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Potential Human 
Adaptation  
Mutation of  

Influenza A(H5N1) 
Virus, Canada

To the Editor: In December 2013, 
influenza associated with pandemic in-
fluenza A H5N1 was reported in Cana-
da in a patient who had traveled to Chi-
na; the patient died in January 2014. 
This case leaves unanswered questions.

In the absence of direct poultry 
contact by the patient, the possible 
route of transmission and infection, 
often influenced by receptor-binding 
properties of the virus, requires special 
attention. The full genome and phylo-
genetic analysis by Pabbaraju et al. (1) 
provides a summary of what can typi-
cally be deduced from the sequence. 
The authors also mention 2 novel 
mutations, R189K and G221R, in the 
hemagglutinin (HA) protein (R193K 
and G225R in H3 numbering, used 
hereafter). When mapped to the H5 HA 
protein structure by using FluSurver 
in GISAID (http://www.gisaid.org, 
http://flusurver.bii.a-star.edu.sg), both 
mutations are found in the immediate 
receptor-binding pocket, and G225R 
has been known to change specificity 
of an H3N2 virus toward human eryth-
rocytes (2). The same position is also 

known for receptor recognition chang-
es in the 2009 pandemic H1N1 virus 
(mutations D222G, D225G, or D239G 
in different numberings). Besides A/
Alberta/01/2014 (clade 2.3.2.1c), the 
mutation G225R has been found in 3 
other H5N1 sequences: A/duck/Hu-
nan/15/2004 (clade 2.3.3), A/chicken/
Xinjiang/53/2005, and A/chicken/ 
Xinjiang/27/2006 (both clade 7,  
all lineage assignments made with  
LABEL, http://label.phiresearchlab.org/). 
Although few G225R mutations were 
found, they were all found in avian 
hosts, indicating that the mutation can 
occur sporadically and avian-like re-
ceptor-binding properties may not be 
fully abolished by G225R.

In the absence of glycan-binding 
data or crystal structures, which take 
longer to deduce, computational struc-
tural modeling is an efficient and safe 
alternative for fast preliminary assess-
ment of these mutations in their natu-
ral structural context of H5N1 binding 
pockets. We have shown (3) that a 
method using the classical AMBER03 
molecular mechanics force field (4) 
with an implicit solvation model in 
combination with short molecular dy-
namics simulations in YASARA (5) 
can reproduce relative preference for 
human-like α2,6-linked versus avian-
like α2,3-linked sialic acid receptors. 
The interaction energies of all atoms 
in a system are described and com-
bined with distance-dependent func-
tions for different interaction types, 
including bonds, various angles, van 
der Waals, electrostatics, and solvent, 
which leads to consideration of the 
concerted effects of all residues in the 
binding pocket. By using this energy 
function, short molecular dynamics 
simulations enable all atoms to move 
for specified intervals within the con-
straints of their interactions. These 
simulations are used to minimize and 
finally predict the energies of the wild-
type and mutant HA proteins for their 
ligand-bound and unbound states con-
sidering their respective ligands (see 
Methods section of [3] for details). 
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In this study, we further tested the 
computational structural model on mu-
tations with known effect on receptor-
binding properties (2,3,6–9) in H5N1 
context based on recently resolved 
crystal structures and the respective 
ligand complexes (9). We limited this 
selection to mutations in the immedi-
ate vicinity of the crystallized receptor 
analog because the method should be 
most accurate for this scenario. The 
results showed that the binding pref-
erence of known mutations could be 
predicted at least qualitatively. Next, 
we tested the additional mutations 
found in A/Alberta/01/2014(H5N1). 
Our results (online Technical Appen-
dix Figure, http://wwwnc.cdc.gov/
EID/article/209/12-1200-Techapp1.
pdf) suggest that G225R could incur a 
relative predicted increase in binding 
to the human-like receptors. Although 
the quantitative accuracy of computa-
tional methods in this regard is lim-
ited, the predicted numerical value 
suggests a possible similar extent of 
the effect to that of the well-known 
Q226L utation. It should also be noted 
that the predicted increase in bind-
ing to human-like receptors does not 
necessarily imply a concomitant loss 
of avian receptor binding. The role of 
R193K is less clear with a slight pre-
dicted tendency of favoring avian-like 
receptors. These preliminary findings 
highlight the necessity of verifying 
not only the receptor-binding proper-
ties of this virus through experimenta-
tion, but given the predicted increased 
preference for human receptors, also 
verifying potential roles in altered 
mammalian transmissibility.

These receptor-binding pocket 
mutations of the virus were not seen in 
the most closely related Asian H5N1 
sequences of clade 2.3.2.1c (1), and 
no human contacts were known to be 
affected. From the epidemiologic per-
spective of this isolated human case, it 
is possible that this variant arose in the 
patient after initial infection and con-
tributed to prolonged and severe in-
fection and to the more unusual spread 

to brain tissue. If more avian strains 
with G225R mutations are found, the 
example of Q226L in H7N9 indicates 
that relative receptor-binding changes 
alone do not necessarily imply im-
mediate mammalian transmissibil-
ity (10). It should also be noted that 
G225R was not among the mutations 
identified by recent controversial 
mammalian adaptation studies, (7,8) 
indicating that there may be more 
H5N1 host specificity markers than 
have been identified. Consequently, 
the functional roles of G225R in avian 
influenza should be further analyzed 
by conducting secure experiments 
and, pending verification, checking 
closely for its potential as an avian in-
fluenza host specificity marker.
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Genetic Changes of 
Reemerged  

Influenza A(H7N9) 
Viruses, China

To the Editor: From March 30, 
2013, through April 8, 2014, a total of 
401 human infections with novel avian 
influenza A (H7N9) virus were reported 
in China (1). In the initial wave from 
February through May 2013, cases were 
laboratory confirmed for 133 patients 
(45 died), mainly in eastern China. 
From June through early October 2013, 
only 2 laboratory-confirmed cases were 
reported in China. One of these, identi-
fied on August 10, 2013, was the first 
case of influenza A(H7N9) virus infec-
tion in Guangdong Province (strain A/
Guangdong/HZ-01/2013). However, a 
second wave of influenza A(H7N9) vi-
rus infection began on October 14, 2013 
(2). As of April 8, 2014, a total of 266 
laboratory-confirmed cases had been 
reported, mainly in Zhejiang Province 
in eastern China (92 cases, 37 deaths) 
and Guangdong Province in southern 
China (99 cases, 30 deaths).

Previous sequencing studies 
suggested that 6 of the 8 influenza 
A(H7N9) virus RNA segments were 
acquired from influenza A(H9N2) vi-
rus. This acquisition process involved 
at least 2 steps of sequential reassort-
ment; the most recent event most like-
ly occurred in the Yangtze River Delta 

area of eastern China (3–5). To date, 
nearly all analyses have been per-
formed by using sequences obtained 
from viruses isolated during the first 
wave of infection; changes associ-
ated with viruses isolated during the 
second wave are largely unknown (6). 
We therefore conducted phylogenetic 
analyses of whole-genome sequence 
data for 15 influenza A(H7N9) vi-
ruses isolated from human patients in 
Guangdong from November 4, 2013, 
through January 15, 2014. 

We estimated maximum-likeli-
hood trees for all 8 RNA segments by 
using MEGA version 5.2 and the gen-
eral time-reversible model (7). RNA 
segments encoding the hemagglutinin, 
neuraminidase, and matrix genes of A/
Guangdong/H7N9 viruses isolated af-
ter November 2013 were genetically 
similar to those of A/Guangdong/HZ-
01/2013 and H7N9 strains from the first 
wave of influenza (online Technical 
Appendix, http://wwwnc.cdc.gov/EID/
article/20/9/14-0250-Techapp1.pdf). 
An additional 4 RNA segments (non-
structural protein [NS], nucleocapsid 
protein [NP], polymerase basic proteins 
[PB] 1 and 2) of A/Guangdong/H7N9 
influenza viruses isolated after Novem-
ber 2013 were clustered with A/Guang-
dong/HZ-01/2013 virus and were di-
vergent from all currently sequenced 
subtype H7N9 viruses from the first 
wave in eastern China. The only excep-
tion was the NP segment of A/Guang-
dong/SZ-026/2014, which was found 
segregated into a separate cluster with 
subtype H9N2 viruses from Shandong 
Province. Moreover, analyses showed 
that RNA segments encoding NS, NP, 
PB1, and PB2 of A/Guangdong/H7N9 
isolated after November 2013 were 
most similar to the same segments from 
influenza A(H9N2) viruses that had re-
cently circulated in Guangdong (online 
Technical Appendix Figure, panels 
D–G). That is, NS, NP, PB1, and PB2 
showed greater similarity to local sub-
type H9N2 viruses from Guangdong 
than to subtype H7N9 viruses from the 
first wave of influenza.

Notably, 2 separate clusters were 
observed for the phylogenetic tree of 
the RNA segment encoding the poly-
merase acidic gene (online Technical 
Appendix Figure, panel H). A/Guang-
dong/HZ-01/2013-like viruses clus-
tered with subtype H7N9 viruses from 
the first wave of influenza. However, 
A/Guangdong/DG-02/2013-like virus-
es were clustered with subtype H9N2 
influenza viruses circulating in Guang-
dong, suggesting that recent reassort-
ment with circulating subtype H9N2 
viruses occurred after the first case of 
infection with influenza A(H7N9) virus 
reported in Guangdong (online Techni-
cal Appendix Figure, panel H).

This study provides evidence that 
influenza A(H7N9) viruses isolated 
during the second wave of influenza 
in Guangdong differ genetically (in 
5 of the 8 RNA segments) from that 
of influenza A(H7N9) viruses isolated 
during the first wave. High similarity 
of these 5 segments with those of lo-
cally circulating subtype H9N2 virus-
es suggests that rapid and continued 
reassortment with circulating subtype 
H9N2 viruses occurred during the sec-
ond wave of the influenza A(H7N9) 
virus epidemic. Because reassortment 
and genetic changes can contribute 
to host fitness and infection capac-
ity of reemerged influenza A(H7N9) 
viruses, studies of pathogenicity and 
transmission, to reveal the exact role 
of each genetic alteration, are needed.
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Potential Human Adaptation Mutation of 
Influenza A(H5N1) Virus, Canada 

Technical Appendix Figure. G225R, a new HA receptor binding pocket mutation in 

A/Alberta/01/2014(H5N1) is predicted by A) computational structural modeling that will B) alter specificity 

toward a relative increase in human receptor binding. A) Modeled hemagglutinin complex with the avian-

like receptor that is based on PDB:3zp0 on the left and the human-like receptor based on PDB:3zp1 on 

the right side. G225R facilitates creation of new hydrogen bonds to the opposite disulfide-bridge stabilized 

scaffold (≈S137), thereby slightly moving the 225 loop holding critical residue Q226, which is in direct 

contact with the ligand and appears slightly altered in the model of the complex with the human-like 

ligand. This provides a hypothetical mechanism for the binding changes. Colors indicate properties as 

follows: green: Wildtype G225; red: Mutant 225R; magenta: Receptor analog; yellow: H-bonds. B) 

Predicted tendencies of receptor preference changes on the left; positive values indicate increased 

http://dx.doi.org/10.3201/eid2009.140240
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preference for human and negative values for avian receptors, respectively. Exact values may not be 

accurate but qualitative tendencies have been shown to be reproducible compared to experiments. The 

method was also applied to several binding pocket mutations with known effect reported in the literature 

and the predictions match the experimental observations summarized on the right side. 
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