
Occurrence of high variability leads to a higher probability  
of superspreading.

We estimated the parameters R and k for each data 
subset by using the method of moments, which calculates 
the parameter values that produce the exact mean and 
variance exhibited by the data (i.e., a single estimate for R 
and k). We calculated associated confidence intervals by 
using a bias-corrected percentile method (26) on random 
samples of the data. We also used a Kolmogorov–Smirnov 
test (27) to assess goodness of fit (online Technical Ap-
pendix, http://wwwnc.cdc.gov/EID/article/21/8/15-0170-
Techapp1.pdf).

We then applied theory from branching process 
models, which use a discrete probability distribution, or 
offspring distribution, to specify the number of transmis-
sions resulting from each infected person in a chain of 
transmissions. We used the negative binomial distribu-
tions fitted to the Ebola transmission data for the offspring 
distribution. Because our R estimates differed depending 
on the data subgroups representing each infected person’s 
circumstances, we examined models representing an im-
mediate control scenario and a delayed control scenario, 
each with 2 levels of control, for a total of 4 combinations 
of parameters.

In the immediate control scenario, the initial infected 
person or persons and any subsequent infected persons 
transmit infection according to the same distribution with 
R<1. In the delayed control scenario, the initially intro-
duced infected person or persons have a higher expected 
number of transmissions (R0, the initial or basic reproduc-
tive number) than the number expected to be transmitted 
from subsequent cases (Rc, the postcontrol reproductive 
number). The delayed control scenario can occur when 
an infected traveler arrives in a new country during the 
incubation or symptomatic period and has contact with 
others before the person has been identified as infected or 
when the person is treated in a facility that is not fully pre-
pared or experienced in handling an Ebola patient, but any 
subsequent cases are identified quickly and handled more 
effectively by a well prepared facility. For controlled pa-
tients in either scenario, we examined 2 different levels 
of control; these levels are represented by 2 values of the 
postcontrol reproductive number: 1 derived from the av-
erage number of transmissions from evacuated infected 
persons and 1 from the average number of transmissions 
from persons who acquired infection locally. Because 
the k values calculated from the fitting of transmission 
data ranged widely, we applied a series of 3 test values 
(k = 0.1, 1, and 10) to each scenario to determine the 
effect of variability on the outcomes.
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For each scenario and each set of parameter assump-
tions, the probability distribution of final outbreak sizes 
according to branching process theory can be calculated 
(online Technical Appendix) as examples of Lagrangian 
distributions (28,29). For each parameter combination, we 
used these equations to calculate the probability of exceed-
ing given outbreak sizes, up to the size expected to be ex-
ceeded with a probability of ≈0.01%. To compare different 
scenarios, we calculated the probability of exceeding 10 
and 100 total transmissions and worst-case outbreak sizes 
(i.e., the number of transmissions expected to be exceeded 
after 1% and 0.01% of introductions of Ebola). Although 
we show only results calculated with the assumption of 1 
initial patient, the equations we provide (online Technical 
Appendix) generalize to any number of initial patients and 
can be used in situations for which multiple introductions 
might be of interest.

Results
Certain subgroups of patients within the dataset produced 
substantially different R estimates (Table 2). For patients 

who traveled to 1 of the 12 countries during their incubation 
or symptomatic period, we calculated R = 2.9 transmissions 
per patient; for patients deliberately evacuated from West 
Africa for treatment, R = 0.05; for patients who acquired 
infection in the new country after an introduction, R = 0.3. 
Estimates of k produced wide CIs within subgroups, from 
values <1, which are consistent with a highly dispersed dis-
tribution, to large values, which are consistent with a Pois-
son distribution.

Assuming R0 = 3, estimated on the basis of traveler-
imported cases, and Rc = 0.3, estimated on the basis of 
locally acquired cases, the chance of an outbreak with 
>10 transmissions after a single introduction ranges from 
≈7%–13% across the 3 assumed values for k: 0.1, 1, and 10 
(Figure 1, panel A). The chance of an outbreak with >100 
transmissions is negligible (<0.01%) for k = 10 and k = 1 
but rises to ≈0.4% under a high variability assumption of 
k = 0.1 because of increased likelihood of superspreading. 
We considered the effect of 2 ways to reduce the risk from 
those results: decreasing Rc to approach the level of control 
achieved among evacuated patients (30) and eliminating 
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Table 1. Characteristics of Ebola case-patients reported outside Guinea, Sierra Leone, and Liberia* 
Case-patients   Year and month Country Circumstance of infection No. transmissions 
1 2014 Jul Nigeria Imported by traveler 13 
2–4 2014 Jul–Aug Nigeria Locally acquired 1 
5–19 2014 Jul–Aug Nigeria Locally acquired 0 
20 2014 Aug Nigeria Locally acquired 3 
21–23 2014 Aug Spain, United Kingdom, Germany Evacuated  0 
24 2014 Aug Senegal Imported by traveler 0 
25–27 2014 Aug–Sep United States Evacuated  0 
28 2014 Sep France Evacuated  0 
29 2014 Sep United States Imported by traveler 2 
30 2014 Sep Spain Evacuated 1 
31–32 2014 Oct United States Locally acquired 0 
33 2014 Oct Spain Locally acquired 0 
34–35 2014 Oct Germany Evacuated  0 
36  2014 Oct Norway Evacuated  0 
37  2014 Oct United States Imported by traveler 0 
38 2014 Oct Mali Imported by traveler 0 
39–40 2014 Oct–Nov United States Evacuated  0 
41 2014 Nov France Evacuated  0 
42  2014 Nov Mali Imported by traveler 5 
43–44 2014 Nov Mali Locally acquired 1 
45–49 2014 Nov Mali Locally acquired 0 
50–52 2014 Nov United States, Switzerland, Italy Evacuated  0 
53 2014 Dec The Netherlands Evacuated  0 
54 2014 Dec United Kingdom Imported by traveler 0 
55–56 2015 Mar United Kingdom, United States Evacuated  0 
*These data are published and publicly available as of April 24, 2015. Month/year is when patients were transferred or diagnosed. References by country: 
Nigeria (5,6); Spain (15,16); United Kingdom (14,15); Senegal (12);United States (7,8,13,15); Mali (9–11); other countries (15). 

 

 

 

 
Table 2. Summary of Ebola data and parameter estimates* 
Patient group No. Transmissions R estimate (90% CI) k estimate (90% CI) 
All 56 29 0.5 (0.2–1.0) 0.09 (0.03–0.2) 
Traveler 7 19 2.9 (0.6–6.1) 0.4 (0.2–1.3) 
Evacuated patient 20 1 0.05 (0–0.1)  
Patient with locally acquired Ebola 29 9 0.3 (0.1–0.5) 0.5 (0.2–) 
*Cases were included if the patient spent any of the infectious period in a country other than Guinea, Liberia, or Sierra Leone. The 56 patients are split 
into 3 mutually exclusive subgroups, depending on the patients’ circumstances. Parameters R and k of the negative binomial distribution are the 
reproductive number and dispersion parameter, respectively. Goodness of fit was not rejected by a Kolmogorov–Smirnov test (p>0.6 in all cases). 
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the initial high-average transmission step to reflect preiden-
tification of the initial infected traveler.

When R0 = 3 but Rc is decreased to 0.1 (Figure 1, panel 
B), the chance of >10 transmissions is 1%–10%. The chance 
of >100 transmissions is <0.01% for k = 10 and k = 1 and 
0.2% with high variability. Assuming that the initial patient 
is identified and that transmission is controlled (R = 0.3) 
(Figure 1, panel C) causes a much more substantial de-
crease in outbreak risk, to a range of 0.04%–1% for >10 
transmissions and <0.01% for >100 transmissions, even 
with high variability. Assuming R = 0.1 for all patients 
causes >10 transmissions to be very unlikely, with a 0.01% 
chance even with high variability (Figure 1, panel D).

In addition, we compared the 4 scenarios and con-
sidered worst-case outbreaks at 2 probability levels: the 
outbreak level estimated by the model to be exceeded in 
1% of introductions (Figure 2, panel A) and the outbreak 
level estimated by the model to be exceeded in 1 in 10,000 
introductions (Figure 2, panel B). The effect of identify-
ing the initial patient is stronger than the effect of reduc-
ing Rc, but the combination produces a synergistic effect. 
For example, at moderate variability (k = 1), the 0.01% 

worst-case outbreak size when R0 = 3 and Rc = 0.3 (49 
total transmissions) is reduced to 73% of that value (36 
total transmissions) when Rc is reduced to 0.1. The worst-
case outbreak size is reduced to 31% (15 total transmis-
sions) when the initial patient is identified. Reducing Rc 
(i.e., postcontrol average number of transmissions per pa-
tient) and identifying the initial patient together decrease 
transmission size to 10% of the worst-case value (5 total 
transmissions), which is greater than the expected reduc-
tion (to 22%) if each intervention was conducted indepen-
dently. The worst-case risk reduction is greatest under the 
assumption of high transmission variability (k = 0.1); the 
0.01% worst-case outbreak size is reduced from 239 total 
transmissions to 4% or 10 total transmissions when both 
intervention assumptions are applied.

We also explored the sensitivity of exceedance prob-
abilities to additional values of R and k (online Technical 
Appendix Figure) and showed nuances of how higher vari-
ability can simultaneously increase the probability of the 
best-case scenario (no transmissions) and of worst-case 
scenarios (e.g., superspreading, which can lead to large 
outbreaks).
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Figure 1. Exceedance risk curves 
for total number of transmissions 
in an Ebola outbreak following 
a single-case introduction. Solid 
lines, k = 1; dashed lines, k = 0.1; 
dash-dot lines, k = 10. A) R0 = 3 for 
initial case, assumed to be traveler 
during incubation or symptomatic 
period; and Rc = 0.3 for 
subsequent cases, assumed to be 
locally acquired cases in countries 
other than Guinea, Sierra Leone, 
or Liberia. B) R0 = 3 for initial case, 
assumed to be patients evacuated 
for treatment; and Rc = 0.1 for 
subsequent cases. C) R = 0.3 for 
all cases. D) R = 0.1 for all cases.
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Discussion
The outbreak size distributions produced by our models 
are comparable to those of Gomes et al. (4), although their 
results also encompassed frequencies of case exportations 
from Guinea, Sierra Leone, or Liberia into each particu-
lar country, which our analysis did not include. None of 
their simulations appears to have produced >100 cases in 
any particular country, indicating that our scenarios result 
in more pessimistic outcomes. For example, our delayed-
control, high-variability (k = 0.1) scenario produced a 0.4%  

probability of >100 transmissions after a single introduction.  
The assumed transmission probabilities of Gomes et al. ap-
pear to be more comparable to our immediate-control and 
lower-variability scenarios.

Our estimates also assign greater potential probabili-
ties of large outbreaks than those provided by Rainisch et 
al. (18), whose highest estimate of the number of beds re-
quired at a given time to treat Ebola patients in the United 
States was 7 (95% CI 2–13). The difference between this 
result and ours is farther widened because their result in-
cludes the possibility of multiple simultaneous introduc-
tions caused by a cluster of infected travelers, whereas our 
results were based on a single introduction. Their worst-
case estimate is lower than ours because Rainisch et al. 
assumed a maximum of 2 additional cases caused by sec-
ondary transmission per imported case, whereas our fitted 
distributions of possible transmissions reach >2, sometimes 
with substantial probability. For example, in our scenario 
of a single unidentified traveler’s Ebola introduction with 
R0 = 3 and subsequent cases transmitting with Rc = 0.3 and 
with moderate transmission variability (k = 1), our model 
estimates a 50% chance of >2 transmissions occurring 
after a single introduction. However, under the assumption 
of immediate transmission control (Rc = 0.1), our model 
estimates <1% chance of >2 transmissions.

The contrasting relationships between the parameter k 
and different measures of outbreak risk reflect the unpredict-
able outcome of high variability in transmission: a low fre-
quency of outbreaks after a new introduction but a relatively 
high probability of an explosive outbreak when an outbreak 
occurs. This situation was seen in countries experiencing 
introduced cases of severe acute respiratory syndrome, for 
which estimated values of k were ≈0.1 (25). A recent study 
(31) produced a similar estimate (k = 0.18; 95% CI 0.10–
0.26) when the negative binomial distribution was fitted to 
data from large Ebola transmission chains in Guinea (32); 
this result suggests that the high variability assumption may 
be appropriate, but whether or not the assumption of high 
variability is an appropriate characterization for potential Eb-
ola outbreaks in new countries is unclear. Attempting to es-
timate k by using transmission data (Table 1) produced wide 
ranges of uncertainty. However, the Ebola case that resulted 
in 13 transmissions in Nigeria suggests that assuming a low 
value of k, at least for the delayed control scenario, is justi-
fied. In Nigeria, the average number of transmissions from 
those 13 and all subsequent cases was <0.4. This low average 
number of transmissions was assisted by health authorities’ 
rapid implementation of control measures (5). Little evi-
dence exists for high transmission variability from these or 
other locally acquired or medically evacuated Ebola cases. 

Our framework quantitatively characterizes worst-case 
Ebola outbreaks resulting from an introduced Ebola case to a 
region with relatively effective control measures. Our results 
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Figure 2. Comparison of worst-case Ebola outbreak sizes after a 
single-case introduction under different scenarios. Comparisons 
of the outbreak size expected to be exceeded after A) 1% of 
introductions and B) 0.01% of introduction of a single initial 
case, under different assumptions for the reproductive number 
R and dispersion parameter k. In all cases, higher transmission 
variability (lower k) leads to higher worst-case estimates. From 
the R0 = 3, Rc = 0.3 case, reducing Rc to 0.1 for cases after the 
initial case has less effect than reducing the initial case R0 to 0.3. 
Reducing both the initial and subsequent cases’ R to 0.1 has a 
synergistic effect.
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can be used by public health officials engaging in risk-benefit 
analyses of potential decisions affecting Ebola case introduc-
tions, such as decisions to evacuate infected or potentially 
infected persons from West Africa, policies on travel sur-
veillance measures, and strategies for handling identified im-
portations. Initial public health assessments at the local level 
include the risk of importing a case to that geographic area 
(4,18,33,34), the cost versus benefit of identifying potential 
cases through traveler screening (i.e., in major international 
ports of arrival), or surveillance in health care facilities (that 
serve populations at risk from travel or exposure). Either 
way, the tried and tested methods of early detection and iso-
lation appear to be of primary importance in controlling on-
going Ebola outbreaks in West Africa (35) or potential new 
outbreaks caused by imported cases elsewhere.

Our framework also provides a simple method to quan-
tify the individual and synergistic effects of different con-
trol strategies. Our results stress the paramount importance 
of surveillance measures to identify international travelers 
who may have been recently exposed to Ebola virus be-
cause a higher reproductive number from initially intro-
duced cases can drastically increase the risk of a large out-
break, even if effective control measures are immediately 
put in place to reduce transmission from subsequent cases. 
Surveillance, combined with measures to reduce transmis-
sion from local cases to the low average achieved among 
evacuated cases (30), can reduce the probability of all but a 
handful of transmissions to negligible levels.

Dr. Toth is an assistant professor in the Division of Epidemiology, 
Department of Internal Medicine, University of Utah School of 
Medicine, Salt Lake City, UT, USA. His research interest is  
applied mathematics, specifically mathematical modeling of  
infection and transmission of pathogens to support risk  
assessment and intervention planning for public health.
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Estimates of Outbreak Risk from New 
Introductions of Ebola with Immediate and 

Delayed Transmission Control  

Technical Appendix 

Additional Methods, Equations, and Results 

To fit the negative binomial model to each dataset, we used a method-of-moments 

estimator, which calculates R and k values that produce the exact mean and variance exhibited by 

the data. To estimate 90% confidence intervals, we ran 1 million nonparametric bootstrap 

resamples of each dataset, with replacement, and recalculated the R and k estimates for each 

resample. Then we used a bias-corrected percentile method (1) to construct the confidence 

intervals. We used the 1-sample Kolmogorov–Smirnov test, adapted for discrete variables (2), to 

assess goodness of fit, and the null hypothesis that each dataset was generated from the given 

negative binomial distribution was not rejected (P >0.6 in all cases).   

To model outbreaks stemming from case introductions, we first assumed a branching 

process in which the number of transmissions from each infected person is independent and 

identically distributed according to a discrete probability distribution governed by a probability-

generating function (pgf) f(s). The probability, pnz, that n independent infected persons produce a 

total of z transmissions, is the zth coefficient of the power series representation of [𝑓(𝑠)]𝑛, which 

can be extracted by calculating 

𝑝𝑛𝑧 =
1

𝑧!
[

𝑑𝑧

𝑑𝑠𝑧
[𝑓(𝑠)]𝑛]

𝑠=0
. 

We are interested in the probability that a branching process that goes extinct (a minor 

outbreak or stuttering chain) includes a given total number of cases, X, over all generations, 

including the initial case(s) in the total. When there is a single initial case, this value is governed 

by a pgf, g(s), satisfying the following equation: 

http://dx.doi.org/10.3201/eid2108.150170
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𝑔(𝑠) = 𝑠𝑓(𝑔(𝑠)). 

Solving for the coefficients of the power series representation of g(s) can be achieved by 

using a Lagrange expansion, which results in the following (3):  

𝑃(𝑋 = 𝑥) =
1

𝑥!
[

𝑑𝑥

𝑑𝑠𝑥
𝑔(𝑠)]

𝑠=0
=

1

𝑥!
[

𝑑𝑥−1

𝑑𝑠𝑥−1
(𝑓(𝑠))

𝑥
]

𝑠=0

. 

Probability distributions of this form have been named basic Lagrangian distributions (4). 

When the number of initial cases is a random variable with pgf f0(s), then further 

Lagrange expansion results can be used to obtain the result, 

𝑃(𝑋 = 𝑥) =
1

𝑥!
[

𝑑𝑥−1

𝑑𝑠𝑥−1
{(𝑓(𝑠))

𝑥
𝑓0′(𝑠)}]

𝑠=0

. 

In the case that the number of initial cases is fixed at n, we have f0(s) = sn, leading to a 

delta Lagrangian distribution (reverting to basic when n = 1); otherwise, we have a general 

Lagrangian distribution (4).  

Example distributions have been generated by substituting pgf’s f(s) and f0(s) of several 

different discrete probability distributions into the above equations (3). When f(s) is the pgf of 

the negative binomial distribution with mean R and dispersion parameter k: 

𝑓(𝑠) = (1 +
𝑅

𝑘
(1 − 𝑠))

−𝑘

, 

we have 

𝑝𝑛𝑧(𝑅, 𝑘) =
Γ(𝑘𝑛 + 𝑧)

𝑧! Γ(𝑘𝑛)
(

𝑅

𝑅 + 𝑘
)

𝑧

(
𝑘

𝑅 + 𝑘
)

𝑘𝑛

, 

where Γ represents the gamma function. Here, pnz is the probability distribution for the number of 

transmissions z from the initial patient(s) only. The distribution for the total number of patients x 

over an entire stuttering chain starting with n initial patients is  

𝑞𝑛𝑥(𝑅, 𝑘) =
𝑛

𝑥

Γ(𝑘𝑥 + 𝑥 − 𝑛)

(𝑥 − 𝑛)! Γ(𝑘𝑥)
(

𝑅

𝑅 + 𝑘
)

𝑥−𝑛

(
𝑘

𝑅 + 𝑘
)

𝑘𝑥

, 
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where we have taken the “neg. binomial-delta” formula in Consul and Shenton (3) and replaced 

their parameterization of the negative binomial distribution with the one above. 

Blumberg and Lloyd-Smith (5) derived an equivalent result, although only for the 

scenario n = 1, without using the Lagrange expansion technique. The result above shows that a 

generalization of their approach would yield the following relationship: 

𝑞𝑛𝑥(𝑅, 𝑘) =
𝑛

𝑥
𝑝𝑥,𝑥−𝑛(𝑅, 𝑘). 

This equation gives the intuition that an outbreak with x total patients means that those x 

patients produced a total of exactly x – n transmissions, and the probability of that occurring 

from x independent patients must be adjusted by the fraction (n / x) to account for the fact that 

the transmissions must occur in an order that produces a valid transmission chain (5). This result 

was also described by Becker (6), who derived the final size distribution when the offspring 

distribution is expressed as a generalized power series distribution, of which the negative 

binomial distribution is a special case. 

Next, we consider a scenario in which n initially infected persons transmit according to a 

negative binomial distribution with parameters (R0, k0) and any and all subsequent persons 

transmit according to a different negative binomial distribution with parameters (Rc, kc). The 

probability rnx of an outbreak of total size x (including the n initial patients) is 

𝑟𝑛𝑥(𝑅0, 𝑘0, 𝑅c, 𝑘c) = {

𝑝𝑛0(𝑅0, 𝑘0), 𝑥 = 𝑛

∑ 𝑝𝑛𝑧(𝑅0, 𝑘0) 𝑞𝑧,𝑥−𝑛(𝑅c, 𝑘c)

𝑥−𝑛

𝑧=1

, 𝑥 > 𝑛.
 

The sum in this equation can be expressed by using a hypergeometric function, as in 

Consul and Shelton (3) (general Lagrangian distribution for the double-negative binomial case) 

for the case n = 1, but we found the above expression to be more convenient for calculations. 

To calculate the probability of x or more transmissions, we evaluated 

1 − ∑ 𝑞𝑛𝑚(𝑅, 𝑘),

𝑛+𝑥−1

𝑚=𝑛

 

or  
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1 − ∑ 𝑟𝑛𝑚(𝑅0, 𝑘0, 𝑅𝑐, 𝑘𝑐).

𝑛+𝑥−1

𝑚=𝑛

 

Although we have limited our study to scenarios in which R<1 or Rc<1, these exceedance 

probability equations are valid for all positive values of R or Rc. 

We further explored the effects of assuming different values of R and k in the initially 

controlled scenario by varying R from 0 to 1 and k from 0.01 to 100 and plotting the resulting 

probabilities of exceeding 1, 5, 10, and 100 total cases in an outbreak seeded by 1 person 

(Technical Appendix Figure, panels A, B, C, D). These results show contrasting interpretations 

of the parameter k. Although increasing R always increases exceedance probabilities, the effect 

of increasing k is not always the same, as higher variability (lower k) increases the probability of 

both below-average and above-average transmissions. For example, with R fixed at a specific 

value, a lower value of k decreases the probability of >1 transmissions (Technical Appendix 

Figure, panel A); that is, lower k increases the probability that the initial case will not transmit, 

which is the best-case scenario for a country experiencing an introduction. However, a lower 

value of k also increases the probability of worst-case scenarios for certain values of R, for 

example, the probability of >10 transmissions for R = 0.1 (Technical Appendix Figure, panel C) 

or the probability of >100 transmissions for R = 0.6 (Technical Appendix Figure, panel D).  
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Technical Appendix Figure. Exceedance probability contours showing R and k sensitivity. Probability 

contours in (R, k) parameter space with the assumption of a single initial patient. R is the reproductive 

number (i.e., average transmissions from each patient, including the initial patient), and k is the negative 

binomial dispersion parameter; a lower k corresponds to higher individual variability in transmission. A) 

Probability of >1 transmissions from the initial case; B) probability of >5 transmissions over the entire 

outbreak; C) probability of >10 transmissions over the entire outbreak; D) Probability of >100 

transmissions over the entire outbreak. 
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